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Relatively normal-slant helices lying on a surface
and their characterizations

Nesibe MACIT* and Mustafa DULDUL

Abstract

In this paper, we consider a regular curve on an oriented surface in
Euclidean 3-space with the Darboux frame {T,V,U} along the curve,
where T is the unit tangent vector field of the curve, U is the surface
normal restricted to the curve and V = U x T. We define a new curve
on a surface by using the Darboux frame. This new curve whose vec-
tor field V makes a constant angle with a fixed direction is called as
relatively normal-slant helix. We give some characterizations for such
curves and obtain their axis. Besides we give some relations between
some special curves (general helices, integral curves, etc.) and rela-
tively normal-slant helices. Moreover, when a regular surface is given
by its implicit or parametric equation, we introduce the method for
generating the relatively normal-slant helix with the chosen direction
and constant angle on the given surface.

Keywords:  Slant helix, generalized helix, Darboux frame, implicit surface,
parametric surface, spherical indicatrix.

2000 AMS Classification: 65L05, 53A04, 53A05

Received : 28.02.2016 Accepted : 29.04.2016 Do : 10.15672 /HJMS.20164518615

*Department of Mathematics, Faculty of Science and Arts, Yildiz Technical University, Is-
tanbul, Turkey, Email: ngurhan@yildiz.edu.tr

TDepartment of Mathematics, Faculty of Science and Arts, Yildiz Technical University, istan-
bul, Turkey, Email: mduldul@yildiz.edu.tr

J:Corresponding Author.



398

1. Introduction

Helical curves play important roles in not only CAD and CAGD but also in science
and nature. In the field of computer aided design and computer graphics, helices can
be used for the tool path description, the simulation of kinematic motion or the design
of highways, etc. [24]. They also arise in the structure of DNA, fractal geometry (e.g.
hyperhelices), etc. [5, 23]. In recent years, helical curves are studied widely in Euclidean
spaces (e.g. [1-3, 11, 15, 20]) and in non-Euclidean spaces (e.g. [4, 8, 12]).

A space curve whose tangent vector makes a constant angle with a fixed direction is
called a generalized helix and characterized by Lancret’s theorem which says the ratio
of torsion to curvature is constant [21]. Generalized helices are also studied in higher
dimensional spaces [19, 22].

In 2004, Izumiya and Takeuchi define a slant helix in E® by the property that the
principal normal vector makes a constant angle with a fixed direction. These curves are
characterized by the constancy of geodesic curvature function of the principal normal
indicatrix of the curve [10]. In 2005 Kula and Yayl have studied spherical indicatrices
of a slant helix and obtained that the spherical images are spherical helix [14].

Besides, slant helices according to Bishop frame are studied by Bukcu and Karacan
in 2009 [6]. Also, slant helices according to quaternionic frame [13] and slant helices in
3-dimensional Lie group [17] are investigated in 2013.

In [25], Ziplar and Yayh introduce a Darboux helix which is defined as a curve whose
Darboux vector w = 7T + kB makes a constant angle with a fixed direction, and give
some characterizations of such curves in 2012.

Puig-Pey et al. introduce the method for generating the general helix for both implicit
and parametric surfaces [20].

In a recent paper, Dogan and Yayl study isophote curves and their characterizations
in Euclidean 3-space [7]. An isophote curve is defined as a curve on a surface whose unit
normal vector field restricted to the curve makes a constant angle with a fixed direction.
They also obtain the axis of an isophote curve.

In this study, we define a relatively normal-slant helix on a surface by using the
Darboux frame {T,V,U} along the curve whose vector field V makes a constant angle
with a fixed direction. We give some characterizations for such curves and obtain their
axis. Besides we give some relations between some special curves (general helices, integral
curves, etc.) and relatively normal-slant helices. Moreover, when a regular surface is
given by its implicit or parametric equation, we introduce the method for generating
the relatively normal-slant helix with the chosen direction and constant angle on the
given surface. This method is based on an initial-value problem of 1st order ordinary
differential equations.

This paper is organized as follows: Section 2 includes some basic definitions. We
define relatively normal-slant helices in section 3 and give some characterizations for
such curves. The method for finding the relatively normal-slant helix on a given surface
is introduced in section 4 for parametric and implicit surfaces and its application is
presented in section 5. Section 6 includes some relations between the special curves and
relatively normal-slant helices. Some further characterizations related with the subject
are also given in section 7.

