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Extending property on EC-Fully Submodules 

Adnan TERCAN1, Ramazan YAŞAR*2  

Abstract 

There are several generalizations of ��-modules in literature. One of the generalization is based on fully 
invariant submodules. Recall that a module � is called ��-extending if every fully invariant submodule is 
essential in a direct summand. We call a module ���-extending if every fully invariant submodule which 
contains essentially a cyclic submodule is essential in a direct summand. Initially we obtain basic properties 
in the general module setting. For example, a direct sum of ���-extending modules is ���-extending. 
Again, like the ��-extending property, the ���-extending property is shown to carry over to matrix rings. 
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1. INTRODUCTION 

In recent years, the theory of extending modules 
and rings and their generalizations has come to 
play an important role in the theory of rings and 
modules. Recall that a module � is called an 
extending (or ��) module if every submodule of � 
is essential in a direct summand of � (see [4], [9] 
or [10]). 

One of the extremely useful generalization of �� 
concept is ��-extending property (see [1] or [2]). 
Recall a module � is called ��-extending if every 
fully invariant submodule of � is essential in a 
direct summand. Following [3] and [5], by an ��-
fully submodule � of a module �, we mean a fully 
invariant submodule � which contains essentially 
a cyclic submodule i.e., there exists an element � 
in � such that �� is essential in �.  

In this paper, we are concerned with the study of 
modules � that every ��-fully submodule is 
essential in a direct summand of �. We call such 
a module as ���-extending. Moreover, a ring � is 
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called right ���-extending ring if �� is an ���-
extending module. Clearly the notion of an ���-
extending module generalizes that of a ��-
extending module by requiring that only every ��-
fully submodule is essential in a direct summand 
rather than every fully invariant submodule.  

In Section 2, we provide basic properties of ��-
fully submodules. After defining ���-extending 
modules, in Section 3 we prove basic results and 
properties of ���-extending modules. It is shown 
that any direct sum of ���-extending modules is 
���-extending and that the ���-extending 
property of a ring � carries over to the full matrix 
ring ��(�), � ≥ 1. 

Throughout this paper, all rings are associative 
with unity and � denotes such a ring. All modules 
are unital right �-modules. 

Recall that a submodule � of � is called fully 
invariant if for every � ∈ ����(�), �(�) ⊆ �. If 
� is an �-module and � ⊆ �, then we use � ≤ �, 
� ≤� �, � ⊴ �, � ⊴�� �, and �(�) to denote 
that � is a submodule, essential submodule, fully 
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invariant submodule, ��-fully submodule, and the 
injective hull of �, respectively.  

Moreover ��(�) denotes the full ring of �-by-� 
matrices over �. For other terminology and 
notation, we refer to [2], [4], [7] and [10].   

2. EC-FULLY SUBMODULES 

Since ��-fully submodules are building bricks to 
the establishment of ���-extending notion; first, 
we deal with this kind of submodules. To this end, 
we begin this section by recording some basic facts 
about them.  

2.1. Lemma.  

Let � be a module. 

(i) If � ⊴�� � and � ⊴�� � then 
� ⊴�� �. 

(ii) If � = ⨁ ���∈∧  and � ⊴�� �, then � =
 ⊕�∈∧ ��(�) = ⊕�∈∧ (� ∩ ��), where 
�� is the ���-projection homomorphism 
of �. 

Proof. The proof is routine. 

The class of ��-fully submodules is properly 
contained in the class of fully invariant 
submodules. Next example provides a fully 
invariant submodule which is not ��-fully 
submodule. For details on this example, we refer 
to [8] or [10]. 

2.2. Example. 

Let ℝ be the real field and � the polynomial ring 

ℝ[�, �, �]. Then the ring � = �
���  , where � =

�� + �� + �� − 1, is a commutative Noetherian 
domain. The free �-module � = � ⊕ � ⊕ � 
contains an indecomposable submodule �� of 
uniform dimension 2.  

Now, let us build up the trivial extension of � with 
�� i.e., let  

� = �
� �
0 �

� = � �
� �
0 �

� ∶ � ∈ �, � ∈ �  �. 

