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Abstract 

In this paper, we investigate a brief survey on the three-sphere motion by using the quaternion interpolasyon SLERP. Firstly, we 

consider the moving and fixed quaternion frames for three-sphere motion onto a unit quaternionic sphere. Then we calculate the 

equations of the velocity and we investigate some properties of the canonical relative system. Finaly we give some examples for 

these equations. 
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1. INTRODUCTION 
 

Quaternions are found by Sir William Rowan Hamilton in the midnineteenth century to generalize complex numbers in some way 

that would be applicable to three-dimensional 3D space, (Hamilton,1853). The quaternion has a scalar component and three 

imaginary components. If a quaternion given by 0( , )q q= q  obeys the constraint . 1q q = , the locus of these points is the 

hypersphere S3. The most important property of quaternions is that every unit quaternion represents a rotation in three dimensional 

space. Since the rotation matrix is a very complex structure, the simple structure of the quaternions ensures that we can make the 

three-dimensional rotation movement easier. 

The spherical motion was previously studied by Garnier in (Garnier,1956) and obtained spherical Euler-Savary equation by H. 

Müller  in (Müller,1963). He calculated the motion velocities and pole curves of these motions in Euclidean space. Thus, the 

quaternions have been firstly investigated  for the spherical kinematic by Blaschke in 1960, (Blaschke,1960).  Some basic 

preliminaries of theorical kinematics, three-spheres and quaternions can be found in [(Hacısalihoğlu,1983), (Hacısalihoğlu,1983), 

(Hanson,2006)]. In the mechanical and robotic engineering, spherical motion is useful for every motion of the spherical mechanism. 

We can see some papers related with applications of spherical motion for spherical mechanisms in [(Larochelle,2000), (Liu et al., 

2003), (Yang et al., 1964), (Alizade et al., 2005), (Kuşak et al., 2011),(Shoemake , 1985)]. Although the quaternions have been 

used in some scientific areas as physics, kinematics,  mechanics, robotics and etc., nowadays the quaternions have been began to 

use commonly in the computer graphics and computer game animation. The methods of quaternion interpolations were defined to 

the graphics community originally by Shomake in the papers [(Shoemake , 1985), (Shoemake , 1987)]. By analogy to the acronym 

“LERP” that might be used for ordinary linear interpolation, Shomake coined the term “SLERP” for “spherical linear 

interpolation”, a terminology that remains in common usage. The SLERP can be transformed to provide close analogs of the 

anchor-point and tangent-direction properties of the conventional families of Euclidean splines. It is reasonably straightforward to 

develop uniform quaternion spline families in an elegant practical form, and he discussed quaternion splines thoroughly. The 

fundamental concepts of quaternions, methods of quaternion visualization, applications of SLERP etc., in (Hanson , 2006).  We 

have seen that the motion of the quaternion spheres is not examined before with SLERP. In our study, quaternion sphere motion 

was investigated with SLERPler for the first time.  In the preliminary section, some basic concepts about the three-sphere, the 

quaternion algebra, the SLERP and the matrix representation of the rotation are given. In the  main results, the orthonormal 

quaternion frames 0 1 2 3{O,e ,e ,e ,e }  and 0 1 2 3{O,e' ,e' ,e' ,e' }are taken to represent moving three-sphere S and fixed three sphere 

S   in the four dimensional space, respectively. Then another orthonormal quaternion frame 0 1 2 3{ , , , , }O q q q q  is taken, and this 

quaternion frame is called relative orthonormal quaternion frame. Furthermore, we calculate the equations of the motion velocities 

of one parameter three-spherical motions. Also, some relations about pole curves are obtained by using SLERP. At the end of the 

study, we give some examples about the concept.  

    

2.PRELIMINARIES 

2.1.Three-sphere with The Quaternion Notation 

Three-sphere which consists of the set of points equidistant from a fixed central point in four dimensional Euclidean space is a 

higher-dimensional of a sphere. In coordinates, a three-sphere with center 0 1 2 3( , , , )C C C C and radius r is the set of all points 

0 1 2 3( , , , )x x x x  in real, four dimensional space 
4

 such that 

3
2 2

0

( )i i

i

x C r
=

− = . 

