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Abstract

Data envelopment analysis (DEA) has being used commonly in a va-
riety of fields since it was developed, and its development continues
through interacting with other techniques. Since the method can be
applied to multiple inputs and outputs, it interacts with multivariate
statistical methods. Principle component analysis (PCA) is a multi-
variate analysis method used to destroy the independence structure
between variables or to reduce the number of dimensions. In litera-
ture, PCA and DEA are compared for ranking decision making units.
Then, PCA-DEA procedure was modified. In this study, the multi-
dimensional scaling (MDS) algorithm, which is one of the commonly
used methods in multivariate statistics, is integrated to the PCA-DEA
method to rank the decision making units (DMUs). According to Spear-
man rank correlation, the proposed method gives a higher correlation
with super efficiency compared to other methods.
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1. Introduction
DEA, non parametric method of evaluating relative efficiencies for groups of similar

units in point of view of the produced product and service, was introduced by Charnes
et al. [1]. The summary of the main characteristics of DEA method are to be able to
identify the sources and the level of inefficiency for each Decision Making Unit (DMU)
and their evaluated efficiencies are relative efficiencies since the level of efficiency of each
DMU is obtained with respect to the other units, and making no assumptions on the
variables.

DEA was first proposed by Charnes et. al. [1] (Charnes, Cooper, Rhodes (CCR)
model) and then extended by Banker et. al. [2] (Banker, Charnes and Cooper (BCC)
model). These methods are called classical models and they can not be used in ranking
efficient units. Andersen and Petersen [3] provided ranking of efficient units through
improving these methods. The basic idea in this model is to compare the analyzed
decision making unit with the linear combinations of all the other decision making units.
Decision making unit that has the highest super efficiency score occurs at the first place.
The other decision making units are ranked in descending order according to their super
efficiency scores. Additionally, a lot of different approaches about ranking problem could
be seen in DEA literature as Sexton et. al. [4], Podinovski and Athanassopoulos [5],
Meza and Lins [6], Sun and Lu [7], Jahanshahloo et al. [8, 9], Alirezaee and Afsharian
[10], Orkcu and Bal [11], Hosseinzadeh et al. [12], Wu et al. [13], Bal et al. [14, 15], Lam
[16], Cooper et al. [17], and Wang et al. [18, 19].

DEA has being used commonly in variety of fields since it was developed and its de-
velopment continues through interacting with other techniques. Since the method can
be applied to multiple inputs and outputs, it interacts with multivariate statistical meth-
ods. Sinuany-Stern and Friedman [20] proposed a method for ranking of DMUs which is
a combination of DEA and discriminant analysis of ratios (DR/DEA approach). DEA
is also combined with canonical correlation analysis by Friedman et al. [21]. Principle
component analysis (PCA) is a multivariate analysis method used to destroy indepen-
dence structure between variables or to reduce number of dimensions [22]. Moreover, it
can be used for ranking units. Zhu [23] compared DEA and PCA for ranking decision
making units. Premacandra [24] extended this approach by incorporating other impor-
tant features of ranking that Zhu has not considered. Besides, Rossi and Tomas [25] and
Azadeh et al. [26] have shown that the distance matrix also could be used to rank the
DMUs.

In this study, the multi-dimensional scaling algorithm, a statistical technique to visu-
alize dissimilarity data, is integrated to Zhu’s PCA-DEA method for the benchmarking
of DMUs. To see the proposed method performance based on MDS algorithm, and to
compare with the other approaches, the rankings of methods are compared with super
efficiency according to Spearman rank correlations. The proposed method gives a higher
correlation with super efficiency compared to Zhu’s and Premachandra’s algorithms.