2. Preliminaries

Let M be an oriented surface, and o : I C R — M be a regular curve with arc-length
parametrization. If the Frenet frame along the curve is denoted by {T, N, B}, the Frenet
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formulas are given by
T =kN, N =-xkT+7B, B =-7N,

where T is unit tangent vector, N is principal normal vector, B is the binormal vector;
x and 7 are the curvature and the torsion of «, respectively. On the other hand, if
we denote the Darboux frame along the curve a by {T,V,U}, we have the derivative
formulae of the Darboux frame as

T =kgV+ kU, V =—k,TH+1,U, U =—k,T—-7V,

where T is the unit tangent vector of the curve, U is the unit normal vector of the surface
restricted to the curve, V is the unit vector given by V = U x T, and kg, kn, 74 denote
the geodesic curvature, normal curvature, geodesic torsion of the curve, respectively [18].
The relations between geodesic curvature, normal curvature, geodesic torsion and x,
T are given as follows:
. dp
Kg = KSIn @, Kn = KCOS @, Tg =T+ —,

ds

where ¢ is the angle between the vectors N and U.
If the surface M is given by its parametric equation

X(u,v) = (x(u,v),y(u, v),z(u,v)),

we may write a(s) = X (u(s),v(s)) for the curve a. Thus, the tangent vector of the curve
« at the point a(s) becomes

do du dv
2.1 — =Xy— + Xy,
(2.1) ds ds + ds

where X, and X, denote the partial differentiation of X with respect to u and v, respec-
tively. Hence, since «(s) is a unit-speed curve, we have

du\? du dv dv\?
(22) E <E) + QFEE +G (%) =1,
where E = (X, Xu), F = (Xu, Xo) and G = (X, X,) are the first fundamental form
coefficients of the surface.

On the other hand, if the surface M is given by its implicit equation f(z,y,z) = 0,
then the unit speed curve a(s) = (z(s),y(s), z(s)) lying on M satisfies

dx dy dz

and

dz\? dy 2 dz\?
2.4 & 4 £) =1
ey (7) (%) + (%) =
where fa:g—a.

2.1. Definition (Slant helix). A unit speed curve is called a slant helix if its unit
principal normal vector makes a constant angle with a fixed direction [10].

2.2. Theorem. Let « be a unit speed curve with k # 0. Then « is a slant heliz if and

only if
o(s) = ((H’:)/ (;)’) (5)

is a constant function [10].
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2.3. Definition (V-direction curve). Let v be a unit speed curve on an oriented surface
M and {T,V,U} be the Darboux frame along . The curve 7 lying on M is called a
V-direction curve of + if it is the integral curve of the vector field V. In other words, if 7
is the V-direction curve of v, then V(s) =7(s) [16].

2.4. Definition (Darboux vector fields). Let M be an oriented surface, and o : I C R —
M be aregular curve with arc-length parametrization. The vector fields D, (s), Dy (s), Do(s)
along a given by

Di(s) = —rn(s)V(s) + rg(s)U(s),
Dy(s) = 74(s)T(s) + rg(s)U(s),
Do(s) = 74(s)T(s) = rn(s)V(s)

are called the normal Darboux vector field, the rectifying Darboux vector field and the
osculating Darboux vector field along «, respectively [9].

3. Relatively normal-slant helix and its axis

In this section, we introduce a new kind of helix which is lying on a surface.

Let M be an oriented surface in E* and v be a regular curve lying on M. Let us
denote the Darboux frame along v with {T,V,U}, where T is the unit tangent vector
field of v, U is the unit normal vector field of the surface which is restricted to the curve
vyand V=UXxT.

3.1. Definition (Relatively normal-indicatrix). Let 7 be a unit speed curve (with arc-
length parameter s) on an oriented surface M and {T,V, U} be the Darboux frame along
. We define the curve which V(s) draws on the unit sphere S? as the relatively normal-
indicatrix of -, and denote it by 7,. Thus, v,(s) = V(s).

3.2. Definition (Relatively normal-slant helix). Let ~ be a unit speed curve on an
oriented surface M and {T,V,U} be the Darboux frame along . The curve 7 is called
a relatively normal-slant helix if the vector field V of v makes a constant angle with a
fixed direction, i.e. there exists a fixed unit vector d and a constant angle 6 such that
(V,d) = cosb.

3.3. Theorem. A unit speed curve v on a surface M with (14(s),kg(s)) # (0,0) is a
relatively normal-slant heliz if and only if

| (Fme — Ky — n (k24 72)) | (5
(B1)  ouls) = (%Hg)g(g yo = ra(y +77)) | (9)

is a constant function.

