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Abstract. In this paper, we introduce the notion of pseudo-slant lightlike
submanifolds of indefinite Kaehler manifolds giving characterization theorem
with some non-trivial examples of such submanifolds. Integrability conditions
of distributions D1, D2 and RadTM on pseudo-slant lightlike submanifolds of
an indefinite Kaehler manifold have been obtained. We also obtain necessary
and suffi cient conditions for foliations determined by above distributions to be
totally geodesic.

1. Introduction

In 1990, B.Y. Chen defined slant immersions in complex geometry as a nat-
ural generalization of both holomorphic immersions and totally real immersions
([4], [5]). Further, A. Carriazo defined and studied bi-slant submanifolds of al-
most Hermitian and almost contact metric manifolds and further gave the notion
of pseudo-slant submanifolds ([3]). The theory of lightlike submanifolds of a semi-
Riemannian manifold was introduced by Duggal and Bejancu ([7]). Various classes
of lightlike submanifolds of indefinite Kaehler manifolds are defined according to
the behaviour of distributions on these submanifolds with respect to the action of
(1,1) tensor field J in Kaehler structure of the ambient manifolds. Such submani-
folds have been studied by Duggal and Sahin in ([8]). The geometry of slant and
screen-slant lightlike submanifolds of indefinite Hermitian manifolds was studied by
Sahin in ([14], [15]). The theory of slant, Cauchy-Riemann lightlike submanifolds
of indefinite Kaehler manifolds has been studied in ([7], [8]).
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The objective of this paper is to introduce the notion of pseudo-slant lightlike sub-
manifolds of indefinite Kaehler manifolds. This new class of lightlike submanifolds
of an indefinite Kaehler manifold includes slant, Cauchy-Riemann lightlike sub-
manifolds as its sub-cases. The paper is arranged as follows. There are some basic
results in section 2. In section 3, we study pseudo-slant lightlike submanifolds of an
indefinite Kaehler manifold, giving some examples. Section 4 is devoted to the study
of foliations determined by distributions on pseudo-slant lightlike submanifolds of
indefinite Kaehler manifolds.

2. Preliminaries

A submanifold (Mm, g) immersed in a semi-Riemannian manifold (M
m+n

, g) is
called a lightlike submanifold ([7]) if the metric g induced from g is degenerate and
the radical distribution RadTM is of rank r, where 1 ≤ r ≤ m. Let S(TM) be
a screen distribution which is a semi-Riemannian complementary distribution of
RadTM in TM, that is

TM = RadTM ⊕orth S(TM). (2.1)

Now consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of RadTM in TM⊥. Since for any local basis {ξi}
of RadTM , there exists a local null frame {Ni} of sections with values in the
orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij and
g(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bundle
ltr(TM) locally spanned by {Ni}. Let tr(TM) be complementary (but not orthog-
onal) vector bundle to TM in TM |M . Then

tr(TM) = ltr(TM)⊕orth S(TM⊥), (2.2)

TM |M = TM ⊕ tr(TM), (2.3)

TM |M = S(TM)⊕orth [RadTM ⊕ ltr(TM)]⊕orth S(TM⊥). (2.4)

Following are four cases of a lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
:

Case.1 r-lightlike if r < min (m,n),
Case.2 co-isotropic if r = n < m, S

(
TM⊥

)
= {0},

Case.3 isotropic if r = m < n, S (TM) = {0},
Case.4 totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.
The Gauss and Weingarten formulae are given as

∇XY = ∇XY + h(X,Y ), (2.5)

∇XV = −AVX +∇tXV, (2.6)

for all X,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where ∇XY,AVX belong to Γ(TM)
and h(X,Y ),∇tXV belong to Γ(tr(TM)). ∇ and ∇t are linear connections on M
and on the vector bundle tr(TM), respectively. The second fundamental form h
is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and the
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shape operator AV is a linear endomorphism of Γ(TM). From (2.5) and (2.6), for
any X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)), we have

∇XY = ∇XY + hl (X,Y ) + hs (X,Y ) , (2.7)

∇XN = −ANX +∇lXN +Ds (X,N) , (2.8)