The rest of this paper is organized as follows. Section 2 presents the general infor-
mation of DEA overview and super efficiency concept. Zhu’s PCA-DEA procedure and
Premachandra’s extension for Zhu’s PCA are introduced in Section 3. Section 4 rep-
resents the integration of MDS algorithm to Zhu’s PCA-DEA. Section 5 demonstrates
the methods with real data set which reflect the socio-economic performance of Turk-
ish cities. The simulation studies are considered in Section 6. Conclusions are given in
Section 7.
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2. DEA overwiev
In DEA there are many models which can be used to measure of efficiency, and these

models are derived from the ratio models in which the ratio of weighted sum of outputs
to the weighted sum of inputs [1]. In general terms, the efficiency of a particular unit
can be defined as a ratio of the value of sum of outputs to the value of sum of inputs,
where maximum efficiencies are restricted to 1; thus, the efficiency of a unit must be
less than or equal to 1. It is assumed that there are n DMUs to be evaluated in terms
of m inputs and s outputs. Let xij (i = 1, ...,m) and yrj (r = 1, ..., s) represent the
input and output values of DMUj (j = 1, ..., n), respectively. Here, vi (i = 1, ...,m) and
ur (r = 1, ..., s) are the input and output weights assigned to ith input and rth output,
respectively. DMUo refers to the DMU under evaluation. The efficiency of DMUo can
be calculated as:

(2.1)

Max
∑s
r=1 uryro

subject to∑m
i=1 vixio = 1∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0 ; j = 1, ..., n

ur ≥ 0 ; r = 1, ..., s
vi ≥ 0 ; i = 1, ...,m

This linear programming problem is well known as CCR model [1], where j is is
the DMU index, j = 1, ..., n; r is the output index, r = 1, ..., s; i is the input index,
i = 1, ...,m; yrj is the value of the rth output for the jth DMU, xij is the value of the ith

input for the jth DMU, ur is the weight given to the rth output, vi is the weight given
to the ith input. DMUo is the under evaluation DMU. In this model, DMUo is efficient
if and only if objective function value is 1. Model (2.1) is known as multiplier model of
input oriented CCR. The dual model of this multiplier model is know as envelopment
model, and can be given as below:

(2.2)

Min zo = θo
subject to
θoxio −

∑n
j=1 λjxij ≥ 0 ; i = 1, ...,m∑n

j=1 λjyrj ≤ yro ; r = 1, ..., s∑n
j=1 λj = 1

λj ≥ 0 ; j = 1, ..., n

In DEA, variables need to be separated as input and output. The discrimination of
variables as input and output is dependent on their effect on the unit. Retzlaff-Roberts
[27] showed that it will be more accurate to use the concept of positive effective and
negative effective variables instead of input and output variables. They proposed that
variables whose increase provides the better evaluation of the unit are taken as positive
effective; in contrast, variables whose decrease provides the better evaluation of the unit
are taken as negative effective [27].

In DEA, DMUs are ranked according to efficiency scores obtained at the end of the
analysis. DMU that has the highest efficiency score occurs at the first place while DMU
that has the lowest efficiency score occurs at the last place. However, since efficiency
score of all DMUs that are effective in DEA are assigned as ’1’, it is not possible to rank
effective units between each other. DEA can be used only for ranking inefficient DMUs
and in order to abolish this disadvantage various methods were developed [28]. The most
commonly used method developed for ranking efficient decision making units is the super
efficiency model proposed by Andersen and Petersen [3]. The basic idea in this model
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is to compare the analyzed decision making unit with the linear combinations of all the
other decision making units. Decision making unit that has the highest super efficiency
score occurs at the first place. The other decision making units are ranked in descending
order according to their super efficiency scores.

Super efficiency model for under evaluation decision making unit DMUo is defined as
follows:

(2.3)

Max
∑s
r=1 uryro

subject to∑m
i=1 vixio = 1∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0 ; j = 1, ..., n; ; j 6= o

ur ≥ 0 ; r = 1, ..., s
vi ≥ 0 ; i = 1, ...,m

where o denotes the under evaluation decision making unit and j 6= o means removing
the analyzed decision making unit from the constraint group, this is the basic idea of
super efficiency model.