Proof. (=) Let the unit speed curve -y on a surface M with (74(s), k4(s)) # (0,0) be a
relatively normal-slant helix. Then, by the definition, the vector field V of v makes a
constant angle with a fixed direction. Thus, the relatively normal-indicatrix of the curve
v is part of a circle, i.e. it has constant curvature and zero torsion.

For the relatively normal-indicatrix of the curve -, we may write v, (s) = V(s) which,
by differentiating with respect to s, yields

Yo (8) = —kg T + 74U

ya(s) = ( - m/g - mnTg)T — (nﬁ + T;)V + ( — Kgkn + T;)U.
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The curvature x, and the torsion 7, of v, are obtained as

’ 1" 2
ro(s) = Bl = /14 (0u(5))%,
(3.2)
1 oy (s)
Tv(s) = ,
") = Gorrgon T T
where 0,(s) = —2—5 (T;Iig — KTy — kin (kg + 7'92)). Hence, since 7, (s) has constant

(r3+73)2
curvature and zero torsion, we have o, (s) = constant.

(<) Suppose that o,(s) = constant. Then, by using (3.2) the relatively normal-
indicatrix of v has constant curvature and zero torsion, i.e. relatively normal-indicatrix
is part of a circle which means V makes constant angle with a fixed direction. Thus, 7 is
a relatively normal-slant helix. O

3.4. Remark. The constant function o (s) is also the geodesic curvature of the relatively
normal-indicatrix of .
—5r(s)
We may give the following corollaries for the special cases of the relatively normal-slant
helices.

3.5. Remark. The invariant o,(s) is equal to where 4, is given in [9].

3.6. Corollary. i) Let v be an asymptotic curve on M with kq(s) # 0. Then, 7 is a
relatively normal-slant heliz on M if and only if

2 /

K

(3.3) —a (T—g) (s) = constant.
(k5 +75)> N\

ii) If v is an asymptotic curve on M with k4(s) # 0, we have kK = kg, T = 7. Then, 7 is

a relatively normal-slant heliz on M if and only if v is a slant heliz.

3.7. Corollary. Let v be a geodesic curve on M with 74(s) # 0. Then, v is a relatively
normal-slant heliz on M if and only if

Hn(s) = constan
(34) T = constant,

i.e. v is a relatively normal-slant heliz on M if and only if v is a generalized heliz on M.

3.8. Corollary. Let vy be a line of curvature on M with k4(s) # 0. Then, v is a relatively
normal-slant heliz on M if and only if

fin(s)

®5) Kg(s)

= constant.

Now, it is usual to ask that how can we find the axis of a relatively normal-slant helix.
Our goal is now to obtain the axis of our new defined slant helix.

Let a unit speed curve v lying on an oriented surface M be a relatively normal-slant
helix. Then, by the definition, V makes a constant angle § with the fixed unit vector
d=aT+bV+cU,ie. (V,d)=cosf =b. By differentiating the last equation with respect
to s gives

V,dy=0 = (—krgT+7,U,d)=0.
If we differentiate d = aT + bV + cU with respect to s, we obtain
d' = (a' —brg — ckn)T + (akg — cTg)V + (¢ + aky +b1y)U =0,
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i.e.
a' —bkg — ckn =0,
(3.6) arg —ctg =0,
¢ + akn +brg = 0.
If we substitute c = ':—Za, Tg(s) # 0, into the first and third equations and multiply the

third one with i—g, we obtain a first order homogeneous linear differential equation as
g

2 '
(1—!—(/19) >a/+ng<1€g) a=0
Tg Tg \Tg

which has the general solution
Tg

2 2’
Ky + T

where A is the constant of integration. Substituting this solution into the second equation
of (3.6), we obtain

c=A

a=A

_ ke

VKL +TE

On the other hand, since d is unit length, i.e. a® +b* + ¢ = 1, we find A = £sin6.
Therefore, d can be written as

3.7 d= t— 19 GinfT + cosOV £ ——2— singU.
VEE+ T2 K2 472
We need to determine the constant angle 6 to complete the axis.
If we differentiate (V’,d) = 0 with respect to s along the curve v, we obtain
Thkg — KyTg — kin (Ko + T¢)

2 2
VK + 75

(V”,d):i( >sin9—(m§+r§)cos€:0.

As a result we have

/ ' 2 2
Tghg — KgTg — Kn(kg + 75)

5 .
(34 73)’
Hence, finding 6 from (3.8) and substituting the result into (3.7) gives us the axis of the

relatively normal-slant helix (By using (3.8), it is easy to see that d is a constant vector,
ie. d =0).