The three-sphere centered at the origin with 1r =   

3 4 2 2 2 2

0 1 2 3 0 1 2 3{( , , , ) : 1}S x x x x x x x x=  + + + =  

is defined the unit three sphere. The three-sphere is also represented by quaternion set . Therefore the unit three-sphere is given 

by using the quaternions as 
3 { : 1}S q q=  = ,  (Hanson,2006). 

 

2.2.Quaternions Algebra 

Consider the quaternion variable 0 0 1 1 2 2 3 3. . . .q q e q e q e q e= + + +  , where 0 1 2, ,q q q  and 3q are real-valued scalars, and 

here 0 1 2 3, , ,e e e e  are orthogonal unit vectors and imaginary units, such that 
2 2 2 2

0 1 2 31, 1e e e e= = = = − , 1 2 2 1 3e e e e e= − = , 

3 2 2 3 1e e e e e= − = , 3 1 1 3 2.e e e e e= − =  It is clear that  is an associative, but not commutative algebra. The quaternion can also 

be denoted in terms of its scalar part 
qS  and vector part 

qV , such that 
q qq S= +V . If 0 0 1 1 2 2 3 3. . . .q q e q e q e q e= + + +  and 
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0 0 1 1 2 2 3 3. . . .p p e p e p e p e= + + +  are quaternions, the addition, subtraction  and multiplication of the quaternions are defined 

by 

( ) ( )q p q pq p S S+ = + + +V V                           

                       . , .q p q p q p p q q pq p S S S S= −  + + + V V V V V V                            (1) 

Also, the multiplication of quaternions in Eq (1) can be written in matrix form  as 

0 0 1 1 2 2 3 3 0 1 2 3 0

1 0 0 1 2 3 3 2 1 0 3 2 1

2 0 0 2 3 1 1 3 2 3 0 1 2

3 0 0 3 1 2 2 1 3 2 1 0 3

.

p q p q p q p q p p p p q

p q p q p q p q p p p p q
p q

p q p q p q p q p p p p q

p q p q p q p q p p p p q

− − − − − −     
     

+ + − −
     = =
     + + − −
     

+ + − −     

. 

Here, specially if 0qS =  and 0pS = , the quaternion is called “pure quaternion”. The multiplication of  pure quaternions are 

calculated by 

                                     . ,q p q pq p = −  + V V V V .                                                (2) 

The conjugate q  of the quaternion q is 
0 0 1 1 2 2 3 3. . . . q qq q e q e q e q e S= − − − = −V . The norm of the quaternion q  is defined 

by 
2 2 2 2

0 1 2 3.qN q q q q q q= = + + + . If the norm is unit, i.e. 1qN = , then the quaternion is defined “unit quaternion” . The 

unit quaternion q  is denoted by the formula ˆ(cos , sin )
2 2

q
 

= n , too. This notation shows that a unit quaternion corresponds 

to the standart rotation matrix   

2

1 1 2 3 1 3 2

2

2 1 3 2 2 3 1

2

3 1 2 3 2 1 3

cos (1 cos ) (1 cos ) sin (1 cos ) sin

ˆ( , ) (1 cos ) sin cos (1 cos ) (1 cos ) sin .

(1 cos ) sin (1 cos ) sin cos (1 cos )

n n n n n n n

n n n n n n n

n n n n n n n

     

      

     

 + − − − − +
 

= − + + − − − 
 − − − + + − 

R n  

by an angle   about the direction 1 2 3
ˆ ( , , )n n n=n . Furthermore, we can write the above rotation matrix with the quaternion 

components as 

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 1 2 3 0 1 0 1 2 3

2 2 2 2

( ) 2 2 2 2 .

2 2 2 2

q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − − +
 

= + − + − − 
 − + − − + 

R  

where  0 1 2 3, , ,q q q q  , [(Hamilton, 1853), (Blaschke,1960), (Hacısalihoğlu,1983), (Hanson,2006)]. One of the interpolation 

methods with using the quaternion is spherical linear interpolation (SLERP) defined by   

                         
sin((1 ) ) sin( )

( ) ( , , )
sin sin

A B A B

t t
q t SLERP q q t q q

 

 

−
= = + ,                           (3) 

where Aq  and Bq  are two quaternionic points  on three-sphere. 