3. A method based on principal component analysis for ranking
decision making units
PCA is a statistical method that converts correlated number of p variables into the

uncorrelated number of k variables which are linear combinations of the original variables
provide p ≥ k. The covariance or correlation matrices structures are used to find these
linear combinations. Σ is the covariance matrix, and ρ is the correlation matrix of random
vector X ′ = [X ′1 X

′
2 . . . X

′
p]. λ1 ≥ λ2 ≥ . . . ≥ λp are the eigen values and l1, l2, . . . lp

are ortagonal eigen vectors of correlation matrix [29]. Linear combinations of variables
can be calculated as PCi = liX, (i = 1, . . . , p). Explanation ratio of total variance of
kth principal component is described as λk

λ1+λ2+ . . . +λp
[22, 29].

According to Zhu’s [23] approach, the ratio of weighted sum of output to weighted
sum of input is used as a variable in PCA to provide correspondence of DEA and PCA
methods [29]. Thus, for each DMUj (j = 1, . . . , n).

(3.1) djir =
yrj
xij

; (i = 1, ...,m ; r = 1, ..., s)

ratios will be the new variables which are used in PCA to evaluate an alternative
approach to DEA , thus, the bigger the djir, the better the performance of DMUj in
terms of the rth output and the ith input [29].

Let djk = djir, with, e.g., k = 1 corresponds to i = 1, r = 1 and k = 2 corresponds to
i = 1, r = 2, etc., where k = 1, . . . p; p = m× s. n× p data matrix composed by djk is
defined as follows [29]:

(3.2) D = (d1, . . . , dp)n×p

where each row represents p individual ratios of djk for each DMU and each column
represents a spesific output/input ratio. That is, dk = (d1k, . . . , d

n
k )1×n, (k = 1, . . . , p)

[29].
The general concept of PCA approach is given step by step in [22, 29]. Seven basic

steps can be mentioned briefly as below similar to [22, 29]. For data matrix, PCA is
processed as follows:

Step 1: Correlation matrix of sample, R, is computed.
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Step 2: Eigen value and Eigen vectors of correlation matrix of sample are com-
puted.

Step 3: Principal components are computed.
Step 4: The first m principal components are selected.
Step 5: The sings of weights of the principle components are determinated.
Step 6: Matrix D is standardaized to use the principal components’ scores in

ranking.
Step 7: Principal components scores are computed to rank the DMUs according

to values of scores.
Zhu [23] applied the above algorithm to rank DMUs. The PCA ranking procedure

used by Zhu is based on ratios of individual inputs and outputs. If a particular DMU
has a large value for the relevant ratio, it can be expected that the DMU will perform
better in terms of the relevant input and output and obtain a higher rank. Therefore,
Zhu attempted to rank DMUs using PCA. Premachandra [24] extended this approach by
modifying the PCA-DEA procedure as follows:

Matrix D is modified D′ by adding another variable ((m + n + 1)th variable) whose
elements for each DMU are equivalent to the sum of the elements in the first (m × s)
columns of the matrix D; it is supposed to take into account the overall performance of
each DMU with respect to all variables.

When ranking, it is important that the performance of each DMU be evaluated relative
to other DMUs in the sample. As a second step, in order to incorporate this feature into
the PCA, it is suggested that D′′ be obtained by dividing all the elements in each column
of the matrix D′ by its column minimum. Therefore, each element in any column k of
the matrix D′′ would be indicate how good each DMU is with respect to the ith input
and rth output when compared to worst DMU with respect to the same variables. Then,
PCA is performed on the matrix D′′ in the usual manner [24].

4. MDS algorithm
The PCA procedure uses the covariance matrix. We applied a distance matrix instead

of a covariance matrix in Step 2, which was modified according to the multi-dimensional
scaling algorithm. Rossi and Tomas [25] and Azadeh et al. [26] also used the distance
matrix to rank the DMUs in their studies.

The distance matrix as used in MDS was integrated into the PCA-DEA algorithm, so
the new algorithm was established in order to be integrated through the PCA procedure
in the Zhu’s study. The algorithm based on MDS is given as follows:

Step 1: The distance matrix between DMUs, is computed (this is different from
the matrix in Step 6 in the PCA procedure).