∇XW = −AWX +∇sXW +Dl (X,W ) , (2.9)

where hl(X,Y ) = L (h(X,Y )), hs(X,Y ) = S (h(X,Y )), Dl(X,W ) = L(∇tXW ),
Ds(X,N) = S(∇tXN). L and S are the projection morphisms of tr(TM) on
ltr(TM) and S(TM⊥) respectively. ∇l and ∇s are linear connections on ltr(TM)
and S(TM⊥) called the lightlike connection and screen transversal connection on
M respectively.
Now by using (2.5), (2.7)-(2.9) and metric connection ∇, we obtain

g(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y ), (2.10)

g(Ds(X,N),W ) = g(N,AWX). (2.11)

Denote the projection of TM on S(TM) by P . Then from the decomposition of
the tangent bundle of a lightlike submanifold, for any X,Y ∈ Γ(TM) and ξ ∈
Γ(RadTM), we have

∇XPY = ∇∗XPY + h∗(X,PY ), (2.12)

∇Xξ = −A∗ξX +∇∗tXξ, (2.13)

By using above equations, we obtain

g(hl(X,PY ), ξ) = g(A∗ξX,PY ), (2.14)

g(h∗(X,PY ), N) = g(ANX,PY ), (2.15)

g(hl(X, ξ), ξ) = 0, A∗ξξ = 0. (2.16)

It is important to note that in general ∇ is not a metric connection. Since ∇ is
metric connection, by using (2.7), we get

(∇Xg)(Y,Z) = g(hl(X,Y ), Z) + g(hl(X,Z), Y ). (2.17)

An indefinite almost Hermitian manifold (M, g, J) is a 2m-dimensional semi-Riemannian
manifold M with semi-Riemannian metric g of constant index q, 0 < q < 2m and
a (1, 1) tensor field J on M such that following conditions are satisfied:

J
2
X = −X, (2.18)

g(JX, JY ) = g(X,Y ), (2.19)

for all X,Y ∈ Γ(TM).
An indefinite almost Hermitian manifold (M, g, J) is called an indefinite Kaehler
manifold if J is parallel with respect to ∇, i.e.,

(∇XJ)Y = 0, (2.20)

for all X,Y ∈ Γ(TM), where ∇ is Levi-Civita connection with respect to g.
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3. Pseudo-Slant Lightlike Submanifolds

In this section, we introduce the notion of pseudo-slant lightlike submanifolds of
indefinite Kaehler manifolds. At first, we state the following Lemmas for later use:

Lemma 3.1. Let M be a r-lightlike submanifold of an indefinite Kaehler manifold
M of index 2q. Suppose that JRadTM is a distribution on M such that RadTM ∩
JRadTM = {0}. Then Jltr(TM) is a subbundle of the screen distribution S(TM)
and JRadTM ∩ Jltr(TM) = {0}.

Lemma 3.2. Let M be a q-lightlike submanifold of an indefinite Kaehler manifold
M of index 2q. Suppose JRadTM is a distribution on M such that RadTM ∩
JRadTM = {0}. Then any complementary distribution to JRadTM ⊕ Jltr(TM)
in S(TM) is Riemannian.

The proofs of Lemma 3.1 and Lemma 3.2 follow as in Lemma 3.1 and Lemma 3.2
of [15], respectively, so we omit them.
Definition 3.1. Let M be a q-lightlike submanifold of an indefinite Kaehler man-
ifold M of index 2q such that q < dim(M). Then we say that M is a pseudo-slant
lightlike submanifold of M if following conditions are satisfied:
(i) JRadTM is a distribution on M such that RadTM ∩ JRadTM = {0},
(ii) there exists non-degenerate orthogonal distributions D1 and D2 onM such that
S(TM) = (JRadTM ⊕ Jltr(TM))⊕orth D1 ⊕orth D2,
(iii) the distribution D1 is anti-invariant, i.e. JD1 ⊂ S(TM⊥),
(iv) the distribution D2 is slant with angle θ( 6= π/2), i.e. for each x ∈M and each
non-zero vector X ∈ (D2)x, the angle θ between JX and the vector subspace (D2)x
is a constant( 6= π/2), which is independent of the choice of x ∈M and X ∈ (D2)x.
This constant angle θ is called slant angle of distribution D2. A screen pseudo-slant
lightlike submanifold is said to be proper if D1 6= {0}, D2 6= {0} and θ 6= 0.
From the above definition, we have the following decomposition

TM = RadTM ⊕orth (JRadTM ⊕ Jltr(TM))⊕orth D1 ⊕orth D2. (3.1)