  If specially the starting and ending quaternions are taken as (1,0,0,0)Aq =  and (cos , sin )
2 2

Bq
 

= n , then the interpolation 

is defined by 

( ) ( , , ) cos , sin
2 2

A B

t t
q t SLERP q q t

     
= =     

    
n ,                                (4) 

where cos cos
2


 =  , (Hanson,2006). 
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3.MAIN RESULTS 

3.1.The Three-spherical Motions By Quaternions  

Let us think of the spherical movement that the concentric moving K  sphere and the constant 'K  sphere has formulated according 

to each other. Quaternion frame representations belonging to the moving K  sphere and the constant 'K  sphere, both owning a 

given O center point, would be 0 1 2 3{ , , , , }O e e e e  and 0 1 2 3{ , ' , ' , ' , ' }O e e e e  respectively. Properties of the quaternion bases for 

the 0 1 2 3{ , , , , }O e e e e  system are 
2 2 2 2

0 1 2 31, 1e e e e= = = = − ; 1 2 3e e e= , 3 2 1e e e= , 3 1 2e e e= . Properties of the quaternion 

bases for the 0 1 2 3{ , ' , ' , ' , ' }O e e e e system are 
2

0( ) 1,e =  
2 2 2

1 2 3( ' ) ( ' ) ( ' ) 1e e e= = = −  and 1 2 3' ' 'e e e= , 3 2 1' ' 'e e e= , 

3 1 2' ' 'e e e= . Alternatively, we can utilize the quaternion multiplications to form the basis vectors. We can obtain the basis 

quaternions by rotating the , ,x y z  axes of coordinate via 
0 1 2 3( , , , ) cos sin

2 2
q q q q q

 
= = +n  and 

0 1 2 3

ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ( , , , ) cos sin

2 2
q q q q q

 
= = +n  quaternions. In the present case, the quaternion frames of the moving K  sphere and 

the constant 'K  sphere would be as;     

1 1

0 0

1 1

1 1

1 1

2 2

1 1

3 3

ˆ ˆ(1, ) ' (1, )

ˆ ˆ(0, ) ' (0, )

ˆ ˆ(0, ) ' (0, )

ˆ ˆ(0, ) ' (0, ) .

e q q e q q

e q q e q q

e q q and e q q

e q q e q q

− −

− −

− −

− −

= =

= =

= =

= =

0 0

x x

y y

z z

                         

Consecutively, the matrix that is formed by the  0 1 2 3e e e e  quaternionic bases belonging to the moving K  sphere would be as;    

2 2 2 2

0 1 2 3

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 1 2 3 0 1 0 1 2 3

0 0 0

0 2 2 2 2
.

0 2 2 2 2

0 2 2 2 2

q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

 + + +
 

+ − − − + 
 + − + − −
 

− + − − +  

                (5) 

The matrix that is formed by the  0 1 2 3e e e e     quaternionic bases belonging to the constant 'K  sphere would be calculated as; 

2 2 2 2

0 1 2 3

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 1 2 3 0 1 0 1 2 3

ˆ ˆ ˆ ˆ 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 2 2 2 2
.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 2 2 2 2

q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

 + + +
 

+ − − − + 
 + − + − −
 

− + − − +  

 

          Now let us approach the third 0 1 2 3{ , , , , }O q q q q  quaternionic frame to examine the spherical motion. Here, we would get 

the conditions 
2 2 2

0 1 2 31, 1q q q q= = = = − , 1 2 3q q q= , 3 2 1q q q= , 3 1 2q q q=  from the quaternion properties. We can also 

form this quaternion via; 

1 1

0 1

1 1

2 3

(1, ) , (0, )

(0, ) , (0, ) .

q q q q q q

q q q q q q

− −

− −

= =

= =

0 x

y z
 

Matrix of the third quaternion frame 0 1 2 3[ ]q q q q  would be represented as;  

2 2 2 2

0 1 2 3

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 1 2 3 0 1 0 1 2 3

0 0 0

0 2 2 2 2
.

