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ABSTRACT

The objective of this study was to develop a small-sized and low-cost unit to provide attitude measurements for light-
loaded, small-sized and cost effective agricultural robot application. The attitude measurement unit comprised an 
electronic control unit (ECU) and a gyroscope and an accelerometer within a small-sized and low-cost IMU. In order 
to avoid the measurement limitations of a single sensor, a self-adaptive complementary filter and a Kalman filter were 
discussed and compared for sensor fusion. By comparison, in respect of preventing angle drift and maintaining dynamic 
characteristics, the Kalman filter has the significant advantage, especially in dynamic motion. In the comparison with a 
highly precise aviation-level fiber optic gyroscope (FOG), the results showed that the static angle drift was restrained 
by Kalman filter which reached the performance of the FOG. And in the series of farm experiments, the dynamic 
characteristic of the developed attitude measurement unit is close to the FOG performance in the sub-degree level. 
This is an acceptable accuracy for light-loaded, small-sized and cost effective agricultural robot application such as 
agriculture drone, greenhouse robots, harvesting robot arm and so on.
Keywords: IMU sensor; Complementary filter; Kalman filter; Sensor fusion; Attitude estimation
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ÖZET

Bu çalışmanın amacı; hafif, küçük boyutlu ve uygun maliyetli tarımsal robot uygulamaları için konum ölçümlerini 
sağlayan küçük boyutlu ve düşük maliyetli bir ünitenin geliştirilmesidir. Konum ölçüm ünitesi; bir elektronik kontrol 
ünitesi (ECU), bir jiroskop ile küçük boyutlu ve düşük maliyetli atalet ölçüm ünitesi (IMU) içeren bir ivmeölçerden
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1. Introduction
The role of robotics in precision agriculture 
(PA) is becoming more and more important with 
the development of electronic technology. By 
combining with various advanced sensors, it has 
become possible for agricultural machines to do 
farming tasks autonomously. A global positioning 
system (GPS) has recently been used extensively 
in autonomous navigation for providing position 
information. For higher navigation accuracy, attitude 
sensors such as a geomagnetic direction sensor 
(GDS), FOG and an inertial measurement unit 
(IMU) can be utilized to correct the GPS position 
information. There have been a considerable 
number of studies on application of GPS with 
attitude sensors (Kise et al 2001; Noguchi et al 
2001; Inoue et al 2009). Much progress has also 
been made in large-scale mechanization, which has 
advantages of high strength workload and labor cost 
reduction. However, now more attention is being 
given to small-sized smart agricultural machines 
(Robinson 2012). In order to keep the soil loose, 
there is a need to develop light-weight, small-sized, 
low-power and low-cost systems for agricultural 
robotic applications. Therefore, the development 
of a small-sized and low-cost attitude measurement 
system is necessary.

Two sensors, a gyroscope and an accelerometer, 
were used to measure the attitude of an agricultural 
robot. A gyroscope is an inertial sensor for 
measuring orientation based on the principles of 
angular momentum. However, because of noise 

jamming, temperature variation and unstable force 
moment, system drift error will occur and increase 
with time. Therefore, a gyroscope cannot be reliably 
used for a long time. Otherwise, an accelerometer is 
a device that measures proper acceleration. When 
the accelerometer is motionless, the attitude angles 
can be calculated on the basis of the acceleration of 
gravity component in every axis via trigonometric 
functions. However, an accelerometer cannot 
distinguish between the acceleration of gravity 
and external acceleration. Therefore, in the case of 
frequent variable accelerated motion and a bumpy 
outdoor field, the use of only an accelerometer is 
not appropriate for calculating attitude angle. Thus, 
the use of only a gyroscope or an accelerometer is 
not appropriate for a farming operation over a long 
period and in a complex environment.

The objective of this study was to develop a 
small-sized and low-cost unit including an ECU 
and an IMU to provide attitude measurement with 
acceptable accuracy for light-loaded, small-sized 
and low-priced agricultural robot application. 
Data processing used the sensor fusion principle 
including a self-adaptive complementary filter and 
a Kalman filter to integrate data from the gyroscope 
and accelerometer in the IMU.