In particular, we have
(i) if D1 = 0, then M is a slant lightlike submanifold,
(ii) if D1 6= 0 and θ = 0, then M is a CR-lightlike submanifold.
Thus above new class of lightlike submanifolds of an indefinite Kaehler manifold
includes slant, Cauchy-Riemann lightlike submanifolds as its sub-cases which have
been studied in ([7],[8]).
Let (R2m2q , g, J) denote the manifold R2m2q with its usual Kaehler structure given by
g = 1

4 (−
∑q
i=1 dx

i ⊗ dxi + dyi ⊗ dyi +
∑m
i=q+1 dx

i ⊗ dxi + dyi ⊗ dyi),
J(
∑m
i=1(Xi∂xi + Yi∂yi)) =

∑m
i=1(Yi∂xi −Xi∂yi),

where (xi, yi) are the Cartesian coordinates on R2m2q . Now, we construct some
examples of pseudo-slant lightlike submanifolds of an indefinite Kaehler manifold.
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Example 1. Let (R122 , g, J) be an indefinite Kaehler manifold, where g is of
signature (−,+,+,+,+,+,−,+,+,+,+,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.
Suppose M is a submanifold of R122 given by x1 = y2 = u1, x2 = u2, y1 = u3,
x3 = y4 = u4, x4 = y3 = u5, x5 = u6 cosu7, y5 = u6 sinu7, x6 = cosu6, y6 = sinu6,
where ui are real parameters and u6 6= 0.
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7}, where
Z1 = 2(∂x1 + ∂y2), Z2 = 2∂x2, Z3 = 2∂y1,
Z4 = 2(∂x3 + ∂y4), Z5 = 2(∂x4 + ∂y3),
Z6 = 2(cosu7∂x5 + sinu7∂y5 − sinu6∂x6 + cosu6∂y6),
Z7 = 2(−u6 sinu7∂x5 + u6 cosu7∂y5).

Hence RadTM = Span {Z1} and S(TM) = Span {Z2, Z3, Z4, Z5, Z6, Z7}.
Now ltr(TM) is spanned by N1 = −∂x1 + ∂y2 and S(TM⊥) is spanned by
W1 = 2(∂x3 − ∂y4), W2 = 2(∂x4 − ∂y3),
W3 = 2(cosu7∂x5 + sinu7∂y5 + sinu6∂x6 − cosu6∂y6),
W4 = 2(u6 cosu6∂x6 + u6 sinu6∂y6).

It follows that JZ1 = Z2 − Z3, which implies that JRadTM is a distribution on
M . On the other hand, we can see that D1 = span {Z4, Z5} such that JZ4 =
W2, JZ5 = W1, which implies that D1 is anti-invariant with respect to J and
D2 = span {Z6, Z7} is a slant distribution with slant angle π/4. Hence M is a
pseudo-slant 2-lightlike submanifold of R122 .
Example 2. Let (R122 , g, J) be an indefinite Kaehler manifold, where g is of
signature (−,+,+,+,+,+,−,+,+,+,+,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.
SupposeM is a submanifold of R122 given by −x1 = y2 = u1, x2 = u2, y1 = u3, x3 =
u4 cosβ, y3 = u4 sinβ, x4 = u5 sinβ, y4 = u5 cosβ, x5 = u6 cos θ, y5 = u7 cos θ,
x6 = u7 sin θ, y6 = u6 sin θ, where ui are real parameters.
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7}, where
Z1 = 2(−∂x1 + ∂y2), Z2 = 2∂x2, Z3 = 2∂y1,
Z4 = 2(cosβ∂x3 + sinβ∂y3), Z5 = 2(sinβ∂x4 + cosβ∂y4),
Z6 = 2(cos θ∂x5 + sin θ∂y6), Z7 = 2(sin θ∂x6 + cos θ∂y5).

Hence RadTM = Span {Z1} and S(TM) = Span {Z2, Z3, Z4, Z5, Z6, Z7}.
Now ltr(TM) is spanned by N1 = ∂x1 + ∂y2 and S(TM⊥) is spanned by
W1 = 2(sinβ∂x3 − cosβ∂y3), W2 = 2(cosβ∂x4 − sinβ∂y4),
W3 = 2(sin θ∂x5 − cos θ∂y6), W4 = 2(cos θ∂x6 − sin θ∂y5).