0 2 2 2 2

0 2 2 2 2

q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

 + + +
 

+ − − − + 
 + − + − −
 

− + − − +  

 

Each three quaternion frame system would be in the same rotation direction, 
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1 1 1 1 1 1

0 0 0 1 1 1

1 1 1 1 1 1

2 2 2 3 3 3

ˆ ˆ ˆ ˆ(1, ) , (0, )

ˆ ˆ ˆ ˆ(0, ) , (0, ) .

q e q q e q q e q q e q q e q q e q

q e q q e q q e q q e q q e q q e q

− − − − − −

− − − − − −

= = = = = =

= = = = = =

0 x

y z
 

As seen from the above equations, it is possible to transfer from one system to another using the rotations around the O point. Thus, 

we would obtain the following linear transformations: 

3 3

0 0

, ' ' , 0,1,2,3j jk k j jk k

k k

q a e q a e j
= =

= = =                  (6) 

Here, the || ||jka , || ' ||jka  matrices are idiosyncratic and orthogonal, they respectively represent a transfer from the frames of 

axis that were established in K  and 'K  to the attribution system. If the coefficients 
jka , ' jka  are the proper functions of a t  

real parameter, we would obtain a “one-parameter spherical motion” of K  as opposed to 'K . Here, we realize that the coefficients 

jka , ' jka  are not only constant, but they are also differentiable to any desired order. In this regard, the described motion is named 

briefly as the “one-parameter ID  rotational motion” around O.     

The changes of the 
jq  quaternions in the K  and 'K  spherical motions are respectively represented in the following equations; 

3

0

j k jk

k

dq e da
=

=      and       

3

0

' ' 'j k jk

k

d q e da
=

= .                                (7) 

Here the representations 
jkda , ' jkda  are full differentials based on one or two variables, and the quaternions 𝑒𝑘  and 𝑒𝑘

′  are 

constant. In this case, the differentials 
jdq  and ' jd q  can again be represented via quaternions 0 1 2 3, , ,q q q q . To do this, equation 

(6) must be solved according to 𝑒𝑘  and 𝑒𝑘
′ , the obtained values must then be properly put into equation (7). On the other hand, 

 = ω  is the angular velocity where 1 2 3( , , )  =ω  is the direction of angular velocity. The polar representation of the 

quaternion  is ( ) cos( ), sin( )
2 2

t t
q t

  
=  
 

ω . Thus the differential equation of the polar representation can be shown by the 

following equation; 

1
( ) (0, )

2
dq t q= ω . 

The following equations by using the differential of equation 
1 (1,0)qq− =  are obtained  

1

1 1 1 1 1 1

1
( ) (0, )

2

1
( ) ( ) (0, ) ,

2

dq q q dq q

dq dq q q q dq q q

−

− − − − − −

= =

= = − = −

ω

ω

 

Here, we can see that the calculation will be made using the equations given above; 

0 02( )q dq qdq q dq= − − ω , 

see in (Hanson,2006). If we are to use the differential equation (5) of the quaternion mentioned above to get the differential of the 

column elements of the matrix, we would obtain the following; 

 

1 1

1

1 1

1

1

(0, ) (0, )

1 1
(0, ) (0, ) (0, ) (0, )

2 2

1
(0, )(0, ) (0, )(0, )

2

(0, ) .

de dq q q dq

q q q q

q q

q q

− −

− −

−

−

= +

   
= + −   
   

= −

= 

x x

ω x x ω

ω x x ω

ω x

 

Similarly, calculations for other bases give the following differentials; 
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1 1

0 1

1 1

2 3

(0, ) , (0, )

(0, ) , (0, ) .

de q q de q q

de q q de q q

− −

− −

=  = 

=  = 

ω 0 ω x

ω y ω z
 

The differentiation matrix of the bases , ( 0,1,2,3)iq i =  of the q  unit quaternion in the K  sphere, and the corresponding 

matrix is calculated by the following;  

0 01 2 3

1 11 3 2

2 3 12 2

3 2 13 3

0

01

02

0

dq q

dq q

dq q

dq q

  

  

  

  

− − −    
    

−    =
    −
    

−    

 .                                       (8) 

By a similar method, the following differential equation is used to obtain the changes of the bases in the 'K  sphere; 

0 01 2 3

1 11 3 2

2 3 12 2

3 2 13 3

' 0

' 01

0' 2

0'

d q q

d q q

d q q

d q q

  

  

  

  

  − − −    
      −    =
      −
    

  −    

 .                                      (9) 

The model of the three-spherical motion by using quaternions created above is structured according to the informations in 

[(Blaschke,1960), (Hanson,2006)]. 