Step 2: Generate the matrix E, whose elements are: eij = − 1
2
dij .

Step 3: Matrix F is obtained by removing the row and column averages and adding
the overall average of E to each element of matrix E.

Step 4: Remove the column averages from each column element of matrix F and
divide by column standard deviation, so each column of F is standardised as
Fsd [22].

Step 5: The principle component scores are obtained by the PCA procedure by
using the matrix Fsd in Step 2 of Zhu’s PCA-DEA procedure.

This algoritm is different from Zhu’s and Premachandra’s procedure. Their algorithm
take into account correlation matrix and distance matrix, respectively. Both correlation
matrix and distance matrix between variables are calculated. In our approach, distance
matrix between decision making units is integrated into the algoritm. The three ap-
proaches Zhu’s, Premachandra’s, and proposed methods are for comparison purposes in
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Section 5 and Section 6. Section 5 contains a real world data application related to
socio-economic performance of Turkish cities. In Section 6, the simulation study is ap-
plied with nine levels of n, and three levels for each pair of (m, r) to see the cases of these
algorithms.

5. A numerical application
We illustrate the new algorithm based on MDS by applying it to the real world data

of the 81 Turkish cities. The variables which reflect the socio-economic performance in
Turkey were chosen when determining the process of input and output variables. The
set extracted from [30] characterizes each city by 10 outputs and 3 inputs, as illustrated
in Table 1.

Table 1. Output and input variables

Outputs Inputs
y1: The number of working people in agriculture sector x1:Infant mortality population
y2: The number of working people in industry sector x2:Municipal expenditures
y3: The number of working people in trade sector x3:Public investment amount
y4: The number of paid workers
y5: The number of employers
y6: The literate population
y7: Number of beds in hospitals
y8: Gross domestic product
y9: Number of bank branches
y10: Total electric consumption amount

Zhu’s, Premachandra’s and the proposed algorithm were evaluated using a real data
set relative to the ranking of 81 Turkish cities. Also, super efficiency rankings were
obtained to compare these methods with super efficiency according to Spearman rank
correlations. To evaluate the performance of the algorithm based on MDS versus the other
algorithms mentioned in this study, the ranking scores and Spearman rank correlations
between three methods and super efficiency are given in Table 2 and Table 3, respectively.

As seen in Table 2 and Table 3, the rankings and correlation results for the three
algorithms are investigated. The correlation between ranking of proposed algorithm and
super efficiency ranking based on 81 Turkish cities is 0.7148 and it is significant for
α = 0.05.

6. Simulation study
In the preceding section, the results obtained undoubtedly applied to one sample.

In this section, the computational investigation considers randomly generated instances
with nine levels of n, and three levels for each pair of (m, r). For each combination
of n, (m, r), and 1000 random instances are generated. The fixed and variable inputs
are aggregated to produce the outputs through the following production technology:
lnYi = lnβ +

∑n
j=1 αj lnxj − ui + vi where Yi; i = 1, . . . , s denotes each output;

Xj ; j = 1, . . . ,m denotes each variable input; β is the fixed input, ui represents a nor-
mally distributed random disturbance for each output ui ∼ N(µ, σ), and vi represents the
truncated normal disturbance denoting inefficiency vi ∼ N+(µ, σ) [31]. Spearman rank
correlation coefficients were calculated for each trial between the super efficiency method
and Zhu’s, Premachandra’s, and the proposed algorithms, respectively. To evaluate the
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Table 2. Rankings of 81 Turkish Cities according to Super Efficiency
(SE), Zhu’s PCA-DEA, Premachandra algorithm (PA) and Proposed
Algorithm

