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STABILITY OF O.D.E. SYSTEMS ASSOCIATED WITH FIRST

ORDER CHEMICAL KINETICS MECHANISMS WITH AND

WITHOUT FINAL PRODUCTS

VICTOR MARTINEZ-LUACES

Abstract. First order chemical reaction mechanisms are modelled through

Ordinary Differential Equations (O.D.E.) systems of the form:
.
X = AX , be-

ing X the chemical species concentrations vector,
.
X its time derivative and A

the associated system matrix. In previous papers, First Order Chemical Ki-

netics Mechanisms (F.O.C.K.M.) involving two or three chemical species were
considered and in all these cases, solutions show a weak stability (i.e., they are

stable but not asymptotically). This fact implies that small errors due to mea-

surements in the initial concentrations will remain bounded, but they do not
tend to vanish as the reaction proceeds. In order to know if these results can

be extended or not to other chemical mechanisms, a general result is obtained

through an inverse modelling approach. For this purpose, theoretical mecha-
nisms with and without final products are proposed, and the corresponding

F.O.C.K.M. matrices are studied. As a consequence of the particular structure
of the F.O.C.K.M. matrices, the Gershgorin Circles Theorem can be applied

to show that all the eigenvalues have real parts negative or zero. Moreover, it

is proved as the main result of the paper, that for the null eigenvalue, alge-
braic and geometric multiplicities (A.M. and G.M.) give the same number. As

an application of these results, several conclusions about the stability of the
O.D.E. solutions are obtained for this kind of chemical reactions, and its con-
sequences on the propagation of concentrations and/or surface concentrations

measurement errors are analyzed.

1. INTRODUCTION

A typical example of a mechanism of chemical reactions involving three different
species takes place when a chemical substance A reacts giving a chemical compound
B which reacts again to give C, which is the final product of the whole reactions
sequence [1]. This is a very common situation in real life, for example, when
grape juice is converted into wine, and then it is transformed into vinegar. This
sequence of reactions is a particular case of first order chemical kinetics mechanism
(F.O.C.K.M), which can be easily represented as follows:
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(1.1) A
k1−→ B

k2−→ C

where k1 and k2 are the corresponding kinetic constants. In the production of
wine and vinegar, A is a carbohydrate, B is ethylic alcohol and C is acetic acid. In
this mechanism, A is only reactant, C is only final product and B is both reactant
and final product. The mathematical model for this F.O.C.K.M. is the following
O.D.E. system:

(1.2)



d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B]

d[C]

dt
= k2[B]

and its associated matrix is:

(1.3) A =

−k1 0 0
k1 −k2 0
0 k2 0


It is important to note that A has a null column and a possible conjecture is

that this is due to the presence of the final product C which does not appear in the
right side of the O.D.E. system.

A second observation is that A is a triangular matrix, so its eigenvalues are:
λ1 = −k1 < 0 , λ2 = −k2 < 0 and λ3 = 0 , i.e., two of them are negative and the
other is zero.

An interesting classical example of F.O.C.K.M. without final products is given
by the Mutarotation of Glucose [2] . This is a typical reversible reaction where
α-Glucose is converted into β-Glucose and vice versa. This situation could be
represented as below:

(1.4) A
K−→ B , B

k−→ A

where A and B represent α-Glucose and β-Glucose, and K and k are the corre-
sponding kinetic constants. This situation can be modelled using an O.D.E. system
like this:

(1.5)


d[A]

dt
= −K[A] + k[B]

d[B]

dt
= K[A]− k[B]

This system can be written easily as
.

X = AX being the associated system
matrix:

(1.6) A =

(
−K k
K −k

)
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In this case, there are no final products since A and B are reactants of the
direct and the opposite reaction, respectively and so, there are no null columns in
this matrix. Also, it is important to note that the corresponding eigenvalues are
λ1 = −(K + k) < 0 and λ2 = 0 (see [3] for this result), so again the eigenvalues are
negative or zero as in the previous example.