 

3.2.Velocities in the Motion: 

Let us assume any quaternionic point, whose coordinates are 0 1 2 3, , ,x x x x  according to the attribution system, is X . The X point 

denoted by 0 0 1 1 2 2 3 3( )t x q x q x q x q= + + +x  is a quaternionic point on the three sphere. If the X  point is specifically on the 

unit sphere, then it would have the relation 
2 2 2 2 2

0 1 2 3 1x x x x= + + + =x . Unlike the K  sphere, we will regard the velocity of 

the X  point as relative velocity and it is obtained by r

d
v

dt
=

x
. So, the relative velocity vector K  sphere is calculated by 

1 1 2 2 3 3 0 0 0 1 2 3 3 2 1 1

0 2 1 3 3 1 2 2 0 3 1 2 2 1 3 3

( ) ( )1

( ) ( )2

x x x dx q x x x dx q
d

x x x dx q x x x dx q

     

     

+ + + + − − + + 
=  

+ − + − + + − − + + 
x .             (10) 

If 0=rv  or 0d =x , both are the same thing nonetheless; the constancy condition of the X  point in the K  sphere is represented 

by the following equations; 

0 1 2 3 1 0 2 3

2 0 1 3 3 0 1 2

, ,

, .

x y z x z y

y z x z y x

dx x x x dx x x x

dx x x x dx x x x

     

     

= − − − = − +

= − + = + −
                               (11) 

Similarly, the change in the X  point according to the K  sphere is  

1 1 2 2 3 3 0 0 0 1 2 3 3 2 1 1

0 2 1 3 3 1 2 2 0 3 1 2 2 1 3 3

( ) ( )1

( ) ( )2

x x x dx q x x x dx q
d

x x x dx q x x x dx q

     

     

     + + + + − − + + 
 =       + − + − + + − − + + 
x .                (12) 

What we have calculated here is the “absolute velocity vector”, which is the velocity of the X point in the K  sphere and is 

represented by 
d

dt


=a

x
v . Given that  0=av  or 0d =x , the X point in the K  sphere is constant. The constancy condition 

of the X point in the K  sphere can be shown by the following equations; 

0 1 1 2 2 3 3 1 0 1 2 3 3 2

2 0 2 1 3 3 1 3 0 3 1 2 2 1

, ,

, .

dx x x x dx x x x

dx x x x dx x x x

     

     

     = − − − = − +

     = − + = + −
                          (13) 
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If the X  point is constant in the K  sphere, its velocity according to K  is named as the “dragging velocity” and given that 

fd d x dx= −x , we will use 
fd

dt
=

f

x
v . The dragging velocity vector is calculated by 

1 1 2 2 3 3 0 0 1 2 3 3 2 1

0 2 1 3 3 1 2 0 3 1 2 2 1 3

( ) ( )1
,

( ) ( )2
f

x x x q x x x q
d d d

x x x q x x x q

     

     

+ + + − − + 
= − =  

+ − + − + − − − 
x x x                (14) 

where the vector i i i  = −  is called the Pfaf vector.  

Now, if the quaternionic point X is taken with a SLERP in Eq.(3) , Eq.(10) and Eq.(11), then the constancy condition of the X  

point in the K  sphere is obtained by 

( ) ( )

( ) ( )

( ) ( )

0 1 1 2 2 3 3 1 1 2 2 3 3

1 0 1 2 2 3 3 0 1 2 3 3 2

2 0 2 1 3 3 1 0 2 1 3 3 1

sin((1 ) ) sin( )
,

sin sin

sin((1 ) ) sin( )
,

sin sin

sin((1 ) ) sin( )
,

sin sin

A A A B B B

A A A B B B

A A A B B B

t t
dx x x x x x x

t t
dx x x x x x x

t t
dx x x x x x x

d

 
     

 

 
     

 

 
     

 

−
= − + + − + +

−
= − + + − +

−
= − + + − +

( ) ( )3 0 3 1 2 2 1 0 3 1 2 2 1

sin((1 ) ) sin( )
,

sin sin
A A A B B B

t t
x x x x x x x

 
     

 

−
= + − + + −

 

 where 0 0 1 1 2 2 3 3A A A A Aq x q x q x q x q= + + +  and 0 0 1 1 2 2 3 3B B B B Bq x q x q x q x q= + + +  are starting and ending quaternionic 

points on three-sphere. Similarly, the constancy condition of the X point in the K  sphere is 

( ) ( )

( ) ( )

( )

0 1 1 2 2 3 3 1 1 2 2 3 3

1 0 1 2 3 3 2 0 1 2 3 3 2

2 0 2 1 3 3 1 0 2 1 3

sin((1 ) ) sin( )
,

sin sin

sin((1 ) ) sin( )
,

sin sin

sin((1 ) )

sin

A A A B B B

A A A B B B

A A A B B

t t
dx x x x x x x

t t
dx x x x x x x

t
dx x x x x x x

 
     