2. Material and Methods

2.1. Hardware platform
For a small agricultural machine development, size 
and price are the two main parameters that must be 

oluşmaktadır. Tek bir sensörün ölçüm sınırlamalarından kaçınmak amacıyla, sensör birleştirmeleri için otomatik ayarlı 
bir tamamlayıcı filtre ve Kalman filtresi ele alınmış ve karşılaştırılmıştır. Karşılaştırmada, açı kaymasının önlenmesi ve 
dinamik özelliklerin muhafazası bakımından Kalman filtresinin, özellikle dinamik hareket nedeniyle önemli avantaja 
sahip olduğu ortaya çıkmıştır. Sonuçlar havacılıkta kullanılan yüksek hassasiyetli bir fiber optik jiroskop (FOG) ile 
karşılaştırıldığında, Kalman filtresi tarafından belirlenen statik açı kayması sonuçlarının FOG’un performansına 
yaklaşıldığını göstermiştir. Tarla denemelerinde, geliştirilen konum ölçüm ünitesinin dinamik karakteristiği FOG’un 
performansına yakın bulunmuştur. Bulunan bu sonuçlar; tarımsal amaçlı kullanılan insansız hava araçları (dronlar), 
sera robotları, hasat robot kolları gibi hafif, küçük boyutlu ve uygun maliyetli tarımsal robot uygulamaları için kabul 
edilebilir bir hassasiyettir.
Anahtar Kelimeler: IMU sensör; Tamamlayıcı filtre; Kalman filtre; Sensör birleştirme; Konum tahminleme
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considered in the design idea. In this study, a small-
sized and low-cost IMU (S4E5A0A0A1, Seiko 
Epson) was used as the inertial sensor. This IMU 
with six degrees of freedom is compact (24×24×10 
mm3) and only weighs 7 grams. It is composed of a 
triaxial micro-electro-mechanical system (MEMS) 
accelerometer, a triaxial quartz-MEMS (QMEMS) 
gyroscope and a temperature sensor. Outputs of 
the IMU include chip temperature, triaxial angular 
rates and linear accelerations in real time. The main 
performance and specifications of the IMU are 
shown in Table 1.

Table 1- Main performance and specifications of 
the IMU

Parameters Type Unit
Gyroscope
Dynamic range ±300 deg s-1

Initial error 0.5 deg s-1

In-run bias stability 6 deg h-1

Angular random walk 0.2 Deg √hr-1

Noise density 0.004 deg s-1 √Hz-1

Accelerometer
Dynamic range ±3 G
Initial error 8 mG
In-run bias stability 0.1 mG
Velocity random walk 0.04 mG sec-1 √hr-1

Noise density 0.06 mG √Hz-1, rms

An ECU (Due, Arduino) was used for collecting 
and processing IMU data for attitude estimation. 
This ECU is based on the Atmel SAM3X8E ARM 
Cortex-M3 CPU. The 32-bit ARM core is fast enough 
for communicating with the IMU, to realize the 
sensor fusion algorithm and outputting results of the 
attitude measurement data to peripheral equipment 
by serial port. Figure 1 shows an application of the 
attitude measurement unit communicating with a 
computer.

In the IMU, an accelerometer was used for 
measuring triaxial linear acceleration. Figure 
2 shows the coordinates and tilt angle of the 
accelerometer. Coordinate O-XYZ is the geodetic 

coordinate system, and coordinate o-xyz is the IMU 
body-fixed coordinate system. The tilt angle between 
the OX axis and ox axis is called pitch, and the tilt 
angle between the OY axis and oy axis is called roll. 
As is well known, in nature, the acceleration of 
gravity vector is directed to the center of the earth. 
The value measured by an accelerometer is the 
projection addition of acceleration of gravity and 
absolute acceleration (Chen et al 1994). Thus, when 
the IMU remains steady and Corioli’s acceleration 
and noise can be ignored, the relationship among 
the components of acceleration of gravity can be 
described as shown in Equation (1).

Figure 2- Attitude angle of the accelerometer in 
coordinate

Figure 1- Schematic diagram of the attitude 
measurement unit
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Where; g, acceleration of gravity; gx, gy and gz, 
acceleration components of gravity in the ox, oy and 
oz axes, respectively.

Based on trigonometric functions, the formulas 
of attitude angle can be obtained by Equation (2) 
and Equation (3).
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However, the angle between the OZ axis and 

oz axis, denoted as yaw, is in the horizontal plane. 
The angle is orthogonal to the acceleration of 
gravity. Thus, projection on the horizontal plane 
cannot be obtained, and therefore the yaw cannot 
be calculated from the accelerometer. In addition, 
the environment in which the agricultural robot 
works is complex. There will be a random noise in 
measurements by the accelerometer when there is 
strenuous accelerated motion.

