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Relatively normal-slant helices lying on a surface
and their characterizations
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Abstract

In this paper, we consider a regular curve on an oriented surface in
Euclidean 3-space with the Darboux frame {T,V,U} along the curve,
where T is the unit tangent vector �eld of the curve, U is the surface
normal restricted to the curve and V = U× T. We de�ne a new curve
on a surface by using the Darboux frame. This new curve whose vec-
tor �eld V makes a constant angle with a �xed direction is called as
relatively normal-slant helix. We give some characterizations for such
curves and obtain their axis. Besides we give some relations between
some special curves (general helices, integral curves, etc.) and rela-
tively normal-slant helices. Moreover, when a regular surface is given
by its implicit or parametric equation, we introduce the method for
generating the relatively normal-slant helix with the chosen direction
and constant angle on the given surface.
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1. Introduction

Helical curves play important roles in not only CAD and CAGD but also in science
and nature. In the �eld of computer aided design and computer graphics, helices can
be used for the tool path description, the simulation of kinematic motion or the design
of highways, etc. [24]. They also arise in the structure of DNA, fractal geometry (e.g.
hyperhelices), etc. [5, 23]. In recent years, helical curves are studied widely in Euclidean
spaces (e.g. [1-3, 11, 15, 20]) and in non-Euclidean spaces (e.g. [4, 8, 12]).

A space curve whose tangent vector makes a constant angle with a �xed direction is
called a generalized helix and characterized by Lancret's theorem which says the ratio
of torsion to curvature is constant [21]. Generalized helices are also studied in higher
dimensional spaces [19, 22].

In 2004, Izumiya and Takeuchi de�ne a slant helix in E3 by the property that the
principal normal vector makes a constant angle with a �xed direction. These curves are
characterized by the constancy of geodesic curvature function of the principal normal
indicatrix of the curve [10]. In 2005 Kula and Yayl� have studied spherical indicatrices
of a slant helix and obtained that the spherical images are spherical helix [14].

Besides, slant helices according to Bishop frame are studied by Bukcu and Karacan
in 2009 [6]. Also, slant helices according to quaternionic frame [13] and slant helices in
3-dimensional Lie group [17] are investigated in 2013.

In [25], Z�plar and Yayl� introduce a Darboux helix which is de�ned as a curve whose
Darboux vector ω = τT + κB makes a constant angle with a �xed direction, and give
some characterizations of such curves in 2012.

Puig-Pey et al. introduce the method for generating the general helix for both implicit
and parametric surfaces [20].

In a recent paper, Do§an and Yayl� study isophote curves and their characterizations
in Euclidean 3-space [7]. An isophote curve is de�ned as a curve on a surface whose unit
normal vector �eld restricted to the curve makes a constant angle with a �xed direction.
They also obtain the axis of an isophote curve.

In this study, we de�ne a relatively normal-slant helix on a surface by using the
Darboux frame {T,V,U} along the curve whose vector �eld V makes a constant angle
with a �xed direction. We give some characterizations for such curves and obtain their
axis. Besides we give some relations between some special curves (general helices, integral
curves, etc.) and relatively normal-slant helices. Moreover, when a regular surface is
given by its implicit or parametric equation, we introduce the method for generating
the relatively normal-slant helix with the chosen direction and constant angle on the
given surface. This method is based on an initial-value problem of 1st order ordinary
di�erential equations.

This paper is organized as follows: Section 2 includes some basic de�nitions. We
de�ne relatively normal-slant helices in section 3 and give some characterizations for
such curves. The method for �nding the relatively normal-slant helix on a given surface
is introduced in section 4 for parametric and implicit surfaces and its application is
presented in section 5. Section 6 includes some relations between the special curves and
relatively normal-slant helices. Some further characterizations related with the subject
are also given in section 7.