 

 
     

 


    



−
     = − + + − + +

−
     = − + + − +

−
    = − + + − +( )

( ) ( )

3 1

3 0 3 1 2 2 1 0 3 1 2 2 1

sin( )
,

sin

sin((1 ) ) sin( )
.

sin sin

B

A A A B B B

t

t t
dx x x x x x x






 
     

 



−
     = + − + + −

 

If the starting and ending points of the SLERP are sellected with (1,0,0,0)Aq =  and (cos , sin )
2 2

Bq
 

= n  where 

cos cos
2


 = , then the point X on three-sphere is formed by ( ) cos , sin

2 2

t t
X t

     
=     

    
n  from Eq.(4). Hence using the 

Eq. (10), the relative velocity vector is found by  

0 1 1 2 2 3 3 0 1 1 2 3 3 2 1

2 2 1 3 3 1 2 3 3 1 2 2 1 3

sin sin sin cos sin sin
2 2 2 2 2 2

,

cos sin sin cos sin sin
2 2 2 2 2 2

t t t t t t
q n n n dx q n n dx

d
t t t t t t

q n n dx q n n dx

     
     

     
     

    
+ + + + − − + +    

    =
    
+ − + − + + − − + +    

    

x  

and from Eq.(11), the constancy condition of the X  point in the K  sphere is obtained by 

( ) ( )

( ) ( )

0 1 1 2 2 3 3 1 1 2 3 3 2

2 2 3 1 1 3 3 3 1 2 2 1

sin , cos sin ,
2 2 2

cos sin , cos sin ,
2 2 2 2

t t t
dx n n n dx n n

t t t t
dx n n dx n n

  
     

   
     

= − + + = + −

= + − = + −
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Furthermore, from Eq.(12) the relative velocity vector in K  sphere is  

0 1 1 2 2 3 3 0 1 1 2 3 3 2 1

2 2 1 3 3 1 2 3 3 1 2 2 1 3

sin sin sin cos sin sin
2 2 2 2 2 2

cos sin sin cos sin sin
2 2 2 2 2 2

t t t t t t
q n n n dx q n n dx

d
t t t t t t

q n n dx q n n dx

     
     

     
     

    
     + + + + − − + +   

    =
    

     + − + − + + − − + +    
    

x .






 

 Thus, using  Eq.(13) the constancy condition of the X point in the K  sphere is calculated by 

( ) ( )

( ) ( )

0 1 1 2 2 3 3 1 1 2 3 3 2

2 2 3 1 1 3 3 3 1 2 2 1

sin , cos sin ,
2 2 2

cos sin , cos sin .
2 2 2 2

t t t
dx n n n dx n n

t t t t
dx n n dx n n

  
     

   
     

     = − + + = + −

     = + − = + −

 

      Similarly, the dragging velocity vectors should be obtained by the Eq.(14). In a one-parameter 
ID  rotation motion, at the 

moment of t ; an infinite-small rotating motion occurs for each X  point of the moving system. The Pfaf vector ψ  in this rotating 

motion plays the role of the darboux rotation vector. If 
2 1=p , then 

2 2 2

1 2 3.   = + +ψ p  and 

2 2 2

1 2 3| |    =  = + + . The P  point shown on the unit sphere via OP = p  is the instantenous rotation pole. So, p  

as the instantenous rotation pole is characterized with the drift velocity being zero. Both the P  rotation pole and its P̂  

counterpoint are constant at the moment of 0 1( , )t t t . So, the quaternion interpolation of the pole curves and its representation 

during the spherical motion  can be thought to be formulated via the following big circles of the sphere that intersects with the P  

and P̂  points 

(1 ) sin
ˆ ˆ( , , ) sin

sin sin

t t
SLERP t

 

 

−
= +p p p p . 