Another interesting example, involving three species without final products comes
from the study of the adsorption of Carbon Dioxide (CO2) on Platinum (Pt) sur-
faces [3-4-5]. One more time, for this new F.O.C.K.M. all the eigenvalues are
negative, except one which is zero.

In all the prior examples, the chemical or electrochemical processes considered
were quite different; however in all of them the mathematical models showed certain
regularity. In order to propose general results about F.O.C.K.M., several theoretical
examples will be considered in the next section.

2. A FEW REMARKS ABOUT THE EIGENVALUES

The first example to be considered in this section is an F.O.C.K.M. without
final products, where three different species are involved [6]. This F.O.C.K.M. can
be considered as an extension of the Glucose Mutarotation example and can be
schematized as follows:

(2.1) A
k−→ B , B

l−→ C , C
m−→ A

The corresponding O.D.E. system is:

(2.2)



d[A]

dt
= −k[A] +m[C]

d[B]

dt
= k[A]− l[B]

d[C]

dt
= l[B]−m[C]

And the associated matrix is:

(2.3) A =

−k 0 m
k −l 0
0 l m


The characteristic equation for this matrix is p(λ) = (−λ)(λ2 + Σ1λ+ Σ2) where

Σ1 = k + l + m and Σ2 = kl + km + lm. For instance, if k > 0 ,l > 0 and m = 0
then A is a lower matrix and the O.D.E. system has only real simple eigenvalues:
−k, −l and 0. Now, if k = l > 0 and m = 0 , the F.O.C.K.M. matrix will have
a double eigenvalue. Finally, if k = l = m > 0 then ∆ = −3k2 < 0 and there
will be complex roots. In this last case, the solutions will be linear combinations of

exp(0t) = 1 , exp
(
− 3

2kt
)

cos
(
−

√
3
2 kt

)
and exp

(
− 3

2kt
)

sin
(
−

√
3
2 kt

)
.

These solutions will show oscillations which tend to vanish as time tends to
infinite. Then, the solutions will be stable, but not asymptotically.

In the second example of this section, an F.O.C.K.M. with final products will
be considered [7]. In this case, four species A, B, C and D are involved, such that
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all possible reactions between A, B, C take place, while D is just a final product.
This mechanism can be schematized as follows:

(2.4)

A
K12−→ B , B

K21−→ A

A
K13−→ C , C

K31−→ A

B
K23−→ C , C

K32−→ B

and

(2.5) A
K14−→ D

The corresponding O.D.E. system is:

(2.6)

d

dt


[A]
[B]
[C]
[D]

 =


−K12 −K13 −K14 K21 K31 0

K12 −K21 −K23 K32 0
K13 K23 −K31 −K32 0
K14 0 0 0




[A]
[B]
[C]
[D]


It can be noted that this system has a null column, that can be expected since D

is only a final product and so, it does not appear in the right side of the differential
equations given in (2.6). The characteristic equation corresponding to (2.6) is:

(2.7) p(λ) = (−λ)det

−S1 − λ K21 K31

K12 −S2 − λ K32

K13 K23 −S3 − λ

 = 0

where S1 = K12 +K13 +K14 , S2 = K21 +K23 and S3 = K31 +K32

This equation can have a double null eigenvalue if and only if:

(2.8) det

−S1 K21 K31

K12 −S2 K32

K13 K23 −S3

 = 0

or after some algebraic manipulations:

(2.9) K14 (K21K31 +K21K32 +K23K31) = 0

It is not necessary to have two null columns in order to get a double null eigen-
value. For instance, if K21 = K31 = 0 then (2.9) is satisfied and the corresponding
F.O.C.K.M. matrix will be:

(2.10) A =


−S1 0 0 0
K12 −K23 K32 0
K13 K23 −K32 0
K14 0 0 0


being S1 = K12 +K13 +K14 as mentioned before.
In this case the characteristic polynomial is p(λ) = λ2(S1 +λ) [λ+ (K23 +K32)]

and this mathematical model corresponds to the following F.O.C.K.M.:
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(2.11) A
K12−→ B , A

K13−→ C , B
K23−→ C , C

K32−→ B , A
K14−→ D

In this mechanism, A is only reactant, D is only final product and B and C
are linked by reversible reactions like in the mutarotation example. Due to this,
the system will have two negative eigenvalues and a null double eigenvalue (i.e.,
A.M.λ=0 = 2).