2. Preliminaries

Let M be an oriented surface, and α : I ⊂ R→M be a regular curve with arc-length
parametrization. If the Frenet frame along the curve is denoted by {T,N,B}, the Frenet
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formulas are given by

T′ = κN, N′ = −κT + τB, B′ = −τN,

where T is unit tangent vector, N is principal normal vector, B is the binormal vector;
κ and τ are the curvature and the torsion of α, respectively. On the other hand, if
we denote the Darboux frame along the curve α by {T,V,U}, we have the derivative
formulae of the Darboux frame as

T′ = κgV + κnU, V′ = −κgT + τgU, U′ = −κnT− τgV,

where T is the unit tangent vector of the curve, U is the unit normal vector of the surface
restricted to the curve, V is the unit vector given by V = U × T, and κg, κn, τg denote
the geodesic curvature, normal curvature, geodesic torsion of the curve, respectively [18].

The relations between geodesic curvature, normal curvature, geodesic torsion and κ,
τ are given as follows:

κg = κ sinϕ, κn = κ cosϕ, τg = τ +
dϕ

ds
,

where ϕ is the angle between the vectors N and U.
If the surface M is given by its parametric equation

X(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
,

we may write α(s) = X(u(s), v(s)) for the curve α. Thus, the tangent vector of the curve
α at the point α(s) becomes

(2.1)
dα

ds
= Xu

du

ds
+Xv

dv

ds
,

where Xu and Xv denote the partial di�erentiation of X with respect to u and v, respec-
tively. Hence, since α(s) is a unit-speed curve, we have

(2.2) E

(
du

ds

)2

+ 2F
du

ds

dv

ds
+G

(
dv

ds

)2

= 1,

where E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 and G = 〈Xv, Xv〉 are the �rst fundamental form
coe�cients of the surface.

On the other hand, if the surface M is given by its implicit equation f(x, y, z) = 0,
then the unit speed curve α(s) =

(
x(s), y(s), z(s)

)
lying on M satis�es

(2.3) fx
dx

ds
+ fy

dy

ds
+ fz

dz

ds
= 0

and

(2.4)

(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

= 1,

where fa = ∂f
∂a
.

2.1. De�nition (Slant helix). A unit speed curve is called a slant helix if its unit
principal normal vector makes a constant angle with a �xed direction [10].

2.2. Theorem. Let α be a unit speed curve with κ 6= 0. Then α is a slant helix if and
only if

σ(s) =

(
κ2

(κ2 + τ2)3/2

( τ
κ

)′)
(s)

is a constant function [10].
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2.3. De�nition (V-direction curve). Let γ be a unit speed curve on an oriented surface
M and {T,V,U} be the Darboux frame along γ. The curve γ lying on M is called a
V-direction curve of γ if it is the integral curve of the vector �eld V. In other words, if γ
is the V-direction curve of γ, then V(s) = γ′(s) [16].

2.4. De�nition (Darboux vector �elds). LetM be an oriented surface, and α : I ⊂ R→
M be a regular curve with arc-length parametrization. The vector �eldsDn(s), Dr(s), Do(s)
along α given by

Dn(s) = −κn(s)V(s) + κg(s)U(s),

Dr(s) = τg(s)T(s) + κg(s)U(s),

Do(s) = τg(s)T(s)− κn(s)V(s)

are called the normal Darboux vector �eld, the rectifying Darboux vector �eld and the
osculating Darboux vector �eld along α, respectively [9].

3. Relatively normal-slant helix and its axis

In this section, we introduce a new kind of helix which is lying on a surface.
Let M be an oriented surface in E3 and γ be a regular curve lying on M . Let us

denote the Darboux frame along γ with {T,V,U}, where T is the unit tangent vector
�eld of γ, U is the unit normal vector �eld of the surface which is restricted to the curve
γ and V = U× T.

3.1. De�nition (Relatively normal-indicatrix). Let γ be a unit speed curve (with arc-
length parameter s) on an oriented surface M and {T,V,U} be the Darboux frame along
γ. We de�ne the curve which V(s) draws on the unit sphere S2 as the relatively normal-
indicatrix of γ, and denote it by γv. Thus, γv(s) = V(s).

3.2. De�nition (Relatively normal-slant helix). Let γ be a unit speed curve on an
oriented surface M and {T,V,U} be the Darboux frame along γ. The curve γ is called
a relatively normal-slant helix if the vector �eld V of γ makes a constant angle with a
�xed direction, i.e. there exists a �xed unit vector d and a constant angle θ such that
〈V, d〉 = cosθ.