The gyroscope can measure the angular rate of the 
IMU. The triaxial angles Φgyro can therefore be obtained 
by angular rate via an integral as shown in Equation (4).
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Figure 3- Block diagram of the sensor fusion 
methods

Because of the high-pass characteristics 
of gyroscope and low-pass characteristics of 
accelerometer, the complementary filter can combine 
the advantages from the both sensors. A student 
group which was sponsored by Edgerton center at 
MIT (Colton 2007) described the complementary 
filter as Equation (6).
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Where; g, acceleration of gravity; ai, resultant 
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consideration of the ECU computing scale and time 
delay, n= 3 was used in this study.

The Kalman filter is optimal when process noise 
and measurement noise can be modelled by white 
Gaussian noise (St-Pierre & Gingras 2004). As 
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angle and angular rate is derivative relation. The 
system can therefore be described as a discrete-time 
state equation expressed in Equation (10).
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Where; A, system transition matrix 𝐴𝐴 = [1 −𝑇𝑇𝑇𝑇

0 1 ]; B, system control matrix 𝐵𝐵 = [𝑇𝑇𝑇𝑇
0 ]; Ts, sampling 

period; X(k|k1), system state in moment k estimated by state k-1; U(k), exogenous state control input in 
moment k (U(k)=0 in this study). The covariance of X(k|k1) is shown in Equation (11). 
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Where; Q, covariance matrix of the system process noise 𝑄𝑄 = [𝑞𝑞_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0
0 𝑞𝑞_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔], in which 𝑞𝑞_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 

the noise covariance of the accelerometer; 𝑞𝑞_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, noise covariance of the gyroscope; matrix 𝐴𝐴𝑇𝑇, transpose 
of matrix A. 

 
The optimal estimation X(k | k) in state k is calculated by Equation (12). 
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Where; H, observation matrix, H=[1 0];  𝑘𝑘𝑔𝑔(𝑘𝑘), Kalman gain which is updated by Equation (13). 
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Where; R is a covariance matrix of error in measurement by the accelerometer. In order to update the 

Kalman filter, the covariance equation is updated by Equation (14). 
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Where; I, unit matrix, 𝐼𝐼 = [1
1]. 

 
Based on recursive functions from Equation (7) to Equation (11), it is possible to calculate iteratively 

to find the optimal estimate attitude angle. 
 

3. Results and Discussion 
 
In order to verify the validity of the sensor fusion methods that combines the accelerometer and gyroscope, 
which are better than using each sensor alone, two indexes of the sensors were chosen to evaluate 
performance. One was the drift error and the other was the dynamic attitude angle. According to the 
electrical specifications of the IMU, the initial parameters of the Kalman filter and complementary filter 
are shown in Table 2. 
 
Table 2- Initial parameters of the Kalman filter and complementary filter 

 
 Kalman filter  Complementary filter 
Parameter Ts A Q     𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 

Value 0.008 
s [1 −0.008

0 1 ] [0.001 0
0 0.003]  0.2G 0.004G 0.2 

Parameter R X0 P0  𝑝𝑝 𝑞𝑞  

Value [0.03] [0
0] [0.04 0.04

0.04 0.04]  -0.918 0.204  

; 
B, system control matrix 
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Kalman filter, the covariance equation is updated by Equation (14). 
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Where; I, unit matrix, 𝐼𝐼 = [1
1]. 

 
Based on recursive functions from Equation (7) to Equation (11), it is possible to calculate iteratively 

to find the optimal estimate attitude angle. 
 

3. Results and Discussion 
 
In order to verify the validity of the sensor fusion methods that combines the accelerometer and gyroscope, 
which are better than using each sensor alone, two indexes of the sensors were chosen to evaluate 
performance. One was the drift error and the other was the dynamic attitude angle. According to the 
electrical specifications of the IMU, the initial parameters of the Kalman filter and complementary filter 
are shown in Table 2. 
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 Kalman filter  Complementary filter 
Parameter Ts A Q     𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 

Value 0.008 
s [1 −0.008
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; Ts, sampling 
period; X(k|k−1), system state in moment k estimated 
by state k-1; U(k), exogenous state control input in 
moment k (U(k)= 0 in this study). The covariance of 
X(k|k−1) is shown in Equation (11).
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, in which q_accl 

is the noise covariance of the accelerometer; q_gyro, 
noise covariance of the gyroscope; matrix AT, 
transpose of matrix A.

