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The in�uence of partially τ -quasinormal subgroups
on the structure of �nite groups

Changwen Li ∗, Shouhong Qiao † and Jianhong Huang‡

Abstract

A subgroup H of a group G is said to be τ -quasinormal in G if H
permutes with every Sylow subgroup Q of G such that (|H|, |Q|) = 1
and (|H|, |QG|) 6= 1; H is called partially τ -quasinormal in G if G has a
normal subgroup T such that HT is S-quasinormal in G and H ∩ T ≤
HτG, where HτG is the subgroup generated by all those subgroups of
H which are τ -quasinormal in G. In this paper, we investigate the
in�uence of some partially τ -quasinormal subgroups on the structure
of �nite group. Some new characterizations of p-supersoluble and p-
nilpotent groups are obtained.
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1. Introduction

All groups that we consider will be �nite. We use standard notions and notation,
as in [2] and [4]. G always denotes a �nite group, |G| is the order of G and p denotes
a prime. The generalized Fitting subgroup F ∗(G) of G is the unique maximal normal
quasinilpotent subgroup of G (see [5, X, 13]). The generalized p-Fitting subgroup F ∗p (G)
is de�ned to be as the normal subgroup of G such that F ∗(G/Op′(G)) = F ∗p (G/Op′(G))
(see [1]).

A subgroup H of G is said to be S-quasinormal in G if H permutes with every Sylow
subgroup of G (see [6]). As a generalization of S-quasinormality, a subgroup H of G is
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said to be τ -quasinormal in G if H permutes with every Sylow subgroup Q of G such
that (|H|, |Q|) = 1 and (|H|, |QG|) 6= 1 (see [9]). On the other hand, Wang extended
normality as follows: a subgroup H of G is said to be c-normal in G if there exists a
normal subgroup T of G such that HT = G and H ∩ T ≤ HG, where HG is the maximal
normal subgroup of G contained in H (see [12]). In order to unify the above mentioned
subgroups, the authors in [8] introduced the following concept:

1.1. De�nition. A subgroup H of G is partially τ -quasinormal in G if there exists a
normal subgroup T of G such that HT is S-quasinormal in G and H ∩ T ≤ HτG, where
HτG is the subgroup generated by all those subgroups of H which are τ -quasinormal in
G.

G is said to be p-nilpotent if it has a normal p-complement and G is said to be p-
supersoluble if every p-chief factor of G is cyclic. It is easy to see that if G is p-nilpotent
then G is also p-supersoluble. The aim of this paper is to take the above mentioned
studies further. More precisely, we investigate the p-supersolubility and p-nilpotency of
�nite groups using some partially τ -quasinormal subgroups.

2. Preliminaries

2.1. Lemma ([8, Lemma 2.3]). Let H be a subgroup of G. Then
(1) If H is partially τ -quasinormal in G and H ≤ K ≤ G, then H is partially τ -

quasinormal in K.
(2) Suppose that N E G and N ≤ H. If H is a p-group and H is partially τ -

quasinormal in G, then H/N is partially τ -quasinormal in G/N .
(3) Suppose that H is a p-subgroup of G and N is a normal p′-subgroup of G. If H

is partially τ -quasinormal in G, then HN/N is partially τ -quasinormal in G/N .
(4) If H is partially τ -quasinormal in G and H ≤ K E G, then there exists T E G

such that HT is S-quasinormal in G, H ∩ T ≤ HτG and HT ≤ K.

2.2. Lemma ([8, Theorem 1.4]). Let P be a Sylow p-subgroup of G, where p is a prime
divisor of |G| with (|G|, p − 1) = 1. Then G is p-nilpotent if and only if every maximal
subgroup of P is partially τ -quasinormal in G.

2.3. Lemma ([10, Theorem A]). If H is an S-quasinormal p-subgroup of G for some
prime p, then NG(H) ≥ Op(G).

2.4. Lemma. If H is a τ -quasinormal p-subgroup of G for some prime p and Op′(G) = 1,
then HQ = QH for every Sylow q-subgroup of G (p 6= q).

Proof. Since Op′(G) = 1, it follows that p||QG|. Consequently, HQ = QH from the
de�nition of τ -quasinormal subgroup. �

2.5. Lemma ([11, Theorem C]). Let E be a normal subgroup of G. If every G-chief
factor of F ∗(E) is cyclic, then every G-chief factor of E is also cyclic.

2.6. Lemma ([8, Theorem 1.6]). Let E be a normal subgroup of G. Suppose that
for each p ∈ π(E), every maximal subgroup of non-cyclic Sylow p-subgroup P of E is
partially τ -quasinormal in G. Then every G-chief factor of E is cyclic.