Then � = �
0 �
0 0

� ⊴ �� but � is not ��-fully 

submodule of ��. 

Proof. It is easy to check that � is a commutative 
Noetherian domain. Let �: � → � be the 
homomorphism defined by �(� + ��, � + ��, � +
��) = �� + �� + �� + �� for all �, �, � ∈ �. 
Clearly, � is an epimorphism, and hence, its kernel 
� is a direct summand of �, i.e., � = � ⊕ �′ for 
some submodule �′ ≅ �. Observe that � is 
uniform i.e., �′ has uniform dimension 1 and 
hence �� has uniform dimension 2. 

Note that � is the �-module of regular sections of 
the tangent bundle of the 2-sphere ��. 
Furthermore, a celebrated result in differential 
geometry yields that �� is an indecomposable 
module. Now the trivial extension of � with �� 

i.e.,  � = �
� �
0 �

� is a commutative ring and hence 

� = �
0 �
0 0

� is a fully invariant submodule of �. 

Assume that � contains essentially a cyclic 

submodule, say �
0 �
0 0

� �, where � ∈ �. Thus �� 

is essential in ��. It follows that �� has uniform 
dimension 2. However, this is impossible, because 
the mapping �: �� → �, defined by �(��) = �, 
where � ∈ �, is an �-isomorphism. Thus �� has 
uniform dimension 1. Therefore � does not 
contain essentially a cyclic submodule. Hence � is 
not ��-fully submodule of ��. 

Notice that the rank of free �-module � in the 
previous example can be replaced by any odd 
integer � > 3 (see [8]). There are more examples 
in this trend. We refer reader to look at [6] for the 
construction of this kind of examples. Following 
easy lemma shows that certain fully invariant 
submodules are ��-fully submodules. 

2.3. Lemma. 

Let � be a module which contains essentially a 
cyclic submodule. If � is a fully invariant direct 
summand of �, then � is an ��-fully submodule 
of �. 

Proof. Suppose � = �� is an essential submodule 
of �, where � ∈ �. Let �: � → � be the 
canonical projection map. Then �� ∩ � = � ∩
� ≤ �(�) = �(�)� ≤ �. Since �� is essential in 
� then �� ∩ � is essential in �. It follows that 
�(�)� is essential in �. Hence � is an ��-fully 
submodule of �.  
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It is natural to think of which modules (even rings) 
have the property that every ��-fully submodule is 
a direct summand. Next result provides a class of 
rings which satisfy the aforementioned property. 
First, recall the following module condition: 

��: If � ≤ � is isomorphic to a direct summand of 
�, then � is a direct summand of � (see [4] or 
[10]).  

It is well-known that (von Neumann) regular rings 
satisfy the �� condition (see, for example [7]). 

2.4. Proposition.  

Let � be a (von Neumann) regular ring. Then an 
��-fully submodule of �-module � is a direct 
summand. 

Proof. Let � be an ��-fully submodule of ��. Then 
there exists � ∈ � such that �� is essential in �. By 
assumption, �� is a direct summand of ��. Thus 
�� = �� ⊕ � for some � ≤ ��. Now �� ∩ � is 
essential in � ∩ � which yields that � ∩ � = 0. 
Therefore � = �� ⊕ � = � ⊕ �. It follows that 
� ≅ ��. Since �� has �� condition, � is a direct 
summand of �� as required. 

3. EFI-EXTENDING MODULES 

In this section, we define and obtain basic 
properties of ���-extending modules. Let us start 
by mentioning the definition of this new class of 
modules. 

3.1. Definition 

A module � is called ���-extending if every ��-
fully submodule of � is essential in a direct 
summand of �. 

Obviously ��-extending modules (and hence 
extending modules) are ���-extending modules. 
Moreover, (von Neumann) regular rings enjoy 
with the ���-extending property. On the other 
hand, the ring of integers is an ���-extending ring 
which is not regular. One might expect that 
whether ���-extending property implies ��-
extending or not? However, the following 
examples show that the class of ��-extending 
modules are properly contained in the class of 
���-extending modules. 