 

3.3.For The Canonical Attribution System: 

 

Let us assume as a specific choice that (0, ) (0, )= 3p q and p  is perpendicular to 1q  and 2q  during the spherical motion. Then 

the following conditions must be enabled;  

1 2. 0, . 0. = = = =1 2ψq ψ q  

1 1 2 2,    = =  as owing to , 1,2,3i i i i  = − = . With this specific choice, the infinite-small rotation angle of the 

instantenous rotation is simplified as 3 = . So, the instantenous rotation vector is 3. ( )z z  = = −3 3ψ q q  under the 

condition that 3 0  . To identify the attribution system with a different method, we will spin the  1q  and 2q  elements of the 

quaternionic frame around 3q  inasmuch as  . By benefitting from the easy use of quaternions, we will show this rotation process 

with the quaternion cos sin
2 2

q
 

= + 3q . Then, we can represent the elements of the quaternionic frame using the following 

relations; 

* 1 * 1

0 1

* 1 * 1

2 3

(0, ) .(0, ). , (0, ) .(0, ).

(0, ) .(0, ). , (0, ) .(0, ).

q q q q q q

q q q q q q

− −

− −

= = = =

= = = =

* *

0 0 1 1

* *

2 2 3 3

q q q q

q q q q
 

Here, the rotated quaternion frame is represented via 
* * * *

0 1 2 3{ 1, , , }q q q q= . As a result, when 1 0 =  in the matrix equations (8) 

and (9), the system of the differential equations belonging to the attribution system are represented according to K  with the 

following equation;  
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0 02 3

1 13 2

2 32 2

3 23 3

0 0

0 01

0 02

0 0

dq q

dq q

dq q

dq q

 

 

 

 

− −    
    

−    =
    −
    

    

, 

and according to 'K , with the following equation;  

0 02 3

1 13 2

2 32 2

3 23 3

' 0 0

' 0 01

0 0' 2

0 0'

d q q

d q q

d q q

d q q

 

 

 

 

 − −    
     −    =
     −
    

     

. 

A ( )P  curve that is known as a moving pole curve is drawn with the one-parameter 
IHD  motion on the moving K  sphere in the 

canonical attribution system. The P  rotation pole is in motion and its possessed velocity vectors are the same at every moment 

when the ( )P  and ( )P  pole curves are drawn in a respective manner. The spherical ( )P  moving pole curve of K  rolls without 

slipping on the ( )P  constant pole curve of K  during a one-parameter spherical ID  motion.   

 

3.4. A Numeric Example 

First, we obtain the basis system of two intertwined sphere motions, after calculating the spherical bases of the K  and K  spheres 

that were established with the help of quaternion rotations of the x,y,z coordinate axes that we already know. To rotate the x, y, z 

axes for the K  sphere around the axis (1,0,0)=n  inasmuch as the angle 
6


, the angle 

3


 =  is used; thereby we find the 

quaternion that will form the 0 1 2 3{ , , , , }O e e e e  basis system as;   

                                          

cos sin cos (1,0,0)sin
2 2 6 6

3 1 3 1
(1,0,0). ( , ,0,0)

2 2 2 2

q
   

= + = +

= + =

n

 

If so, then by calculating the quaternion multiplications of the 0 1 2 3{ , , , }e e e e  bases with the help of the Mathematica program’s 

“Quaternion package”, we find the bases as; 

 

Here, we can see that the quaternionic bases provide the equations 
2 2 2

1 2 3 1e e e= = = − ; 1 2 3e e e= , 3 2 1e e e= , 3 1 2e e e= . Now, 

off to calculate the second 0 1 2 3{ , ' , ' , ' , ' }O e e e e  quaternionic frame; to rotate the x,y,z axes for the K  sphere around the axis 

ˆ (1,0,0)=n  inasmuch as the angle 
2

 , the angle ̂ =  is used; thereby we find the quaternion that will form the 

0 1 2 3{ , ' , ' , ' , ' }O e e e e quaternionic basis system as;   

1

0

1

1

1

2

1

3

3 1 3 1
(1, ) ( , ,0,0)(1,0,0,0)( , ,0,0) (1,0,0,0)

2 2 2 2

3 1 3 1
(1, ) ( , ,0,0)(0,1,0,0)( , ,0,0) (0,1,0,0)

2 2 2 2

3 1 3 1 1 3
(1, ) ( , ,0,0)(0,0,1,0)( , ,0,0) (0,0, , )

2 2 2 2 2 2

3 1
(1, ) ( , ,0,0)(

2 2

e q q

e q q

e q q

e q q

−

−

−

−

= = − =

= = − =

= = − =

= =

0

x

y

z
3 1 3 1

0,0,0,1)( , ,0,0) (0,0, , )
2 2 2 2

− = −
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ˆ ˆ
ˆˆ cos sin cos (1,0,0)sin