3.3. Theorem. A unit speed curve γ on a surface M with (τg(s), κg(s)) 6= (0, 0) is a
relatively normal-slant helix if and only if

(3.1) σv(s) =

 1(
κ2
g + τ2

g

) 3
2

(
τ ′gκg − κ′gτg − κn

(
κ2
g + τ2

g

)) (s)

is a constant function.

Proof. (⇒) Let the unit speed curve γ on a surface M with (τg(s), κg(s)) 6= (0, 0) be a
relatively normal-slant helix. Then, by the de�nition, the vector �eld V of γ makes a
constant angle with a �xed direction. Thus, the relatively normal-indicatrix of the curve
γ is part of a circle, i.e. it has constant curvature and zero torsion.

For the relatively normal-indicatrix of the curve γ, we may write γv(s) = V(s) which,
by di�erentiating with respect to s, yields

γ′v(s) = −κgT + τgU

γ′′v (s) =
(
− κ′g − κnτg

)
T−

(
κ2
g + τ2

g

)
V +

(
− κgκn + τ ′g

)
U.
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The curvature κv and the torsion τv of γv are obtained as

(3.2)


κv(s) =

‖γ′v×γ
′′
v ‖

‖γ′v‖3
=
√

1 +
(
σv(s)

)2
,

τv(s) = 1

(κ2
g(s)+τ2g (s))

11
2

σ′v(s)

(1+(σv(s))2)
,

where σv(s) = 1

(κ2
g+τ2g )

3
2

(
τ ′gκg − κ′gτg − κn

(
κ2
g + τ2

g

))
. Hence, since γv(s) has constant

curvature and zero torsion, we have σv(s) = constant.
(⇐) Suppose that σv(s) = constant. Then, by using (3.2) the relatively normal-

indicatrix of γ has constant curvature and zero torsion, i.e. relatively normal-indicatrix
is part of a circle which means V makes constant angle with a �xed direction. Thus, γ is
a relatively normal-slant helix. �

3.4. Remark. The constant function σv(s) is also the geodesic curvature of the relatively
normal-indicatrix of γ.

3.5. Remark. The invariant σv(s) is equal to −δr(s)√
κ2
g+τ2g

, where δr is given in [9].

We may give the following corollaries for the special cases of the relatively normal-slant
helices.

3.6. Corollary. i) Let γ be an asymptotic curve on M with κg(s) 6= 0. Then, γ is a
relatively normal-slant helix on M if and only if

(3.3)

 κ2
g(

κ2
g + τ2

g

) 3
2

(
τg
κg

)′ (s) = constant.

ii) If γ is an asymptotic curve on M with κg(s) 6= 0, we have κ = κg, τ = τg. Then, γ is
a relatively normal-slant helix on M if and only if γ is a slant helix.

3.7. Corollary. Let γ be a geodesic curve on M with τg(s) 6= 0. Then, γ is a relatively
normal-slant helix on M if and only if

(3.4)
κn(s)

τg(s)
= constant,

i.e. γ is a relatively normal-slant helix on M if and only if γ is a generalized helix on M .

3.8. Corollary. Let γ be a line of curvature on M with κg(s) 6= 0. Then, γ is a relatively
normal-slant helix on M if and only if

(3.5)
κn(s)

κg(s)
= constant.

Now, it is usual to ask that how can we �nd the axis of a relatively normal-slant helix.
Our goal is now to obtain the axis of our new de�ned slant helix.

Let a unit speed curve γ lying on an oriented surface M be a relatively normal-slant
helix. Then, by the de�nition, V makes a constant angle θ with the �xed unit vector
d = aT+bV+cU, i.e. 〈V, d〉 = cos θ = b. By di�erentiating the last equation with respect
to s gives

〈V′, d〉 = 0 ⇒ 〈−κgT + τgU, d〉 = 0.

If we di�erentiate d = aT + bV + cU with respect to s, we obtain

d′ = (a′ − bκg − cκn)T + (aκg − cτg)V + (c′ + aκn + bτg)U = 0,
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i.e.

(3.6)


a′ − bκg − cκn = 0,
aκg − cτg = 0,
c′ + aκn + bτg = 0.