The optimal estimation X(k | k) in state k is 
calculated by Equation (12).
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Based on recursive functions from Equation (7) 

to Equation (11), it is possible to calculate iteratively 
to find the optimal estimate attitude angle.

3. Results and Discussion
In order to verify the validity of the sensor fusion methods 
that combines the accelerometer and gyroscope, which 
are better than using each sensor alone, two indexes 
of the sensors were chosen to evaluate performance. 
One was the drift error and the other was the dynamic 
attitude angle. According to the electrical specifications 
of the IMU, the initial parameters of the Kalman filter 
and complementary filter are shown in Table 2.
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3.1. Filters comparison
Drift error is directly related to measurement 
accuracy and stability of the measurement system. 
In this study, we kept the IMU static in a horizontal 
plane and then compared the performances using 
the gyroscope alone, the accelerometer alone 
and two sensor fusion methods. Figure 4 shows 
a comparison of results for drift during a period 
of 10 minutes. Figure 4(a) shows drift in the roll 
direction, and Figure 4(b) shows drift in the pitch 
direction. In this coordinate system, the abscissa is 
the sampling time in seconds. The ordinate is drift 
angle in degrees. Because of error accumulation, 
drift measured by gyroscope alone continuously 
increases to -14.6 degrees in the roll direction and to 
19.1 degrees in the pitch direction. Drift measured 
by the accelerometer alone does not increase with 

time, but data oscillate in a wide range area in both 
roll and pitch directions. When the self-adaptive 
complementary filter and Kalman filter were used, 
drift was almost zero and was smoother than the 
data from the accelerometer.

The dynamic characteristic is therefore a very 
important index to evaluate the attitude measurement 
unit. Similar to the above evaluation steps of drift 
error, the dynamic attitude angle data was logged when 
rotating the attitude measurement unit in different 
rotation directions. Figure 5 shows a comparison of 
results for dynamic attitude angles when using the 
gyroscope alone, the accelerometer alone and two 
sensor fusion methods. In this coordinate system, the 
abscissa is the sampling time in seconds. The ordinate 
is the dynamic attitude estimated angle in degrees. 
Because the IMU worked in a random variable motion, 
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Drift error is directly related to measurement accuracy and stability of the measurement system. In this 
study, we kept the IMU static in a horizontal plane and then compared the performances using the gyroscope 
alone, the accelerometer alone and two sensor fusion methods. Figure 4 shows a comparison of results for 
drift during a period of 10 minutes. Figure 4(a) shows drift in the roll direction, and Figure 4(b) shows drift 
in the pitch direction. In this coordinate system, the abscissa is the sampling time in seconds. The ordinate 
is drift angle in degrees. Because of error accumulation, drift measured by gyroscope alone continuously 
increases to -14.6 degrees in the roll direction and to 19.1 degrees in the pitch direction. Drift measured by 
the accelerometer alone does not increase with time, but data oscillate in a wide range area in both roll and 
pitch directions. When the self-adaptive complementary filter and Kalman filter were used, drift was almost 
zero and was smoother than the data from the accelerometer. 
 

 
(a) Drift in roll direction                                                   (b) Drift in pitch direction 

 
Figure 4- Comparison for drift when using the gyroscope alone, accelerometer alone and two sensor fusion 
methods [degree] ─> (degree) 

 
The dynamic characteristic is therefore a very important index to evaluate the attitude measurement unit. 