2.7. Lemma ([7, Lemma 2.6]). Assume that G is p-supersoluble and P a Sylow p-
subgroup of G. Then POp′(G) is normal in G.

2.8. Lemma ([1, Lemma 2.10]). Let p be a prime divisor of |G|.
(1) Soc(G) ≤ F ∗p (G).
(2) Op′(G) ≤ F ∗p (G).
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In fact, F ∗(G/Op′(G)) = F ∗p (G/Op′(G)) = F ∗p (G)/Op′(G).
(3) If F ∗p (G) is p-soluble, then F ∗p (G) = Fp(G).

2.9. Lemma ([8, Lemma 2.10]). Let N be a non-identity normal p-subgroup of G. If
N is elementary and every maximal subgroup of N is partially τ -quasinormal in G, then
some maximal subgroup of N is normal in G.

3. Results On p-supersolubility

3.1. Theorem. Let L be a normal subgroup of G such that G/L is p-supersoluble,
where p is a prime divisor of |L| with (p − 1, |L|) = 1. Suppose that for a Sylow p-
subgroup P of L, all maximal subgroups of P are partially τ -quasinormal in G. Then G
is p-supersoluble.

Proof. Suppose that this theorem is false and consider a counterexample (G,L) for which
|G||L| is minimal.

(1) L is p-nilpotent.
By Lemma 2.1, it is easy to see that all maximal subgroups of P are partially τ -

quasinormal in L. Applying Lemma 2.2, L is p-nilpotent.
(2) P = L.
According to Step (1), we know Op′(L) is the normal Hall p′-subgroup of L. Assume

that Op′(L) 6= 1. In view of Lemma 2.1, the hypothesis holds for (G/Op′(L), L/Op′(L)).
Hence, by the minimal choice of (G,L), the theorem is true for (G/Op′(L), L/Op′(L))
and so G/Op′(L) is p-supersoluble. Consequently, G is p-supersoluble. This contradiction
shows that Op′(L) = 1. Hence L is a normal p-subgroup of G.

(3) The �nal contradiction.
Applying Lemma 2.6, all G-chief factors of L are cyclic. From the p-supersolubility of

G/L, we have G is p-supersoluble, a contradiction. �

We can choose L to get some results of special interest. For example, if we choose
L = G′ or L = GUp , then we obtain the following criteria for p-supersolubility of groups,
where Up is the class of all p-supersoluble groups and GUp is the Up-residual of G, i.e.,
the intersection of all normal subgroups N of G with G/N ∈ Up.

3.2. Corollary. Let p be a prime divisor of |GUp | with (p− 1, |GUp |) = 1. Suppose that
for a Sylow p-subgroup P of GUp , all maximal subgroups of P are partially τ -quasinormal
in G. Then G is p-supersoluble.

3.3. Corollary. Let p be a prime divisor of |G′| with (p− 1, |G′|) = 1. Suppose that for
a Sylow p-subgroup P of G′, all maximal subgroups of P are partially τ -quasinormal in
G. Then G is p-supersoluble.

3.4. Theorem. Let p be a �xed prime divisor of |G| and L a p-soluble normal subgroup
of G such that G/L is p-supersoluble. If all maximal subgroups of Fp(L) containing
Op′(L) are partially τ -quasinormal in G, then G is p-supersoluble.

Proof. In fact, Fp(L) = Op′p(L). Firstly, assume that Op′(L) 6= 1. We consider the
factor group G/Op′(L). Obviously, (G/Op′(L))/(L/Op′(L)) ∼= G/L is p-supersoluble.
Since Op′(L/Op′(L)) = 1, we have Fp(L/Op′(L)) = Op(L/Op′(L)) = Fp(L)/Op′(L). Let
M/Op′(L) be a maximal subgroup of Fp(L/Op′(L)). Then M is a maximal subgroup of
Fp(L) containing Op′(L). Since M is partially τ -quasinormal in G, we have M/Op′(L) is
partially τ -quasinormal in G/Op′(L) in view of Lemma 2.1(2). Thus G/Op′(L) satis�es
the hypotheses of the theorem. By induction, G/Op′(L) is p-supersoluble and so is G.