(3.8) cotf=+

4. Calculating a relatively normal-slant helix on a surface

In this section we introduce the methods for finding the relatively normal-slant helix on
a given surface. We discuss the methods separately for parametric and implicit surfaces.

4.1. Relatively normal-slant helix on a parametric surface. Let M be a regular
oriented surface in E with the parametrization X = X (u,v). Our goal is now, when a
fixed unit direction d and a constant angle 6 are given, to give the method which enables
us to find the relatively normal-slant helix (if exists) lying on M which accepts d as an
axis and 6 as the constant angle.

Let v(s) = X(u(s),v(s)) be the unit speed relatively normal-slant helix lying on
M with axis d, constant angle 6, and Darboux frame field {T,V,U}. Thus, we have
(V,d) = cosf. We need to find u(s),v(s) to obtain .

Since

du dv Xu X Xy

—T=x 24X, = _fuXsv
K ds T ds [ Xu x X, ||
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we have
Xu X Xy du dv
V=UxT= 22X o (x, %, x, %
Ux ||Xu><XUHX( s ds)
ie.
1 du dv

V= [(EXU — FX.) T+ (FX, - GX.) E} .
Substituting the last equation into (V,d) = cos 6 gives us
41)  (B(Xo,d) — F(Xu,d)) Zﬁ + (F(Xo,d) — G(Xa, d)) % — cosf || Xux X |-

s s

Combining Egs. (2.2) and (4.1), we obtain

3
du _ 2cos 0(EG—F?)2 (Xy,d) VA

ds — 2A(EG—F2)

(4.2)
dv _ —20056(EG—F2)%(Xu,d)th/A*
ds 2A(EG—F?2)

where A, A, and A* are given by
A=E(X,,d)? - 2F(X,,d)(X,,d) + G(X.,d)?,
A = 4cos’ 0(EG — F?)? [(X,,d)*(EG — F*) — AG]
+4A(EG — F?) [F(X,,d) — G(Xu,d)]?,
A" =4cos’ 0(EG — F?)? [(Xu,d)*(EG — F?) — AE]
+4A(EG — F?) [E(X,,d) — F(X,,d)]*.
If we solve the system (4.2) together with the initial point
@ {0
we obtain the desired relatively normal-slant helix on M by substituting u(s), v(s) into
X (u,v).

4.1. Remark. i) If A and/or A" is negative, it means there does not exist a relatively
normal-slant helix with the given axis and angle.
ii) If A > 0 and A* > 0, then we have two relatively normal-slant helices on the surface.

4.2. Relatively normal-slant helix on an implicit surface. Let M be a surface
given in implicit form by f(z,y,2) = 0. Let us now find the relatively normal-slant helix
~(s) which makes the given constant angle § with the given axis d = (a, b, c) and lying
on M.

Let v(s) = (z(s),y(s),z(s)) and {T,V, U} be its Darboux frame field. We need to find
z(s),y(s), z(s) to obtain «y(s) (We assume that s is the arc-length parameter).

Since the unit normal vector field of the surface is U = %, we obtain

LV el 0 (il dy dr o de dy L de
=TV TV <fyds Fgs e as Ieas To g fyds)'

If we substitute the last equation into (V,d) = cos 8, we get

dx dy dz
(40) b —eh) S b e~ af) W 4 (afy b0 T = cost,
If we consider (4.4) and (2.3), we obtain 2%, % by means of £ as

dx

@) % =5 [net — 0 = e - ar )G - 5 197 ) cost].
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(16 %= G508 et~ ot 0N G+ 117 L cos)].

where Q = cf? — afof. —bfyf- + cfy # 0. Substituting (4.5) and (4.6) into (2.4) give us

a quadratic equation with respect to % as

L R S
DA s L TB=

where

1
Q1:@

[0 1L+ @£ + (a° + ) f2 = 2abfe f] = 2acfof2 = 2bef, f2
—2abfy [7 + (@ + OV [2f5 + ( + 27V 22 + (20" + ) [
—dabfof,f2] + 1,

B = o3 [21 VF 1 cosbLaf? —afyf2 4 buf? —afuf? + 05 —af)],

a5 = gz [ 1197 1 cos® 0042 + )] 1.

From this equation we have

@.7) dz _ —q2 £ /g5 —4q1g3

ds 2q1

If we substitute (4.7) into (4.5) and (4.6), we obtain an explicit 1st order ordinary differ-
ential equation system. Thus, together with the initial point

z(0) = mo
(4.8) ¥(0) = %o
2(0) = 2o

we have an initial value problem. The solution of this problem gives us the relatively
normal-slant helix on M.