It follows that JZ1 = Z2 + Z3, which implies that JRadTM is a distribution on
M . On the other hand, we can see that D1 = span {Z4, Z5} such that JZ4 = W1,
JZ5 = W2, which implies that D1 is anti-invariant with respect to J and D2 =
span {Z6, Z7} is a slant distribution with slant angle 2θ. HenceM is a pseudo-slant
2-lightlike submanifold of R122 .
Now, for any vector field X tangent to M , we put JX = PX + FX, where PX
and FX are tangential and transversal parts of JX respectively. We denote the
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projections on RadTM , JRadTM , Jltr(TM), D1 and D2 in TM by P1, P2, P3, P4,
and P5 respectively. Similarly, we denote the projections of tr(TM) on ltr(TM),
J(D1) and D′ by Q1, Q2 and Q3 respectively, where D′ is non-degenerate orthog-
onal complementary subbundle of J(D1) in S(TM⊥). Then, for any X ∈ Γ(TM),
we get

X = P1X + P2X + P3X + P4X + P5X. (3.2)

Now applying J to (3.2), we have

JX = JP1X + JP2X + JP3X + JP4X + JP5X, (3.3)

which gives

JX = JP1X + JP2X + JP3X + JP4X + fP5X + FP5X, (3.4)

where fP5X (resp. FP5X) denotes the tangential (resp. transversal) compo-
nent of JP5X. Thus we get JP1X ∈ Γ(JRadTM), JP2X ∈ Γ(RadTM), JP3X ∈
Γ(ltr(TM)), JP4X ∈ Γ(JD1) ⊆ Γ(S(TM⊥)), fP5X ∈ Γ(D2) and FP5X ∈ Γ(D′).
Also, for any W ∈ Γ(tr(TM)), we have

W = Q1W +Q2W +Q3W. (3.5)

Applying J to (3.5), we obtain

JW = JQ1W + JQ2W + JQ3W, (3.6)

which gives
JW = JQ1W + JQ2W +BQ3W + CQ3W, (3.7)

where BQ3W (resp. CQ3W ) denotes the tangential (resp. transversal) component
of JQ3W . Thus we get JQ1W ∈ Γ(Jltr(TM)), JQ2W ∈ Γ(D1), BQ3W ∈ Γ(D2)
and CQ3W ∈ Γ(D′).
Now, by using (2.20), (3.4), (3.7) and (2.7)-(2.9) and identifying the components
on RadTM , JRadTM , Jltr(TM), D1, D2, ltr(TM), J(D1) and D′, we obtain

P1(∇XJP1Y ) + P1(∇XJP2Y )− P1(AJP4YX) + P1(∇XfP5Y )

= P1(AFP5YX) + P1(AJP3YX) + JP2∇XY,
(3.8)

P2(∇XJP1Y ) + P2(∇XJP2Y )− P2(AJP4YX) + P2(∇XfP5Y )

= P2(AFP5YX) + P2(AJP3YX) + JP1∇XY,
(3.9)

P3(∇XJP1Y ) + P3(∇XJP2Y )− P3(AJP4YX) + P3(∇XfP5Y )

= P3(AFP5YX) + P3(AJP3YX) + Jhl(X,Y ),
(3.10)

P4(∇XJP1Y ) + P4(∇XJP2Y )− P4(AJP4YX) + P4(∇XfP5Y )

= P4(AFP5YX) + P4(AJP3YX) + JQ2h
s(X,Y ),

(3.11)

P5(∇XJP1Y ) + P5(∇XJP2Y )− P5(AJP4YX) + P5(∇XfP5Y )

= P5(AFP5YX) + P5(AJP3YX) + fP5∇XY +BQ3h
s(X,Y ),

(3.12)
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hl(X, JP1Y ) + hl(X, JP2Y ) +Dl(X, JP4Y ) + hl(X, fP5Y )

= JP3∇XY −∇lXJP3Y −Dl(X,FP5Y ),
(3.13)

Q2h
s(X, JP1Y ) +Q2h

s(X, JP2Y ) +Q2∇sXJP4Y +Q2h
s(X, fP5Y )

= Q2∇sXFP5Y −Q2Ds(X, JP3Y ) + JP4∇XY,
(3.14)

Q3h
s(X, JP1Y ) +Q3h

s(X, JP2Y ) +Q3∇sXJP4Y +Q3h
s(X, fP5Y )

= CQ3h
s(X,Y )−Q3∇sXFP5Y −Q3Ds(X, JP3Y ) + FP5∇XY.