Secondly, assume that Op′(L) = 1. Consequently, Fp(L) = Op(L). By hypothesis,
all maximal subgroups of Op(L) are partially τ -quasinormal in G. By virtue of Lemma
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2.6, it follows that all G-chief factors of Op(L) are cyclic. Since L is p-soluble, we
have F ∗(L) = F ∗p (L) = Fp(L) = Op(L) by Lemma 2.8 and so every G-chief factor of
F ∗(L) is cyclic. Applying Lemma 2.5, every G-chief factor of L is cyclic. Since G/L is
p-supersoluble, we have G is p-supersoluble �

3.5. Corollary. Let G be a p-soluble group, where p is a �xed prime divisor of |G|. Then
G is p-supersoluble if and only if all maximal subgroups of Fp(G

Up) containing Op′(G
Up)

are partially τ -quasinormal in G.

3.6. Corollary. Let G be a p-soluble group, where p is a �xed prime divisor of |G|. If all
maximal subgroups of Fp(G) containing Op′(G) are partially τ -quasinormal in G, then
G is p-supersoluble.

Using the arguments as in the proof of Theorem 3.4, we can prove the following
Theorem.

3.7. Theorem. Let p be a �xed prime dividing the order of G and L a p-soluble normal
subgroup of G such that G/L is p-supersoluble. If all maximal subgroups of Sylow
p-subgroups of Fp(L) are partially τ -quasinormal in G, then G is p-supersoluble.

3.8. Corollary. Let G be a p-soluble group, where p is a �xed prime divisor of |G|. If
all maximal subgroups of Sylow p-subgroups of Fp(G) are partially τ -quasinormal in G,
then G is p-supersoluble.

3.9. Theorem. Let p be a �xed prime divisor of |G| and L a p-soluble normal subgroup
of G such that G/L is p-supersoluble. If there exists a Sylow p-subgroup P of L such that
every maximal subgroup of P is partially τ -quasinormal in G, then G is p-supersoluble.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order.
We will derive a contradiction in several steps.

(1) G is p-soluble.
This follows directly from the p-solubility of L and the p-supersolubility of G/L.
(2) Op′(G) = 1.
Denote T = Op′(G). If T 6= 1, we consider the factor group G/T . Obviously, PT/T

is a Sylow p-subgroup of LT/T and (G/T )/(LT/T ) ∼= G/LT ∼= (G/L)/(LT/L) is p-
supersoluble by the p-supersolubility of G/L. LetM/T be a maximal subgroup of PT/T .
We may assume that M = P1T , where P1 is a maximal subgroup of P . Since P1 is
partially τ -quasinormal in G, it follows that P1T/T is partially τ -quasinormal in G/T
by Lemma 2.1(3). The minimal choice of G yields that G/T is p-supersoluble, and so is
G, a contradiction.

(3) If N is a minimal normal subgroup of G, then N is an elementary abelian p-group.
This follows from Steps (1) and (2).

(4) G has a unique minimal normal subgroup N contained in L such that G/N is
p-supersoluble.

Let N be a minimal normal subgroup of G contained in L. Obviously, N ≤ P and
P/N is a Sylow p-subgroup of L/N . Let P1/N be a maximal subgroup of P/N . Then P1

is a maximal subgroup of P . By hypothesis, P1 is partially τ -quasinormal in G and so
P1/N is partially τ -quasinormal in G/N by Lemma 2.1(2). Since (G/N)/(L/N) ∼= G/L
is p-supersoluble, G/N satis�es all the hypotheses of our theorem. It follows that G/N
is p-supersoluble by the minimality of G. Noticing that the class of all p-supersoluble
groups is a saturated formation, we have N is the unique minimal normal subgroup of G
contained in L.

(5) N is not cyclic.
If N is cyclic, then G is p-supersoluble from the p-supersolubility of G/N , a contra-

diction.
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(6) The �nal contradiction.
If N is contained in all maximal subgroups of G, then N ≤ Φ(G). Since G/N is

p-supersoluble, we have G/Φ(G) is p-supersoluble. Noticing that the class of all p-
supersoluble groups is a saturated formation, it follows that G is p-supersoluble. This
contradiction shows that there exists a maximal subgroupM of G such that G = NM and
N ∩M = 1. Let Gp be a Sylow p-subgroup of G containing P . Then Gp = N(Gp ∩M)
and Gp ∩M < Gp. Take a maximal subgroup G1 of Gp containing Gp ∩M and set
P1 = G1 ∩ P . Then |P : P1| = |P : G1 ∩ P | = |PG1 : G1| = |Gp : G1| = p and so
P1 is a maximal subgroup of P . By hypothesis, P1 is partially τ -quasinormal in G. In
view of Lemma 2.1(4), G has a normal subgroup T such that P1T is S-quasinormal in
G, P1 ∩ T ≤ (P1)τG and P1T ≤ L.