4.2. Remark. i) If g3 — 4q1g3 < 0 at the point (o, yo, 20), then there does not exist
any relatively normal-slant helix with the given direction d and angle 6.

ii) If ¢3 — 4q1gz > 0 at the point (20,0, 20), then we have two relatively normal-slant
helices passing through the initial point.

5. Examples
5.1. Example. Let M be the surface given by X (u,v) = (ucosv,usinv,u?). Applying

our method, the relatively normal-slant helix on M which makes the constant angle 0 = %

with the chosen direction d = (0,0,1) and starting from the inital point P = (1,0,1)

is given in Figure 1. Another application is given in Figure 2 in which we obtain two
2 2

relatively normal-slant helices lying on the surface (z® + y*)2z? + ZHUS 1 = 0 with

the initial point (\;—1%,0, f\@> (in each figure the general helices are obtained by the

method given in [20]).
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Figure 1. General helix (colored with blue) and relatively normal-
slant helix (colored with black) with same axis d = (0,0,1) and angle
0=m/3

6. Some special curves related with a relatively normal-slant helix

6.1. Theorem. Let M be an oriented surface in E2, v be a unit speed curve on M, and
7 be the V-direction curve of v. Then ~ is a relatively normal-slant heliz if and only if 7
is a general heliz.

Proof. Since 7 is the V-direction curve of 7, the relations between the curvature (%) and
the torsion (7) of 7 and the geodesic curvature, normal curvature and geodesic torsion
of v are given by, [16],
/ ’
KgTy — KT,
6.1 R=1/K2+72, T=—kn+ 2 99
(e P M

Thus, we have

= ((S(T‘m — KTy — k(g + Tg2)> :

kg +75)2

It means that +y is a relatively normal-slant helix if and only if 7 is a general helix. [

E R

6.2. Theorem. Let M be an oriented surface in E*, v : I C R — M be a regular
curve with arc-length parametrization and D, be the rectifying Darbouz vector field of .
Then ~ is a relatively normal-slant heliz if and only if the integral curve of the rectifying
Darbouz vector field D, is a circular heliz.

Proof. The rectifying Darboux vector field D, of ~ is given by
(6.2) Dy (s) = 14(s)T(s) + rg(s)U(s).
Let 8 be the integral curve of D,. So we have

D, = =7, +r4U.
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Figure 2. General helix (colored with blue (f = 7/3)) and relatively
normal-slant helices (colored with black (§ = 7/3) and green (0 = 7/4))
with same axis d = (0,0, 1)

By differentiating this equation with respect to s we obtain
B" = (15 — kigkin) T + (Ky + KnTg)U,
B = (15 — Kgkin) T+ (15 — Kgkin)(kgV + KnU)
+(ky + knTg) U+ (Ky + knTg) (=T — T4V).
Therefore, since
B'x B = (= kil +73) 4 Tyrg = Ty, )V,

the curvature kg of 5 is obtained as

18" x 8" | 1 / / 5, o
Kp = = (Tgkg — KgTg — kn(kg +75) | = ou(s)
A (2472)s 70 0 o
and the torsion 75 of f is obtained as
B </Bl X /8//,/8/”> B 1
8 = 18 xB 2
Therefore
T8 1

Kg ~ o (s)
It means that v is a relatively normal-slant helix if and only if the integral curve of the
rectifying Darboux vector field D, is a circular helix. O

6.3. Theorem. Let y: I — M C E? be a unit speed curve with (rg(s),74(s)) # (0,0).
Then the following conditions are equivalent.

i) v is a relatively normal-slant heliz,
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i) The relatively normal-indicatriz of v is part of a circle in S?,
i1i) ou(s) = <2123(Téf€g — KTy — Kn(ky + 7'92)> (s) is constant,
(R2+472)2

iv) There ezists a unit vector d such that <cl7 HB—IH> is constant,

v) The V-direction curve of v is a general heliz,

vi) The Dr-integral curve of v is a circular heliz.

7. Further characterizations

Similar to the previous sections, we can also give the following characterizations for
the general helices and isophote curves.

7.1. Theorem. Let M be an oriented surface in E3, v : I C R — M be a regular curve
with arc-length parametrization and D,, be the normal Darbouz vector field of v. Then y
is a general heliz if and only if the integral curve of the normal Darbouz vector field D,
s a circular heliz.

7.2. Theorem. Let M be an oriented surface in B3, v : I C R — M be a regular curve
with arc-length parametrization and D, be the osculating Darbouz vector field of v. Then
v 1s an isophote curve if and only if the integral curve of the osculating Darbouz vector
field D, is a circular heliz.
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