Similar to the above evaluation steps of drift error, the dynamic attitude angle data was logged when rotating 
the attitude measurement unit in different rotation directions. Figure 5 shows a comparison of results for 
dynamic attitude angles when using the gyroscope alone, the accelerometer alone and two sensor fusion 
methods. In this coordinate system, the abscissa is the sampling time in seconds. The ordinate is the 
dynamic attitude estimated angle in degrees. Because the IMU worked in a random variable motion, we 
can see that the dynamic curve measured by the accelerometer is not stable, a lot of spurious signal errors 
superpose on the dynamic curve, especially at the position where motion direction is changed. In a short 
time, the data drift obtained by the gyroscope alone is not very obvious. However, at the end of the sampling 
time, the attitude angle cannot return to the original value. The drift errors are 1.8 degrees in the roll 
direction and 5.7 degrees in the pitch direction. Otherwise, the dynamic curve which was estimated by the 
self-adaptive complementary filter was better than the performance of each sensor alone. A large numbers 
of spurious signals were removed, but some parts of wide oscillations still exist, especially on the data wave 
crest. On the other hand, the dynamic curve estimated by Kalman filter is much more robust and smooth. 
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Figure 4- Comparison for drift when using the gyroscope alone, accelerometer alone and two sensor fusion 
methods
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(a) Dynamic attitude in roll direction                                   (b) Dynamic attitude in pitch direction 

 
Figure 5- Comparison for dynamic attitude angles when using the gyroscope alone, the accelerometer 
alone and two sensor fusion methods    [degree] ─> (degree) 
 
3.2. System performance comparison 

 
Through the above comparative analysis, it was found that the Kalman filter processing was superior to the 
single sensor measurement and the complementary filter. For in-depth discussion, we compared the 
developed small-sized and low-cost attitude measurement unit based on Kalman filter processing with a 
highly precise aviation-level FOG attitude measurement equipment (JCS7401A, Japan Aviation Electronics 
Industry), which can output attitude angles directly with accuracy of ±0.2 degrees and digital measured 
resolution of 0.1 degrees. 

 
At first, the attitude measurement unit and the FOG were fixed together on the same plane and drift data 

were logged. Figure 6 shows a comparison of results for drift in the roll and pitch direction during a period 
of 10 minutes. The drift data show that the performance of the attitude measurement unit is very close to 
that of the precise FOG. The drift data of the two devices are both stable in the range of 0.1 degrees. That 
is to say the developed attitude measurement unit can inhibit the angle drift for providing high static stability.  

 
As shown by results presented in Figure 6, data obtained by the sensor fusion method not only inherits 

the little drift characteristics from the accelerometer but also inherits the transient stability from the 
gyroscope. Now, we compared the dynamic attitude angle obtained from both the attitude measurement 
unit using the Kalman filter and the highly precise FOG. In order to ensure high accuracy of comparison as 
far as possible, the attitude measurement unit and FOG were fixed together and in the same coordinate. The 
set-up situation is shown in Figure 7. 
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Figure 5- Comparison for dynamic attitude angles when using the gyroscope alone, the accelerometer alone 
and two sensor fusion methods
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we can see that the dynamic curve measured by the 
accelerometer is not stable, a lot of spurious signal 
errors superpose on the dynamic curve, especially at 
the position where motion direction is changed. In a 
short time, the data drift obtained by the gyroscope 
alone is not very obvious. However, at the end of the 
sampling time, the attitude angle cannot return to the 
original value. The drift errors are 1.8 degrees in the 
roll direction and 5.7 degrees in the pitch direction. 
Otherwise, the dynamic curve which was estimated 
by the self-adaptive complementary filter was better 
than the performance of each sensor alone. A large 
numbers of spurious signals were removed, but some 
parts of wide oscillations still exist, especially on 
the data wave crest. On the other hand, the dynamic 
curve estimated by Kalman filter is much more robust 
and smooth.

3.2. System performance comparison
Through the above comparative analysis, it was 
found that the Kalman filter processing was 
superior to the single sensor measurement and the 
complementary filter. For in-depth discussion, we 
compared the developed small-sized and low-cost 
attitude measurement unit based on Kalman filter 
processing with a highly precise aviation-level FOG 
attitude measurement equipment (JCS7401A, Japan 
Aviation Electronics Industry), which can output 
attitude angles directly with accuracy of ±0.2 degrees 
and digital measured resolution of 0.1 degrees.

At first, the attitude measurement unit and the 
FOG were fixed together on the same plane and drift 
data were logged. Figure 6 shows a comparison of 
results for drift in the roll and pitch direction during 
a period of 10 minutes. The drift data show that 
the performance of the attitude measurement unit 
is very close to that of the precise FOG. The drift 
data of the two devices are both stable in the range 
of 0.1 degrees. That is to say the developed attitude 
measurement unit can inhibit the angle drift for 
providing high static stability.