2 2 2 2

0 (1,0,0).1 (0,1,0,0)

q
   

= + = +

= + =

n
 

Then, by calculating the quaternion multiplications of the 0 1 2 3{ , , , }e e e e  bases with the help of the Mathematica program’s 

“Quaternion package”, we find said bases as; 

1

0

1

1

1

2

1

3

ˆ ˆ(1, ) (0,1,0,0)(1,0,0,0)(0, 1,0,0) (1,0,0,0)

ˆ ˆ(1, ) (0,1,0,0)(0,1,0,0)(0, 1,0,0) (0,1,0,0)

ˆ ˆ(1, ) (0,1,0,0)(0,0,1,0)(0, 1,0,0) (0,0, 1,0)

ˆ ˆ(1, ) (0,1,0,0)(0,0,0,1)(0,

e q q

e q q

e q q

e q q

−

−

−

−

 = = − =

 = = − =

 = = − = −

 = =

0

x

y

z 1,0,0) (0,0,0, 1)− = −

 

Here, we can see that the quaternionic bases provide the conditions 
2 2 2

1 2 3' ' ' 1e e e= = = −  and 1 2 3' ' 'e e e= , 3 2 1' ' 'e e e= , 

3 1 2' ' 'e e e= . Now, we will form the third 0 1 2 3{ , , , , }O q q q q  quaternionic root, in order to examine the spherical motion. To 

rotate the x, y, z axes around the axis (1,0,0)=n  inasmuch as the angle 0 , the angle 0 =  is used; thereby we find the 

quaternion  

ˆ ˆ
ˆˆ cos sin cos0 (1,0,0)sin 0

2 2

1 (1,0,0).0 (1,0,0,0)

q
 

= + = +

= + =

n
 

that will form the 0 1 2 3{ , , , , }O q q q q  quaternionic basis system as; 

1

0

1

1

1

2

1

3

(1, ) (1,0,0,0)(1,0,0,0)(1,0,0,0) (1,0,0,0)

(1, ) (1,0,0,0)(0,1,0,0)(1,0,0,0) (0,1,0,0)

(1, ) (1,0,0,0)(0,0,1,0)(1,0,0,0) (0,0,1,0)

(1, ) (1,0,0,0)(0,0,0,1)(1,0,0,0) (

q q q

q q q

q q q

q q q

−

−

−

−

= = =

= = =

= = =

= = =

0

x

y

z 0,0,0,1)

 

Here, we can see that the conditions 
2 2 2

0 1 2 31, 1q q q q= = = = − , 1 2 3q q q= , 3 2 1q q q= , 3 1 2q q q=  are enabled using the 

properties of quaternion. Then, the matrices of the tribasic system for the sphere motion are as follows; 

0 1 2 3

1 0 0 0

0 1 0 0
[ , , , ]

0 0 1 2 3 2

0 0 3 2 1 2

e e e e

 
 
 

=
 −
 
  

,
0 1 2 3

1 0 0 0

0 1 0 0
[ , , , ]

0 0 1 0

0 0 0 1

e e e e

 
 
     =
 −
 

− 

0 1 2 3

1 0 0 0

0 1 0 0
[ , , , ]

0 0 1 0

0 0 0 1

q q q q

 
 
 =
 
 
 

 

Now, let us specifically choose an X  point on the unit sphere;   

( ) ( , , ) cos sin
2 2

A B

t t
X t SLERP q q t

  
= = + 

 
n  . 

Here, if  the direction vector and angle are chosen as (1,0,0)=n and 
3


 = , then ( ) cos sin

6 6

t t
X t

  
= + 
 

n . The 

angular velocity vector of the spherical motion is found by 

0 02.( ) ( ,0,0)
3

q dq qdq q dq


= − −  =ω . Then, the relative velocity vector of the motion at each t moment is 

( ) ( )0 0 1 1 2 2 3 3sin cos .
3 6 6

t t
d q dx q dx q dx q dx

      
= + + − + + +    

    
x  
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Constancy conditions of the X  point chosen for r =v 0   are 

0 1 2 3sin , cos , 0, 0.
3 6 6

t t
dx dx dx dx

  
= − = = =  

 Other velocity vectors formed during spherical motion can be calculated in a similar manner. 
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