Firstly, we have N * P1. If not, P = P ∩Gp = P ∩NG1 = N(G1 ∩ P ) = NP1 = P1,
a contradiction.

Secondly, we have N ∩ P1 6= 1. If not, |N : P1 ∩N | = |NP1 : P1| = |P : P1| = p and
so P1 ∩N is a maximal subgroup of N . Therefore |N | = p, which contradicts Step (5).

Thirdly, we have T > 1. If not, T = 1 and P1 is S-quasinormal in G. By Lemma
2.3, Op(G) ≤ NG(P1). Since P = Gp ∩ L, we have P � Gp and so P1 = G1 ∩ P � Gp.
Hence P1 is normal in GpO

p(G) = G. Consequently, P1 ∩ N � G. Step (4) shows that
P1 ∩N = 1 or N ≤ P1, a contradiction.

Finally, we have N ≤ T by Step (4). Then P1∩N = (P1)τG∩N from P1∩T ≤ (P1)τG.
For any Sylow q-subgroup Gq of G (p 6= q), (P1)τGGq = Gq(P1)τG by Lemma 2.4. Then
(P1)τG ∩N = (P1)τGGq ∩N �Gq(P1)τG. Obviously, P1 ∩N �Gp. Therefore P1 ∩N is
normal in G, a same contradiction as above. �

3.10. Corollary. A p-soluble group G is p-supersoluble if and only if all maximal sub-
groups of any Sylow p-subgroup of GUp are partially τ -quasinormal in G.

3.11. Corollary. Let P be a Sylow p-subgroup of a p-soluble group G, where p is a
�xed prime divisor of |G|. If all maximal subgroups of P are partially τ -quasinormal in
G, then G is p-supersoluble.

4. Results On p-nilpotency

4.1. Theorem. Let p be a prime dividing the order of G and P a Sylow p-subgroup of
G. If NG(P ) is p-nilpotent and all maximal subgroups of P are partially τ -quasinormal
in G, then G is p-nilpotent.

Proof. It is easy to see that the theorem holds when p = 2 by [8, Theorem 1.4], so it
su�ces to prove the theorem for the case of odd prime. Suppose that the theorem is false
and let G be a counterexample of minimal order.

(1) G is not p-supersoluble.
If G is p-supersoluble, then POp′(G) is normal in G in view of Lemma 2.7. It follows

that

G/Op′(G) = NG/Op′ (G)(POp′(G)/Op′(G)) = NG(P )Op′(G)/Op′(G).

Since NG(P ) is p-nilpotent, we have G/Op′(G) is also p-nilpotent. Consequently, G is
p-nilpotent, a contradiction.

(2) G is not p-soluble.
By hypothesis, all maximal subgroups of P are partially τ -quasinormal in G. If G is

p-soluble, then G is p-supersoluble by Corollary 3.11, contrary to Step (1).
(3) If K is a proper subgroup of G with P ≤ K < G, then K is p-nilpotent.
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It is easy to see that NK(P ) ≤ NG(P ) and hence NK(P ) is p-nilpotent. By Lemma
2.1(1), all maximal subgroups of P are partially τ -quasinormal in K. Hence K satis�es
the hypothesis of our theorem. The minimal choice of G implies that K is p-nilpotent.

(4) Op(G) 6= 1.
Let J(P ) be the Thompson subgroup of P . Then NG(P ) ≤ NG(Z(J(P ))) ≤ G. If

NG(Z(J(P ))) < G, then, in view of Step (3), NG(Z(J(P ))) is p-nilpotent and so G is p-
nilpotent by [3, Theorem 8.3.1], a contradiction. Hence NG(Z(J(P ))) = G, which shows
that Z(J(P )) is a normal p-subgroup of G and so Op(G) 6= 1.

(5) The �nal contradiction.
It is easy to see that the factor group G/Op(G) satis�es the hypothesis of our theorem.

Now, by the minimality of G, we see that G/Op(G) is p-nilpotent. In particular, G/Op(G)
is p-soluble and so is G, which contradicts Step (2). �

4.2. Corollary. Let p be a prime dividing the order of G and L a normal subgroup of
G such that G/L is p-nilpotent. Suppose that there exists a Sylow p-subgroup P of L
such that all maximal subgroups of P are partially τ -quasinormal in G and NG(P ) is
p-nilpotent. Then G is p-nilpotent.