No Cities (DMUs) SE Zhu PA Proposed No Cities (DMUs) SE Zhu PA Proposed
1 Adana 10 5 6 8 42 Konya 5 24 23 11
2 Adiyaman 40 58 59 52 43 Kutahya 57 39 40 37
3 Afyon 66 43 44 46 44 Malatya 55 47 46 42
4 Agri 13 67 70 40 45 Manisa 8 3 4 3
5 Amasya 78 46 49 58 46 K.Maras 41 55 54 47
6 Ankara 4 6 5 10 47 Mardin 2 7 11 4
7 Antalya 6 10 9 6 48 Mugla 45 32 28 35
8 Artvin 12 18 18 16 49 Mus 31 81 81 77
9 Aydin 58 30 29 28 50 Nevsehir 71 57 55 65
10 Balikesir 25 22 21 9 51 Nigde 70 59 58 63
11 Bilecik 62 41 41 53 52 Ordu 39 52 53 44
12 Bingol 67 78 79 76 53 Rize 32 36 33 30
13 Bitlis 52 66 68 59 54 Sakarya 69 37 38 39
14 Bolu 3 2 2 2 55 Samsun 76 56 56 61
15 Burdur 23 16 13 14 56 Siirt 7 26 34 17
16 Bursa 26 27 26 38 57 Sinop 81 74 73 81
17 Canakkale 50 35 30 34 58 Sivas 63 70 69 69
18 Cankiri 27 28 31 24 59 Tekirdag 19 17 15 21
19 Corum 74 64 61 68 60 Tokat 29 19 25 19
20 Denizli 44 23 22 25 61 Trabzon 33 38 39 32
21 Diyarbakir 80 77 76 80 62 Tunceli 34 69 64 74
22 Edirne 54 25 20 22 63 S.Urfa 22 71 71 55
23 Elazig 35 33 36 29 64 Usak 17 9 12 12
24 Erzincan 56 68 65 67 65 Van 28 61 63 43
25 Erzurum 61 51 57 62 66 Yozgat 43 63 67 56
26 Eskisehir 51 21 19 33 67 Zonguldak 68 34 32 41
27 Gaziantep 9 11 14 15 68 Aksaray 65 42 45 45
28 Giresun 49 54 52 50 69 Bayburt 73 79 78 78
29 Gumushane 24 72 72 70 70 Karaman 72 50 50 57
30 Hakkari 64 76 77 75 71 Kirikkale 53 48 42 60
31 Hatay 46 14 17 7 72 Batman 38 44 48 36
32 Isparta 11 29 27 27 73 Sirnak 14 60 62 49
33 Mersin 75 45 43 51 74 Bartin 59 62 60 64
34 Istanbul 1 1 1 1 75 Ardahan 47 73 75 72
35 Izmir 21 4 3 5 76 Igdir 42 75 74 73
36 Kars 79 80 80 79 77 Yalova 15 12 10 23
37 Kastamonu 48 49 47 48 78 Karabuk 20 15 16 26
38 Kayseri 36 8 7 18 79 Kilis 37 31 35 31
39 Kirklareli 30 13 8 13 80 Osmaniye 16 20 24 20
40 Kirsehir 60 53 51 54 81 Duzce 77 65 66 71
41 Kocaeli 18 40 37 66

Table 3. Spearman’s rank correlations between three methods and
super efficiency

Methods Zhu Premachandra Proposed Method
Super Efficiency 0.6205 0.6005 0.7148

average of the correlation coefficients for each algorithm, the sum of the correlation coef-
ficients in 1000 trials was divided by 1000. The averages of Spearman rank correlations
for the algorithms are summarized in Tables 4-6 and in Figures 1-3, which indicate the
number of DMUs, n, as the x axis and the averages of correlation coefficients in 1000
trials as the y axis.