3.2. Example 

Let � be any field and let �� = �, � ∈∧, where ∧ is 
infinite. Define � =  ⊕�∈∧ �� + �1, which is an �-
subalgebra of Π�∈∧��, where 1 is the identity of 
Π�∈∧��. It is known that � is a regular (and hence 
���-extending ring by Proposition 2.4) ring which 
is not ��-extending (see [2, Ex. 2.3.32]). 

3.3. Example [7, Ex. 7.54] 

Let � be a field, and let � = � × � × ⋯. So this 
ring is commutative. Now, let � be the subring of 
� consisting of sequences (��, ��, … ) ∈ � that are 
eventually constant. For any (��, ��, … ) ∈ �, 
define � = (��, ��, … ) by; �� = ��

�� if �� ≠ 0, 
and �� = 0 if �� = 0. Then � ∈ � and � = ���. 
Therefore, � is (von Neumann) regular. By 
Proposition 2.4, � is ���-extending. Note that � is 
not a Baer ring. Hence � is not an ��-extending 
ring by [1, Theorem 4.7(iii)]. 

It is an open problem to determine if a direct 
summand of an ��-extending (or, also ���-
extending) module is always ��-extending (���-
extending) (see [1]). The following result is in 
related with the ���-extending version of the 
aforementioned problem. 

3.4. Proposition 

Let � be a module and � ⊴�� �. If � is ���-
extending, then � is ���-extending. 

Proof. Assume � is ���-extending module. Let 
� ⊴�� �. By Lemma 2.1 (i), � ⊴�� �. Hence there 
exists a direct summand � of � such that � ≤� �. 
Let �: � → � be the canonical projection 
endomorphism. Then � = �(�) ≤ �(�) ∩ � =
�(�). Hence � ≤� �(�) and �(�) is a direct 
summand of �. 

Next result deals with characterization of ���-
extending modules in terms of endomorphisms of 
injective hulls of the modules and complements of 
��-fully submodules. To this end, the proof of the 
next theorem is based on the proof of the 
corresponding result for ��-extending modules 
(see [2, Proposition 2.3.2]). 
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3.5. Theorem 

Let � be a module. Then the following are 
equivalent: 

(i) � is ���-extending 

(ii) For � ⊴�� �, there is �� = � ∈
���(�(�)) such that � ≤� ��(�) and 
�� ≤ �. 

(iii) Each � ⊴�� � has a complement which is 
a direct summand.  

Proof. (�) ⇒ (��). Assume that � ⊴�� �. Then 
there is �� = � ∈ ���(�) such that � ≤� ��. 
Let �: �(�) → �(��) be the canonical 
projection. Then we see that � ≤� ��(�) and 
�� = �� ≤ �. 

(��) ⇒ (���). Let � ⊴�� �. Then there exists �� =
� ∈ ���(�(�)) such that � ≤� ��(�) and 
�� ≤ �. Now, let us put � = (1 − �)|�  . Then 
�� = � ∈ ���(�). We show that �� is a 
complement of �. For this, first note that �� ∩
� = 0 as �� = (1 − �)�. Say � ≤ � such that 
�� = (1 − �)� ≤ � and � ∩ � = 0. From � =
(1 − �)� ⊕ ��, � = (1 − �)� ⊕ (� ∩ ��) by 
the modular law. As � ∩ � = 0 and � ≤� ��(�), 
� ∩ ��(�) = 0 and so � ∩ �� = 0. Thus, we get 
that � = (1 − �)�, then � = ��. Therefore �� 
is a complement of �. 

(���) ⇒ (�). Let � ⊴�� �. There exists �� = � ∈
���(�) so that �� is a complement of �. As 
� ⊴�� �, �� ≤ � ∩ �� = 0. Hence � = (1 −
�)�. To show that � is ���-extending, we claim 
that � ≤� (1 − �)�. For this, assume that � ≤
(1 − �)� such that � ∩ � = 0. Then note that 
�� ∩ � = 0. Take �� + � = � ∈ (�� ⊕ �) ∩
� with � ∈ �, � ∈ �, and � ∈ �. Then (1 −
�)�� + (1 − �)� = (1 − �)�, so � = � ∈ � ∩
� because � ≤ (1 − �)� and � = (1 − �)�. 
Now as � ∩ � = 0, � = � = 0. Thus, (�� ⊕
�) ∩ � = 0. Since �� is a complement of �, 
�� ⊕ � = �� and so � = 0. Therefore, 
� ≤� (1 − �)�. It follows that � is ���-
extending.  