If we substitute c =
κg

τg
a, τg(s) 6= 0, into the �rst and third equations and multiply the

third one with
κg
τg
, we obtain a �rst order homogeneous linear di�erential equation as(

1 +

(
κg
τg

)2
)
a′ +

κg
τg

(
κg
τg

)′
a = 0

which has the general solution

a = λ
τg√

κ2
g + τ2

g

,

where λ is the constant of integration. Substituting this solution into the second equation
of (3.6), we obtain

c = λ
κg√
κ2
g + τ2

g

On the other hand, since d is unit length, i.e. a2 + b2 + c2 = 1, we �nd λ = ± sin θ.
Therefore, d can be written as

(3.7) d = ± τg√
κ2
g + τ2

g

sin θT + cos θV ± κg√
κ2
g + τ2

g

sin θU.

We need to determine the constant angle θ to complete the axis.
If we di�erentiate 〈V′, d〉 = 0 with respect to s along the curve γ, we obtain

〈V′′, d〉 = ±

(
τ ′gκg − κ′gτg − κn(κ2

g + τ2
g )√

κ2
g + τ2

g

)
sin θ − (κ2

g + τ2
g ) cos θ = 0.

As a result we have

(3.8) cot θ = ±
τ ′gκg − κ′gτg − κn(κ2

g + τ2
g )

(κ2
g + τ2

g )
3
2

.

Hence, �nding θ from (3.8) and substituting the result into (3.7) gives us the axis of the
relatively normal-slant helix (By using (3.8), it is easy to see that d is a constant vector,
i.e. d′ = 0).

4. Calculating a relatively normal-slant helix on a surface

In this section we introduce the methods for �nding the relatively normal-slant helix on
a given surface. We discuss the methods separately for parametric and implicit surfaces.

4.1. Relatively normal-slant helix on a parametric surface. Let M be a regular
oriented surface in E3 with the parametrization X = X(u, v). Our goal is now, when a
�xed unit direction d and a constant angle θ are given, to give the method which enables
us to �nd the relatively normal-slant helix (if exists) lying on M which accepts d as an
axis and θ as the constant angle.

Let γ(s) = X(u(s), v(s)) be the unit speed relatively normal-slant helix lying on
M with axis d, constant angle θ, and Darboux frame �eld {T,V,U}. Thus, we have
〈V, d〉 = cos θ. We need to �nd u(s), v(s) to obtain γ.

Since

γ′ = T = Xu
du

ds
+Xv

dv

ds
and U =

Xu ×Xv
‖ Xu ×Xv ‖

,
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we have

V = U× T =
Xu ×Xv
‖ Xu ×Xv ‖

×
(
Xu

du

ds
+Xv

dv

ds

)
i.e.

V =
1

‖ Xu ×Xv ‖

[
(EXv − FXu)

du

ds
+ (FXv −GXu)

dv

ds

]
.

Substituting the last equation into 〈V, d〉 = cos θ gives us

(4.1) (E〈Xv, d〉 − F 〈Xu, d〉)
du

ds
+ (F 〈Xv, d〉 −G〈Xu, d〉)

dv

ds
= cos θ ‖ Xu ×Xv ‖ .

Combining Eqs. (2.2) and (4.1), we obtain

(4.2)


du
ds

= 2 cos θ(EG−F2)
3
2 〈Xv,d〉±

√
∆

2A(EG−F2)

dv
ds

= −2 cos θ(EG−F2)
3
2 〈Xu,d〉∓

√
∆∗

2A(EG−F2)

where A, ∆, and ∆∗ are given by

A = E〈Xv, d〉2 − 2F 〈Xu, d〉〈Xv, d〉+G〈Xu, d〉2,

∆ = 4 cos2 θ(EG− F 2)2 [〈Xv, d〉2(EG− F 2)−AG
]

+4A(EG− F 2) [F 〈Xv, d〉 −G〈Xu, d〉]2 ,
∆∗ = 4 cos2 θ(EG− F 2)2 [〈Xu, d〉2(EG− F 2)−AE

]
+4A(EG− F 2) [E〈Xv, d〉 − F 〈Xu, d〉]2 .

If we solve the system (4.2) together with the initial point

(4.3)

{
u(0) = u0

v(0) = v0,

we obtain the desired relatively normal-slant helix on M by substituting u(s), v(s) into
X(u, v).