It is important to point out that in this example appeared a double null eigen-
value without having in the mechanism more than one final product (and only one
null column in the corresponding F.O.C.K.M. matrix). As a last remark, it can be
observed that in all the previous examples —with and without final products— it is
possible to get a plethora of solutions with real simple eigenvalues, complex eigen-
values, double eigenvalues, etc. Nevertheless, in all cases there was a null eigenvalue
(simple, double, etc.) and all the other eigenvalues had negative real parts. This
general result will be commented with more details in the next section.

3. SOME PREVIOUS RESULTS

A general form for mathematical models of F.O.C.K.M. was developed and it
appears in a book chapter recently published in New York [8]. In this book it was
proved that the corresponding O.D.E. system can be written as:

(3.1)
d

dt


[E1]
[E2]

...
[En]

 =


−S1 K21 · · · Kn1

K12 −S2 · · · Kn2

...
...

. . .
...

K1n K2n · · · −Sn




[E1]
[E2]

...
[En]


and the associated matrix is:

(3.2) A =


−S1 K21 · · · Kn1

K12 −S2 · · · Kn2

...
...

. . .
...

K1n K2n · · · −Sn


All the non-diagonal entries of this matrix are non-negative and the diagonal

elements are −Si = −
∑
j 6=i
Kij , so all the matrix columns add to zero. To summarize,

the characteristics that define these F.O.C.K.M. matrices, are the following:

• A is a n× n matrix with real entries aij .
• The non-diagonal entries are always non-negative numbers: aij ≥ 0 ∀ i 6= j
• The diagonal elements are −Si , being Si the sum of the non-diagonal entries

in the i-th column.

Due to this particular structure, three important results can be obtained for this
general form:

• λ = 0 is an eigenvalue of A.
• Re(λi) ≤ 0 ∀ i = 1, 2, . . . , n
• Re(λk) = 0⇔ λk = 0
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The first one is a consequence of the fact that all the matrix columns add to
zero and the last two properties can be obtained by applying the Gershgorin circle
theorem [9] to the general F.O.C.K.M. matrix [8].

From the O.D.E. solutions point of view, the non-zero eigenvalues give linear
combinations of functions like:

(3.3) exp(λt) , t exp(λt) , t2 exp(λt) , . . . , tp exp(λt)

depending on the algebraic multiplicity (A.M.) and the corresponding geomet-
ric multiplicity (G.M.) of the eigenvalue λ . Therefore, taking into account that
exp(λt) = eat(cos bt + i sin bt) , being a < 0 , it follows that exp(λt) −→ 0 when
t→ +∞ and the same happens with all the other functions:

(3.4) t exp(λt) , t2 exp(λt) , . . . , tp exp(λt)

Then, all the O.D.E. solutions associated with an eigenvalue λ 6= 0 tend to vanish
with time, independently of corresponding A.M. and/or G.M.

The O.D.E. solutions corresponding to the null eigenvalue are linear combina-
tions of these functions:

{
e0t, te0t, . . . , tqe0t

}
, or the equivalent: {1, t, . . . , tq}.

Then, the solutions due to the null eigenvalue are polynomial functions which grade
q depends on both the A.M. and the G.M., corresponding to λ = 0 and it follows
straightforward that only if q = 0 the polynomial solutions remain bounded when
t tends to infinite.

To sum up all the previous results, it can be stated that only the null eigenvalue
—and particularly, its A.M. and G.M.— is relevant to make predictions about the
stability of the O.D.E. system solutions.