As shown by results presented in Figure 6, 
data obtained by the sensor fusion method not 
only inherits the little drift characteristics from 
the accelerometer but also inherits the transient 

stability from the gyroscope. Now, we compared 
the dynamic attitude angle obtained from both the 
attitude measurement unit using the Kalman filter 
and the highly precise FOG. In order to ensure 
high accuracy of comparison as far as possible, 
the attitude measurement unit and FOG were fixed 
together and in the same coordinate. The set-up 
situation is shown in Figure 7.

As it was done when comparing the dynamic 
angles measured by the gyroscope alone, the 
accelerometer alone and the two sensors fusion 
methods, we randomly rotated the attitude 
measurement unit and the FOG synchronously in 
different rotation directions and logged the data. 
Figure 8 shows that the measurement of dynamic 
attitude angle by the attitude measurement unit 
coincides well with that by the highly precise FOG. 
Based on statistics, the RMS errors are 0.3 degrees 
in the roll direction and 0.4 degrees in the pitch 
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(a) Drift in roll direction 

 
(b) Drift in pitch direction 

 
Figure 6- Comparison for drift when using the developed attitude measurement unit and precise FOG 
(0,6 , 0,5, 0,4 , 0,3 , 0,2 and 0,9 , 0,8 , 0,7 , 0,6 ──> 0.6 , 0.5 , 0.4 , 0.3 , 0.2 and 0.9 , 0.8 , 0.7 , 0.6) 

 
Figure 7- Fixation situation of the attitude measurement unit and FOG 

 
As it was done when comparing the dynamic angles measured by the gyroscope alone, the accelerometer 

alone and the two sensors fusion methods, we randomly rotated the attitude measurement unit and the FOG 
synchronously in different rotation directions and logged the data. Figure 8 shows that the measurement of 
dynamic attitude angle by the attitude measurement unit coincides well with that by the highly precise FOG. 
Based on statistics, the RMS errors are 0.3 degrees in the roll direction and 0.4 degrees in the pitch direction. 
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Figure 6- Comparison for drift when using the 
developed attitude measurement unit and precise 
FOG
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direction. Several errors which are bigger than 1 
degree appeared once in a while. The maximum 
error in the roll direction is -1.3 degrees and the 
maximum error in the pitch direction is 1.4 degrees.

As we know, the farming conditions are complex 
for agricultural machinery such as the level and 
smooth of field surface, temperature, humidity and 
so on. Experiment is the sole criterion for testing the 
developed attitude measurement unit. A developed 
robot combine harvester (Zhang et al 2013) was 
utilized to attach the attitude measurement unit 
and precise FOG. The experiment was executed 
in the farm of Hokkaido University. This robot 
combine harvester could run autonomously under 
a predetermined map. The developed attitude 
measurement unit and the high precise FOG 
recorded the attitude of the robot respectively. The 
tests were conducted in different running speeds of 
robot of 0.5, 0.7 and 1.0 ms-1. Figure 9 shows the 

Figure 7- Fixation situation of the attitude 
measurement unit and FOG
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Several errors which are bigger than 1 degree appeared once in a while. The maximum error in the roll 
direction is -1.3 degrees and the maximum error in the pitch direction is 1.4 degrees.  

 
(a) Dynamic attitude in roll direction 

 
(b) Dynamic attitude in pitch direction 

 
Figure 8- Comparison for dynamic attitude angle when using the attitude measurement unit and the 
precise FOG 
 

As we know, the farming conditions are complex for agricultural machinery such as the level and 
smooth of field surface, temperature, humidity and so on. Experiment is the sole criterion for testing the 
developed attitude measurement unit. A developed robot combine harvester (Zhang et al 2013) was utilized 
to attach the attitude measurement unit and precise FOG. The experiment was executed in the farm of 
Hokkaido University. This robot combine harvester could run autonomously under a predetermined map. 
The developed attitude measurement unit and the high precise FOG recorded the attitude of the robot 
respectively. The tests were conducted in different running speeds of robot of 0.5, 0.7 and 1.0 ms-1. Figure 
9 shows the record result of robot attitude when robot run in speed of 0.7 ms-1. The dynamic behaviour of 
attitude measurement unit is close to the precise FOG. The RMS errors are 0.2 degrees in the roll direction 
and 0.3 degrees in the pitch direction. However, the measurement noise of the attitude measurement unit is 
obvious in the sub-degree level which is not good as the FOG. The noise of ripple wave on the attitude 
angle was brought from the engine vibration. The similar phenomenon also appeared in the tests of speed 
of 0.5 and 1.0 m s-1. Table 3 summarizes the errors of the attitude measurement unit compared to the precise 
FOG in different robot running speed. That means the developed attitude measurement unit need to be 
improved much more on the inhibition of high-frequency noise.  
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Figure 8- Comparison for dynamic attitude angle 
when using the attitude measurement unit and the 
precise FOG
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(a) Farm test in roll direction 