4.1. Remark. i) If ∆ and/or ∆∗ is negative, it means there does not exist a relatively
normal-slant helix with the given axis and angle.
ii) If ∆ ≥ 0 and ∆∗ ≥ 0, then we have two relatively normal-slant helices on the surface.

4.2. Relatively normal-slant helix on an implicit surface. Let M be a surface
given in implicit form by f(x, y, z) = 0. Let us now �nd the relatively normal-slant helix
γ(s) which makes the given constant angle θ with the given axis d = (a, b, c) and lying
on M .

Let γ(s) = (x(s), y(s), z(s)) and {T,V,U} be its Darboux frame �eld. We need to �nd
x(s), y(s), z(s) to obtain γ(s) (We assume that s is the arc-length parameter).

Since the unit normal vector �eld of the surface is U = ∇f
‖∇f‖ , we obtain

V =
∇f
‖ ∇f ‖ × T =

1

‖ ∇f ‖

(
fy
dz

ds
− fz

dy

ds
, fz

dx

ds
− fx

dz

ds
, fx

dy

ds
− fy

dx

ds

)
.

If we substitute the last equation into 〈V, d〉 = cos θ, we get

(4.4) (bfz − cfy)
dx

ds
+ (cfx − afz)

dy

ds
+ (afy − bfx)

dz

ds
=‖ ∇f ‖ cos θ.

If we consider (4.4) and (2.3), we obtain dx
ds
, dy
ds

by means of dz
ds

as

(4.5)
dx

ds
=

1

Ω

[
fy(afy − bfx)− fz(cfx − afz))

dz

ds
− fy ‖ ∇f ‖ cos θ

]
,
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(4.6)
dy

ds
=

1

Ω

[
fz(bfz − cfy)− fx(afy − bfx))

dz

ds
+ fx ‖ ∇f ‖ cos θ

]
,

where Ω = cf2
x − afxfz − bfyfz + cf2

y 6= 0. Substituting (4.5) and (4.6) into (2.4) give us

a quadratic equation with respect to dz
ds

as

q1

(
dz

ds

)2

+ q2
dz

ds
+ q3 = 0,

where

q1 =
1

Ω2

[
b2f4

x + a2f4
y + (a2 + b2)f4

z − 2abfxf
3
y − 2acfxf

3
z − 2bcfyf

3
z

−2abfyf
3
x + (a2 + b2)f2

xf
2
y + (c2 + 2b2)f2

xf
2
z + (2a2 + c2)f2

yf
2
z

−4abfxfyf
2
z

]
+ 1,

q2 =
1

Ω2

[
2 ‖ ∇f ‖ cos θ(bfxf

2
z − afyf2

x + bfxf
2
y − afyf2

z + bf3
x − af3

y )
]
,

q3 =
1

Ω2

[
‖ ∇f ‖2 cos2 θ(f2

x + f2
y )
]
− 1.

From this equation we have

(4.7)
dz

ds
=
−q2 ±

√
q2
2 − 4q1q3

2q1
.

If we substitute (4.7) into (4.5) and (4.6), we obtain an explicit 1st order ordinary di�er-
ential equation system. Thus, together with the initial point

(4.8)


x(0) = x0

y(0) = y0

z(0) = z0

we have an initial value problem. The solution of this problem gives us the relatively
normal-slant helix on M .

4.2. Remark. i) If q2
2 − 4q1q3 < 0 at the point (x0, y0, z0), then there does not exist

any relatively normal-slant helix with the given direction d and angle θ.
ii) If q2

2 − 4q1q3 > 0 at the point (x0, y0, z0), then we have two relatively normal-slant
helices passing through the initial point.

5. Examples

5.1. Example. Let M be the surface given by X(u, v) = (u cos v, u sin v, u2). Applying
our method, the relatively normal-slant helix onM which makes the constant angle θ = π

3

with the chosen direction d = (0, 0, 1) and starting from the inital point P = (1, 0, 1)
is given in Figure 1. Another application is given in Figure 2 in which we obtain two

relatively normal-slant helices lying on the surface (x2 + y2)z2 + x2+y2

4
− 1

4
= 0 with

the initial point
(
−1√
13
, 0,−

√
3
)
(in each �gure the general helices are obtained by the

method given in [20]).
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Figure 1. General helix (colored with blue) and relatively normal-
slant helix (colored with black) with same axis d = (0, 0, 1) and angle
θ = π/3

6. Some special curves related with a relatively normal-slant helix

6.1. Theorem. Let M be an oriented surface in E3, γ be a unit speed curve on M , and
γ be the V-direction curve of γ. Then γ is a relatively normal-slant helix if and only if γ
is a general helix.