As seen in Table 4 and Figure 1, for the case ofm = 2, r = 2, proposed and Premachan-
dra algorithms have higher correlations with super efficiency compared to Zhu’s algo-
rithm. As the number of n (DMUs) increases, the differences in the averages between
the proposed and Premachandra’s algorithms tend to decrease. Also, it can be seen that
the proposed and Premachandra’s algoritms have the highest correlations in all trials.
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Table 4. Spearman’s rank correlations averages for the methods, m =
2, r = 2)

n Zhu Premachandra Proposed
20 0.8534 0.9062 0.9027
30 0.8650 0.9031 0.8991
40 0.8660 0.9052 0.9063
50 0.8825 0.9134 0.9139
60 0.8847 0.9196 0.9204
70 0.8967 0.9215 0.9208
80 0.8971 0.9210 0.9218
90 0.8941 0.9243 0.9244
100 0.8999 0.9242 0.9285
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Zhu Premachandra Proposed

Figure 1. Average Spearman rank correlations for methods m = 2, r = 2.

Table 5. Spearman’s rank correlations averages for the methods, m =
2, r = 3)

n Zhu Premachandra Proposed
20 0.8011 0.8911 0.8824
30 0.8315 0.8991 0.9015
40 0.8460 0.9068 0.9094
50 0.8594 0.9090 0.9129
60 0.8693 0.9149 0.9100
70 0.8998 0.9160 0.9110
80 0.8726 0.9161 0.9141
90 0.8730 0.9162 0.9143
100 0.8801 0.9168 0.9144

In Table 5 and Figure 2, there are simulation results according to m = 2 and r = 3.
Similarly, the proposed and Premachandra’s algorithms are higher than Zhu’s algorithm
in respect to the Spearman rank correlations. Furthermore, the proposed algorithm has
high correlation in all algorithms in all cases. Briefly, the proposed and Premachandra’s
algoritms have the highest correlations in all trials.
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Figure 2. Average Spearman rank correlations for methods m = 2, r = 2.

Table 6. Spearman’s rank correlations averages for the methods, m =
3, r = 2)

n Zhu Premachandra Proposed
20 0.7799 0.8739 0.8711
30 0.8307 0.8942 0.8975
40 0.8389 0.8999 0.9048
50 0.8572 0.9125 0.9114
60 0.8649 0.9113 0.9104
70 0.8679 0.9109 0.9127
80 0.8657 0.9111 0.9127
90 0.8693 0.9111 0.9140
100 0.8799 0.9148 0.9164
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Figure 3. Average Spearman rank correlations for methods m = 2, r = 2.

Whenm = 3 and r = 2, similar to other (m, r) sets, the proposed and Premachandra’s
algorithms are higher than Zhu’s algorithm in respect to the Spearman rank correlations.
The proposed and Premachandra’s algoritms have the highest correlations in all trials,
as seen in Table 6 and Figure 3.

The real world and simulation data set results show that the ranking scores of the
proposed algoritm are generally closer than the other algorithms’ rankings to the super
efficiency rankings. According to the real data set and simulations studies, especially
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when the number of DMUs is high, the highest correlations with the super efficiency
method belong to the algorithm based on MDS. Both in the study of socio-economic
performance of Turkish cities and in the simulation studies in respect to different levels
of n and pair of (m, r), the proposed algorithm represents good performance for the
ranking of DMUs according to Spearman rank correlations with super efficiency.

7. Conlusion
DEA measures the relative efficiency of DMUs with common inputs and outputs.

DEA is not only used to determine efficient and non-efficient DMUs, but is also used to
rank DMUs. Since the method can be applied to multiple inputs and outputs, it also
interacts with multivariate statistical methods. In this study, the distance matrix, which
is modified according to the multi-dimensional scaling algorithm, is integrated into Zhu’s
PCA-DEA to rank the DMUs. And the proposed algorithm gives good performance
in terms of ranking. According to the real data set application and simulation studies,
the proposed algorithm has high correlation averages with the super efficiency method
according to Spearman rank correlations. According to the real data set application and
simulation studies, it is observed that there is an obviously significant difference in favour
of the proposed method in terms of the correlation averages with the super efficiency
method according to Spearman rank correlations compared with the Zhu method for all
considered input-output cases and n combinations. In addition to, there is a slightly
difference in the favour of the proposed method for correlations as compared to the
Premachandra’s method some considered input-output cases and sample size.
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