It is well-known that a direct sum of ��-extending 
modules is also ��-extending module. Now, we 
intend to have the corresponding result for ���-
extending modules. 

3.6. Theorem 

Let � =  ⊕�∈∧ ��. If each �� is an ���-extending 
module, then � is an ���-extending module. 

Proof. Let � ⊴�� �. By Lemma 2.1(ii), � =
⊕�∈∧ (� ∩ ��), and  � ∩ �� ⊴ �� for each � ∈∧. 
Assume � contains essentially the cyclic 
submodule ��, where � ∈ �. Let �: � → � ∩ �� be 
the projection map. Then �� ∩ (� ∩ ��) ≤
�(��) = �(�)� ≤ � ∩ ��. Since �� ≤� � then 
�� ∩ (� ∩ ��) ≤� � ∩ ��. It follows that 
�(�)� ≤� � ∩ ��. Hence � ∩ �� ⊴�� �� for each 
� ∈∧. As �� is ���-extending, there is a direct 
summand �� of �� with � ∩ �� ≤� �� for every � ∈
∧. Thus � = ⊕�∈∧ (� ∩ ��) ≤� ⊕�∈∧ ��. Since 
⊕�∈∧ �� is a direct summand of � we have that � 
is an ���-extending module. 

3.7. Corollary 

If � is a direct sum of ��-extending (e.g., 
extending) modules, then � is ���-extending. 

Proof. Immediate by Theorem 3.6. 

Applying Theorem 3.6 to Abelian groups (i.e., ℤ-
modules) we obtain the following corollary. 

3.8. Corollary 

Let � be a ℤ-module. If � satisfies any of the 
following conditions, then � is an ���-extending 
ℤ-module. 

(i) � is finitely generated 

(ii) � is of bounded order (i.e., �� = 0 for 
some positive integer �) 

(iii) � is divisible. 

Proof. (i) and (ii) � is a direct sum of uniform 
submodules. Then the result follows from 
Theorem 3.6.  

(iii) � is extending and hence ��-extending. Thus 
� is ���-extending.  

Observe that an easy modification yields that the 
Corollary 3.8 above remains true when the ring of 
integers replaced with a Dedekind domain. 

One more application of the Theorem 3.6 gives an 
affirmative answer for the direct summand 
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problem of ���-extending Abelian groups which 
as follows. 

3.9. Theorem 

Let � be a direct sum of uniform ℤ-modules. Then 
any direct summand of � is an ���-extending 
module. 

Proof. Let � be a direct summand of �. Then � is 
also a direct sum of uniform modules by [9, 
Theorem 4.45] (see, also [10]). Now, Theorem 3.6 
gives that � is an ���-extending module. 

Our next objective is to carry over ���-extending 
property to full matrix ring. First of all, we give an 
example of ���-extending ring which shows that 
���-extending property is not left-right 
symmetric. 

3.10. Example 

Let � = �
ℤ� ℤ�

0 ℤ
� . Then the ring � is right ���-

extending, but it is not left ���-extending. 

Proof. Note that � is right ��-extending by [2, 
Example 2.3.14]. Hence � is right ���-extending 

ring. On the other hand, let � = �
0 ℤ�

0 0
� ⊴��  ��. 

It is easy to check that � is not essential in a direct 
summand of  ��. It follows that � is not left ���-
extending ring. 

3.11. Theorem 

Let � be a right ���-extending ring. Then ��(�) 
is a right ���-extending ring for all positive 
integer �. 

Proof. Let � ⊴�� ��(�). Then it is easy to see that 
� = ��(�) for some � ⊴�� �. As � is right ���-
extending, there exists �� = � ∈ � such that 
�� ≤� ���. This yields that as a right ideal of 
��(�), � is essential in a direct (��)��(�) of 
��(�), where � is the identity matrix of ��(�). 
Thus ��(�) is right ���-extending, as required. 
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