(3.15)

Theorem 3.3. LetM be a q-lightlike submanifold of an indefinite Kaehler manifold
M of index 2q. Then M is a pseudo-slant lightlike submanifold of M if and only if
(i) JRadTM is a distribution on M such that RadTM ∩ JRadTM = {0},
(ii) the distribution D1 is an anti-invariant, i.e. JD1 ⊂ S(TM⊥),
(iii) there exists a constant λ ∈ (0, 1] such that P 2X = −λX.

Moreover, there also exists a constant µ ∈ [0, 1) such that BFX = −µX, for all
X ∈ Γ(D2), where D1 and D2 are non-degenerate orthogonal distributions on M
such that S(TM) = (JRadTM ⊕ Jltr(TM)) ⊕orth D1 ⊕orth D2 and λ = cos2 θ, θ
is slant angle of D2.

Proof. Let M be a pseudo-slant lightlike submanifold of an indefinite Kaehler
manifoldM . Then distributionD1 is anti-invariant with respect to J and JRadTM
is a distribution on M such that RadTM ∩ JRadTM = {0}.
Now for any X ∈ Γ(D2), we have |PX| = |JX| cos θ, which implies

cos θ =
|PX|
|JX|

. (3.16)

In view of (3.16), we get cos2 θ = |PX|2

|JX|2 = g(PX,PX)

g(JX,JX)
= g(X,P 2X)

g(X,J
2
X)
, which gives

g(X,P 2X) = cos2 θ g(X, J
2
X). (3.17)

Since M is pseudo-slant lightlike submanifold, cos2 θ = λ(constant) ∈ (0, 1] there-

fore from (3.17), we get g(X,P 2X) = λg(X, J
2
X) = g(X,λJ

2
X), which implies

g(X, (P 2 − λJ2)X) = 0. (3.18)

Since X is non-null vector, we have (P 2 − λJ2)X = 0, which implies

P 2X = λJ
2
X = −λX. (3.19)

Now, for any vector field X ∈ Γ(D2) , we have

JX = PX + FX, (3.20)

where PX and FX are tangential and transversal parts of JX respectively.
Applying J to (3.20) and taking tangential component, we get

−X = P 2X +BFX. (3.21)
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From (3.19) and (3.21), we get

BFX = − sin2 θX, ∀X ∈ Γ(D2), (3.22)

where sin2 θ = 1− λ = µ(constant) ∈ [0, 1).
This proves (iii).
Conversely suppose that conditions (i), (ii) and (iii) are satisfied. From (3.21), for
any X ∈ Γ(D2), we get

−X = P 2X − µX, (3.23)

which implies

P 2X = − cos2 θX, (3.24)

where cos2 θ = 1− µ = λ(constant) ∈ (0, 1].

Now cos θ = g(JX,PX)

|JX||PX| = − g(X,JPX)|JX||PX| = − g(X,P
2X)

|JX||PX| = −λ g(X,J
2
X)

|JX||PX| = λ g(JX,JX)|JX||PX| .
From above equation, we get

cos θ = λ
|JX|
|PX| . (3.25)

Therefore (3.16) and (3.25) give cos2 θ = λ(constant).
Hence M is a pseudo-slant lightlike submanifold.

Corollary 3.1. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M with slant angle θ, then for any X,Y ∈ Γ(D2), we have
(i) g(PX,PY ) = cos2 θ g(X,Y ),
(ii) g(FX,FY ) = sin2 θ g(X,Y ).

The proof of above Corollary follows by using similar steps as in proof of Corollary
3.1 of [15].