All these results were proved for the F.O.C.K.M. general matrix, so they happen
both in mechanisms with final products (like wine-vinegar example) or without
final products (like mutarotation example) and these results are true for reversible
or irreversible reactions, independently of the number of chemical species involved.

4. TWO GENERAL RESULTS

As it was mentioned before, the general form for F.O.C.K.M. mathematical
models has the following form:

(4.1)
d

dt


[E1]
[E2]

...
[En]

 =


−S1 K21 · · · Kn1

K12 −S2 · · · Kn2

...
...

. . .
...

K1n K2n · · · −Sn




[E1]
[E2]

...
[En]


In this O.D.E. system, the diagonal elements are −Si = −

∑
j 6=i
Kij , so all the ma-

trix columns add to zero, then it can be stated that
d

dt
([E1] + [E2] + . . .+ [En]) = 0

and so, the sum of variables [E1] + [E2] + . . .+ [En] is a constant κ.
As a consequence of this fact, it follows that for every [Ei] with 1 ≤ i ≤ n , the

inequalities 0 ≤ [Ei] ≤ [E1] + [E2] + . . . + [En] = κ are satisfied and all the [Ei]
must be bounded for every time t ≥ 0.
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In examples like (2.11) it was observed that the null eigenvalue can have an
algebraic multiplicity greater than one. If in one of those cases, the inequality
G.M.λ=0 < A.M.λ=0 is satisfied, then solutions of the O.D.E. system will contain
linear combinations of

{
e0t, te0t, . . . , tqe0t

}
, or the equivalent: {1, t, . . . , tq} which

are unbounded for t ≥ 0 . This fact contradicts the previous statement about [Ei]
which must be bounded for every time t ≥ 0 .

Consequently, a first general result can be stated: G.M.λ=0 = A.M.λ=0 and this
result is valid for every n× n F.O.C.K.M. matrix.

A second general result can be obtained from the following statements mentioned
in the previous section: Re(λi) ≤ 0 ∀ i = 1, 2, . . . , n and Re(λk) = 0 ⇔ λk = 0
. These results combined with the previous one (i.e., G.M.λ=0 = A.M.λ=0 ), gives
a second general result: the solutions of the O.D.E. system are stable but not
asymptotically.

5. CONCLUSION

In previous papers, a general form for matrices associated with F.O.C.K.M.
problems was obtained. As a consequence of this structure, several properties were
proved. Particularly, for a general n × n matrix A , corresponding to a given
F.O.C.K.M., the following statements were demonstrated:

• det(A) = 0
• if λ is an eigenvalue of A, then Re(λ) ≤ 0
• Re(λ) = 0 if and only if λk = 0

In this paper it was proved that if n chemical substances are considered, the cor-
responding F.O.C.K.M. matrix verifies that G.M.λ=0 = A.M.λ=0 and this algebraic
result has an analytical corollary: the O.D.E. solutions for F.O.C.K.M. systems are
always stable, but not asymptotically.

This weak stability has an important chemical consequence, since it implies that
small errors in the initial concentrations measurements will remain bounded as the
reactions take place, but they will not tend to disappear when t→ +∞ .

It is important to remark that other qualitative results can be obtained by an
inverse modelling approach (i.e., proposing a theoretical F.O.C.K.M. that fits with
a given matrix and/or O.D.E. system). This methodology was used in several
previous articles, book chapters, etc. [3-6-7-8-10-11-12-13-14]. For instance, it is
possible to analyse the form of the solutions [3-6], the existence and number of
inflexion points in curves of [Ei] vs. t [3], the A.M. and G.M. of the null eigenvalue
[6-7-8-14], among other conclusions with important mathematical and chemical
consequences.

Finally, the study of stability properties and qualitative results, for any number
of reactants and for any kind of chemical reactions like second and third order
reactions represents a challenging problem and an opportunity for further research
in this area.
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