Proof. It is obvious that NL(P ) is p-nilpotent and all maximal subgroups of P are par-
tially τ -quasinormal in L. Applying Theorem 4.1, L is p-nilpotent. Let Lp′ be the normal
Hall p′-subgroup of L. Obviously, Lp′ is a normal subgroup of G. If Lp′ 6= 1, we consider
the factor group G/Lp′ . Firstly, (G/Lp′)/(L/Lp′) ∼= G/L is p-nilpotent and all maximal
subgroups of PLp′/Lp′ are partially τ -quasinormal in G/Lp′ by Lemma 2.1(3). Secondly,
NG/Lp′

(PLp′/Lp′) = NG(P )Lp′/Lp′ is p-nilpotent. Hence G/Lp′ satis�es the hypothesis

of our corollary. By induction, G/Lp′ is p-nilpotent and so is G, as desired. Hence we
may assume Lp′ = 1, i.e., L = P . By hypothesis, NG(P ) = G is p-nilpotent. �

4.3. Theorem. Let p be a prime dividing the order of G and P a Sylow p-subgroup of
G. If every maximal subgroup P1 of P is partially τ -quasinormal in G and NG(P1) is
p-nilpotent, then G is p-nilpotent.

Proof. Assume that the assertion is false and let G be a counterexample of minimal order.
Then:

(1) If P ≤ K < G, then K is p-nilpotent.
By Lemma 2.1(1), every maximal subgroup P1 of P is partially τ -quasinormal in K.

Obviously, NK(P1) ≤ NG(P1). By hypothesis, we have NK(P1) is p-nilpotent. Therefore,
K satis�es the hypothesis of the theorem, and so K is p-nilpotent by the choice of G.

(2) Op′(G) = 1.
If Op′(G) 6= 1, we consider the factor group G/Op′(G). Obviously, POp′(G)/Op′(G) is

a Sylow p-subgroup ofG/Op′(G). LetM/Op′(G) be a maximal subgroup of POp′(G)/Op′(G).
We may assume that M = P1Op′(G), where P1 is a maximal subgroup of P . Since P1 is
partially τ -quasinormal in G, it follows that P1Op′(G)/Op′(G) is partially τ -quasinormal
in G/Op′(G) by Lemma 2.1(3). It is easy to see that

NG/Op′ (G)(P1Op′(G)/Op′(G)) = NG(P1)Op′(G)/Op′(G)

is p-nilpotent. Hence G/Op′(G) satis�es the hypothesis of our theorem. The minimal
choice of G yields that G/Op′ (G) is p-nilpotent and so is G, a contradiction.

(3) F (G) = P .
If NG(P ) < G, then NG(P ) is p-nilpotent by Step (1). Applying Theorem 4.1, G is p-

nilpotent. This contradiction implies P is normal in G. By Step (2), F (G) = P = Op(G).
(4) G is p-soluble.
This follows from Step (3) directly.



395

(5) Let N be a minimal normal subgroup of G. Then N < P .
In view of Steps (2) and (4), N ≤ P . Assume that N = P . By hypothesis, every

maximal subgroup of N is partially τ -quasinormal in G. By Lemma 2.9, |N | = p. This
shows that the maximal subgroup of P is 1. By hypothesis, G = NG(1) is p-nilpotent, a
contradiction.

(6) Final contradiction.
If N is a maximal subgroup of P , then, by hypothesis, G = NG(N) is p-nilpotent, a

contradiction. Hence we may assume that |P : N | ≥ p2. By Lemma 2.1(2), it is easy to
see that G/N satis�es the hypothesis of the theorem. Hence G/N is p-nilpotent by the
minimal choice of G. Since the class of all p-nilpotent groups is a saturated formation,
it follows that N is a unique minimal subgroup of G and Φ(G) = 1. Consequently,
F (G) = N . By Step (3), N = P , which contradicts step (5). �

4.4. Corollary. Let p be a prime dividing the order of G and L a normal subgroup of
G such that G/L is p-nilpotent. Suppose that there exists a Sylow p-subgroup P of L
such that every maximal subgroup P1 of P is partially τ -quasinormal in G and NG(P1)
is p-nilpotent. Then G is p-nilpotent.

Proof. Using the arguments as in the proof of Corollary 4.2, we may assume that L = P .
Let V/P be the normal p-complement of G/P . By the Schur-Zassenhaus Theorem, there
exists a Hall p′-subgroup Vp′ of V such that V = P o Vp′ . Since V is p-nilpotent by
Lemma 2.1(1) and Theorem 4.3, V = P × Vp′ . This induces that Vp′ is the normal
p-complement of G. Therefore, G is p-nilpotent. �
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