 
(b) Farm test in pitch direction 

 
Figure 9- Comparison for farm test when using the attitude measurement unit and the precise FOG  
[degree] ─> (degree) 
 
Table 3- Errors of dynamic attitude angle in different robot running speeds 
 

Speed 
(m s-1) 

Error (degree) 
Roll               Pitch 

Max RMS Mean Max RMS Mean 
0.5 0.4 0.1 -0.1 0.6 0.2 -0.1 
0.7 0.8 0.2  0.1 1.0 0.3  0.1 
1.0 0.6 0.2 -0.1 1.3 0.3 -0.1 
 

4. Conclusions 
 

In this study, a small-sized and low-cost electronic unit was developed to provide attitude estimation with 
acceptable accuracy for light-loaded, small-sized and low-priced agricultural robot applications. This 
attitude measurement unit was composed of a small, low-cost IMU and an ECU by using sensor fusion 
methods. Based on the characteristic of gyroscope and accelerator, a self-adaptive complementary filter 
and a Kalman filter were discussed and compared. According to the comprehensive evaluation of drift error 
and dynamic motion, the Kalman filter is better to compensate the IMU drift, improved noise immunity 
and reduced measurement error. In the comparison with a highly precise FOG, the drift of attitude 
measurement unit approximates to the performance of the FOG. Finally, the results of farm test in dynamic 
characteristic  shows that the performance of attitude measurement unit is close to the precise FOG, but the 
noise of ripple wave on the attitude angle exist. This issue needs to be solved in the future research. In a 
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Figure 9- Comparison for farm test when using the 
attitude measurement unit and the precise FOG
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record result of robot attitude when robot run in 
speed of 0.7 ms-1. The dynamic behaviour of attitude 
measurement unit is close to the precise FOG. The 
RMS errors are 0.2 degrees in the roll direction and 
0.3 degrees in the pitch direction. However, the 
measurement noise of the attitude measurement unit 
is obvious in the sub-degree level which is not good 
as the FOG. The noise of ripple wave on the attitude 
angle was brought from the engine vibration. The 
similar phenomenon also appeared in the tests of 
speed of 0.5 and 1.0 m s-1. Table 3 summarizes the 
errors of the attitude measurement unit compared to 
the precise FOG in different robot running speed. 
That means the developed attitude measurement unit 
need to be improved much more on the inhibition of 
high-frequency noise.

Table 3- Errors of dynamic attitude angle in 
different robot running speeds

Speed
(m s-1)

Error (degree)
Roll Pitch

Max RMS Mean Max RMS Mean
0.5 0.4 0.1 -0.1 0.6 0.2 -0.1
0.7 0.8 0.2  0.1 1.0 0.3  0.1
1.0 0.6 0.2 -0.1 1.3 0.3 -0.1

4. Conclusions
In this study, a small-sized and low-cost electronic 
unit was developed to provide attitude estimation with 
acceptable accuracy for light-loaded, small-sized 
and low-priced agricultural robot applications. This 
attitude measurement unit was composed of a small, 
low-cost IMU and an ECU by using sensor fusion 
methods. Based on the characteristic of gyroscope 
and accelerator, a self-adaptive complementary filter 
and a Kalman filter were discussed and compared. 
According to the comprehensive evaluation of 
drift error and dynamic motion, the Kalman filter 
is better to compensate the IMU drift, improved 
noise immunity and reduced measurement error. 
In the comparison with a highly precise FOG, the 
drift of attitude measurement unit approximates to 
the performance of the FOG. Finally, the results 
of farm test in dynamic characteristic shows that 

the performance of attitude measurement unit is 
close to the precise FOG, but the noise of ripple 
wave on the attitude angle exist. This issue needs 
to be solved in the future research. In a word, this 
developed attitude measurement unit can be applied 
to the low-cost small-sized harvesting robot arm, 
the greenhouse robots and agriculture drones.
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