Proof. Since γ is the V-direction curve of γ, the relations between the curvature (κ) and
the torsion (τ) of γ and the geodesic curvature, normal curvature and geodesic torsion
of γ are given by, [16],

(6.1) κ =
√
κ2
g + τ2

g , τ = −κn +
κgτ

′
g − κ′gτg
κ2
g + τ2

g

.

Thus, we have

τ

κ
=

(
1

(κ2
g + τ2

g )
3
2

(τ ′gκg − κ′gτg − κn(κ2
g + τ2

g )

)
.

It means that γ is a relatively normal-slant helix if and only if γ is a general helix. �

6.2. Theorem. Let M be an oriented surface in E3, γ : I ⊂ R → M be a regular
curve with arc-length parametrization and Dr be the rectifying Darboux vector �eld of γ.
Then γ is a relatively normal-slant helix if and only if the integral curve of the rectifying
Darboux vector �eld Dr is a circular helix.

Proof. The rectifying Darboux vector �eld Dr of γ is given by

(6.2) Dr(s) = τg(s)T(s) + κg(s)U(s).

Let β be the integral curve of Dr. So we have

Dr = β′ = τgT + κgU.
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Figure 2. General helix (colored with blue (θ = π/3)) and relatively
normal-slant helices (colored with black (θ = π/3) and green (θ = π/4))
with same axis d = (0, 0, 1)

By di�erentiating this equation with respect to s we obtain

β′′ = (τ ′g − κgκn)T + (κ′g + κnτg)U,

β′′′ = (τ ′g − κgκn)′T + (τ ′g − κgκn)(κgV + κnU)

+(κ′g + κnτg)
′U + (κ′g + κnτg)(−κnT− τgV).

Therefore, since

β′ × β′′ =
(
− κn(κ2

g + τ2
g ) + τ ′gκg − τgκ′g

)
V,

the curvature κβ of β is obtained as

κβ =
‖ β′ × β′′ ‖
‖ β′ ‖3 =

(
1

(κ2
g + τ2

g )
3
2

(τ ′gκg − κ′gτg − κn(κ2
g + τ2

g )

)
= σv(s)

and the torsion τβ of β is obtained as

τβ =
〈β′ × β′′, β′′′〉
‖ β′ × β′′ ‖2 = 1.

Therefore
τβ
κβ

=
1

σv(s)
.

It means that γ is a relatively normal-slant helix if and only if the integral curve of the
rectifying Darboux vector �eld Dr is a circular helix. �

6.3. Theorem. Let γ : I → M ⊂ E3 be a unit speed curve with (κg(s), τg(s)) 6= (0, 0).
Then the following conditions are equivalent.

i) γ is a relatively normal-slant helix,
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ii) The relatively normal-indicatrix of γ is part of a circle in S2,

iii) σv(s) =

(
1

(κ2g+τ2g )
3
2

(τ ′gκg − κ′gτg − κn(κ2
g + τ2

g )

)
(s) is constant,

iv) There exists a unit vector d such that
〈
d, Dr
||Dr||

〉
is constant,

v) The V-direction curve of γ is a general helix,

vi) The Dr-integral curve of γ is a circular helix.

7. Further characterizations

Similar to the previous sections, we can also give the following characterizations for
the general helices and isophote curves.

7.1. Theorem. Let M be an oriented surface in E3, γ : I ⊂ R→M be a regular curve
with arc-length parametrization and Dn be the normal Darboux vector �eld of γ. Then γ
is a general helix if and only if the integral curve of the normal Darboux vector �eld Dn
is a circular helix.

7.2. Theorem. Let M be an oriented surface in E3, γ : I ⊂ R→M be a regular curve
with arc-length parametrization and Do be the osculating Darboux vector �eld of γ. Then
γ is an isophote curve if and only if the integral curve of the osculating Darboux vector
�eld Do is a circular helix.
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