Theorem 3.4. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then RadTM is integrable if and only if
(i) P1(∇XJP1Y ) = P1(∇Y JP1X) and P5(∇XJP1Y ) = P5(∇Y JP1X),
(ii) Q2hs(Y, JP1X) = Q2h

s(X, JP1Y ) and hl(Y, JP1X) = hl(X, JP1Y ),
(iii) Q3hs(Y, JP1X) = Q3h

s(X, JP1Y ), for all X,Y ∈ Γ(RadTM).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler man-
ifold M . Let X,Y ∈ Γ(RadTM). From (3.8), we have P1(∇XJP1Y ) = JP2∇XY ,
which gives P1(∇XJP1Y ) − P1(∇Y JP1X) = JP2[X,Y ]. From (3.12), we get
P5(∇XJP1Y ) = fP5∇XY+Bhs(X,Y ), which gives P5(∇XJP1Y )−P5(∇Y JP1X) =
fP5[X,Y ]. In view of (3.13), we obtain hl(X, JP1Y ) = JP3∇XY , which implies
hl(X, JP1Y )− hl(Y, JP1X) = JP3[X,Y ]. From (3.14), we have Q2hs(X, JP1Y ) =
JP4∇XY , which gives Q2hs(X, JP1Y ) − Q2hs(Y, JP1X) = JP4[X,Y ]. Also from
(3.15), we getQ3hs(X, JP1Y ) = Chs(X,Y )+FP5∇XY , which impliesQ3hs(X, JP1Y )−
Q3h

s(Y, JP1X) = FP5[X,Y ]. This concludes the theorem.
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Theorem 3.5. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then D1 is integrable if and only if
(i) P1(AJP4YX) = P1(AJP4XY ) and P2(AJP4YX) = P2(AJP4XY ),
(ii) Dl(Y, JP4X) = Dl(X, JP4Y ) and Q3∇sY JP4X = Q3∇sXJP4Y ,
(iii) P5(AJP4YX) = P5(AJP4XY ), for all X,Y ∈ Γ(D1).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler man-
ifold M . Let X,Y ∈ Γ(D1). From (3.8), we have P1(AJP4YX) + JP2∇XY =

0, which gives P1(AJP4XY ) − P1(AJP4YX) = JP2[X,Y ]. From (3.9), we get
P2(AJP4YX)+JP1∇XY = 0, which gives P2(AJP4XY )−P2(AJP4YX) = JP1[X,Y ].
In view of (3.12), we obtain P5(AJP4YX)+fP5∇XY +BQ3h

s(X,Y ) = 0, which im-
plies P5(AJP4XY )−P5(AJP4YX) = fP5[X,Y ]. From (3.13), we haveDl(X, JP4Y ) =

JP3∇XY , which gives Dl(X, JP4Y )−Dl(Y, JP4X) = JP3[X,Y ]. Also from (3.15),
we obtain Q3∇sXJP4Y = CQ3h

s(X,Y ) + FP5∇XY , which implies Q3∇sXJP4Y −
Q3∇sY JP4X = FP5[X,Y ]. Thus, we obtain the required results.

Theorem 3.6. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then D2 is integrable if and only if
(i) P1(∇XfP5Y −∇Y fP5X) = P1(AFP5YX −AFP5XY ),
(ii) P2(∇XfP5Y −∇Y fP5X) = P2(AFP5YX −AFP5XY ),
(iii) hl(X, fP5Y )− hl(Y, fP5X) = Dl(Y, FP5X)−Dl(X,FP5Y ),
(iv) Q2(∇sXFP5Y −∇sY FP5X) = Q2(h

s(X, fP5Y )− hs(Y, fP5X)),
for all X,Y ∈ Γ(D2).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler man-
ifold M . Let X,Y ∈ Γ(D2). From (3.8), we have P1(∇XfP5Y ) − P1(AFP5YX) =
JP2∇XY , which gives P1(∇XfP5Y − ∇Y fP5X) − P1(AFP5YX − AFP5XY ) =
JP2[X,Y ]. From (3.9), we get P2(∇XfP5Y ) − P2(AFP5YX) = JP1∇XY , which
gives P2(∇XfP5Y −∇Y fP5X)−P2(AFP5YX−AFP5XY ) = JP1[X,Y ]. In view of
(3.13), we obtain hl(X, fP5Y )+Dl(X,FP5Y ) = JP3∇XY , which implies hl(X, fP5Y )−
hl(Y, fP5X) + Dl(X,FP5Y ) − Dl(Y, FP5X) = JP3[X,Y ]. From (3.14), we have
Q2h

s(X, fP5Y )−Q2∇sXFP5Y = JP4∇XY , which givesQ2(∇sY FP5X−∇sXFP5Y )+
Q2(h

s(X, fP5Y )−Q2hs(Y, fP5X)) = JP4[X,Y ]. This proves the theorem.

4. Foliations Determined by Distributions

In this section, we obtain necessary and suffi cient conditions for foliations deter-
mined by distributions on a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold to be totally geodesic.
Definition 4.1. A pseudo-slant lightlike submanifold M of an indefinite Kaehler
manifold M is said to be mixed geodesic if its second fundamental form h satisfies
h(X,Y ) = 0, for all X ∈ Γ(D1) and Y ∈ Γ(D2). ThusM is mixed geodesic pseudo-
slant lightlike submanifold if hl(X,Y ) = 0 and hs(X,Y ) = 0, for all X ∈ Γ(D1)
and Y ∈ Γ(D2).
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Theorem 4.1. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then RadTM defines a totally geodesic foliation if and only
if g(∇XJP2Z + ∇XfP5Z, JY ) = g(AJP3ZX + AJP4ZX + AFP5ZX, JY ), for all
X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler mani-
foldM . It is easy to see that RadTM defines a totally geodesic foliation if and only
if ∇XY ∈ Γ(RadTM), for all X,Y ∈ Γ(RadTM). Since ∇ is metric connection, us-
ing (2.7), (2.19), (2.20) and (3.4), for any X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)),
we get g(∇XY,Z) = −g(∇X(JP2Z + JP3Z + JP4Z + fP5Z + FP5Z), JY ), which
gives g(∇XY,Z) = g(AJP3ZX +AFP5ZX +AJP4ZX −∇XJP2Z −∇XfP5Z, JY ).
This completes the proof.

Theorem 4.2. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then D1 defines a totally geodesic foliation if and only if
(i) g(∇sXFZ, JY ) = −g(hs(X, fZ), JY ),
(ii) hs(X, JN) and Ds(X, JW ) have no components in J(D1),

for all X,Y ∈ Γ(D1), Z ∈ Γ(D2), N ∈ Γ(ltr(TM)), W ∈ Γ(Jltr(TM)).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler man-
ifold M . The distribution D1 defines a totally geodesic foliation if and only if
∇XY ∈ Γ(D1), for all X,Y ∈ Γ(D1). Since ∇ is metric connection, using (2.7),
(2.19) and (2.20), for any X,Y ∈ Γ(D1) and Z ∈ Γ(D2), we obtain g(∇XY,Z) =
−g(∇XJZ, JY ), which implies g(∇XY, Z) = g(∇sXFZ + hs(X, fZ), JY ). In view
of (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D1) and N ∈ Γ(ltr(TM)), we have
g(∇XY,N) = −g(JY,∇XJN), which gives g(∇XY,N) = −g(JY, hs(X, JN)).
Now, from (2.7), (2.19) and (2.20), for anyX,Y ∈ Γ(D1) andW ∈ Γ(Jltr(TM)), we
get g(∇XY,W ) = −g(JY,∇XJW ), which implies g(∇XY,W ) = g(JY,Ds(X, JW )).
This concludes the theorem.

Theorem 4.3. Let M be a pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then D2 defines a totally geodesic foliation if and only if
(i) g(AJZX, fY ) = g(∇sXJZ, FY ),
(ii) g(fY,∇XJN) = −g(FY, hs(X, JN)),
(iii) g(fY,AJWX) = g(FY,Ds(X, JW )),

for all X,Y ∈ Γ(D2), Z ∈ Γ(D1), N ∈ Γ(ltr(TM)), W ∈ Γ(Jltr(TM)).

Proof. LetM be a pseudo-slant lightlike submanifold of an indefinite Kaehler man-
ifold M . The distribution D2 defines a totally geodesic foliation if and only if
∇XY ∈ Γ(D2), for all X,Y ∈ Γ(D2). Since ∇ is metric connection, using (2.7),
(2.19) and (2.20), for any X,Y ∈ Γ(D2) and Z ∈ Γ(D1), we get g(∇XY,Z) =
−g(∇XJZ, JY ), which gives g(∇XY, Z) = g(AJZX, fY )− g(∇sXJZ, FY ). In view
of (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D2) and N ∈ Γ(ltr(TM)), we have
g(∇XY,N) = −g(JY,∇XJN), which implies g(∇XY,N) = −g(fY,∇XJN) −
g(FY, hs(X, JN)). Now, from (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D2)
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and W ∈ Γ(Jltr(TM)), we have g(∇XY,W ) = −g(JY,∇XJW ), which gives
g(∇XY,W ) = g(fY,AJWX) − g(FY,Ds(X, JW )). Thus, we obtain the required
results.

Theorem 4.4. Let M be a mixed geodesic pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then D1 defines a totally geodesic foliation if and
only if ∇sXFZ, hs(X, JN) and Ds(X, JW ) have no components in J(D1), for all
X ∈ Γ(D1), Z ∈ Γ(D2), N ∈ Γ(ltr(TM)) and W ∈ Γ(Jltr(TM)).

Proof. LetM be a mixed geodesic pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then h(X,Y ) = 0, for all X ∈ Γ(D1) and for all Y ∈ Γ(D2).
The distribution D1 defines a totally geodesic foliation if and only if ∇XY ∈ Γ(D1),
for all X,Y ∈ Γ(D1). Since ∇ is metric connection, using (2.7), (2.19) and (2.20),
for any X,Y ∈ Γ(D1) and Z ∈ Γ(D2), we get g(∇XY,Z) = −g(∇XJZ, JY ),
which gives g(∇XY,Z) = −g(∇sXFZ + hs(X, fZ), JY ). In view of (2.7), (2.19)
and (2.20), for any X,Y ∈ Γ(D1) and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) =
−g(JY,∇XJN), which implies g(∇XY,N) = −g(JY, hs(X, JN)). Now, from
(2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D1) and W ∈ Γ(Jltr(TM)), we have
g(∇XY,W ) = −g(JY,∇XJW ), which gives g(∇XY,W ) = g(JY,Ds(X, JW )).
This proves the theorem.

Acknowledgement: This work is financial supported by the Council of Scientific
and Industrial Research (C.S.I.R.), India.

References

[1] Atceken, M., Kilic, E., Semi-Invariant Lightlike Submanidolds of a Semi-Riemannian Product
Manifold, Kodai Math. J., 30 (2007), 361-378.

[2] Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math-
ematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.

[3] Carriazo, A., New Developments in Slant Submanifolds Theory, Narosa Publishing House,
New Delhi, India, 2002.

[4] Chen, B. Y., Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
[5] Chen, B. Y., Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135- 147.
[6] Chen, B. Y., Tazawa, Y., Slant submanifolds in complex Euclidean spaces, Tokyo J. Math.,

14 (1991), 101-120.
[7] Duggal, K.L., Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Ap-

plications, Vol. 364 of Mathematics and its applications, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1996.

[8] Duggal, K.L., Sahin, B., Differential Geomety of Lightlike Submanifolds, Birkhauser Verlag
AG, Basel, Boston, Berlin, 2010.

[9] Johnson, D.L., Whitt, L.B., Totally Geodesic Foliations, J. Diff erential Geometry, 15 (1980),
225-235.

[10] Kilic, E., Sahin, B., Radical Anti-Invariant Lightlike Submanifolds of Semi-Riemannian Prod-
uct Manifolds, Turkish J. Math., 32 (2008), 429 - 449.

[11] Lotta, A., Slant Submanifolds in Contact geometry, Bull. Math. Soc. Roumanie, 39 (1996),
183-198.



PSEUDO-SLANT LIGHTLIKE SUBMANIFOLDS 1277

[12] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press
New York 1983.

[13] Papaghiuc, N., Semi-slant submanifolds of a Kaehlerian manifold, An. Stiint. Al.I.Cuza.
Univ. Iasi, 40 (1994), 55-61.

[14] Sahin, B., Screen Slant Lightlike Submanifolds, Int. Electronic J. of Geometry, 2 (2009),
41-54.

[15] Sahin, B., Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan Journal of
Geometry and Its Appl., 13(1) (2008), 107-119.

[16] Sahin, B., Gunes, R., Geodesic CR-lightlike submanifolds, Beitrage Algebra and Geometry,
42(2) (2001), 583-594.

[17] Shukla, S.S., Akhilesh Yadav, Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian
Manifolds, An. Stiint. Al. I. Cuza. Univ. Iasi, TOM LXII, 2(2) (2016), 571-583.

[18] Shukla, S.S., Akhilesh Yadav, Screen Pseudo-Slant Lightlike Submanifolds of Indefinite
Sasakian Manifolds, Mediterian Journal of Mathematics, 13(2) (2016), 789-802.


	1. Introduction
	2. Preliminaries
	3. Pseudo-Slant Lightlike Submanifolds
	4. Foliations Determined by Distributions
	References

