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On some new length problem for analytic functions

Janusz Sokóª∗ and Mamoru Nunokawa †

Abstract

Let H denote the class of analytic functions in the unit disk |z| < 1. Let
C(r, f) be the closed curve which is the image of the circle |z| = r < 1
under the mapping w = f(z) ∈ H, L(r, f) the length of C(r, f) and
let A(r, f) be the area enclosed by C(r, f). Let l(reiθ, f) be the length

of the image curve of the line segment joining reiθ and rei(θ+π) un-
der the mapping w = f(z) and let l(r, f) = max0≤θ<2π l(re

iθ, f).
We �nd upper bound for l(r, f) for f(z) in some known classes of

functions. Moreover, we prove that l(r, f) = O
(
log 1

1−r

)
and that

L(r, f) = O
{
A(r, f) log 1

1−r

}1/2

as r → 1 under weaker assumptions

on f(z) than some previous results of this type.
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1. Introduction

Let H denote the class of analytic functions in the unit disk D = {z ∈ C : |z| < 1}.
Let A be the class of functions

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in D. Recall that a set E ⊂ C is said to be starlike with respect to a
point w0 ∈ E if and only if the linear segment joining w0 to every other point w ∈ E lies
entirely in E, while a set E is said to be convex if and only if it is starlike with respect
to each of its points, that is if and only if the linear segment joining any two points of E
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lies entirely in E. A univalent function f maps D onto convex domain E if and only if
[13]

(1.2) Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 for all z ∈ D

and then f(z) is said to be convex in D (or brie�y convex). Let S, C denote the subclasses
of A consisting of all functions that are univalent, convex univalent in D, respectively.

Let C(r, f) be the closed curve which is the image of |z| = r < 1 under the mapping
w = f(z). Let L(r, f) denote the length of C(r, f) and let A(r, f) be the area enclosed
by C(r, f).

If f ∈ A satis�es

Re

{
zf ′(z)

f(z)

}
> 0, z ∈ D,

then f(z) is said to be starlike with respect to the origin in D and it is denoted by
f(z) ∈ S∗. It is known that S∗ ⊂ S.

De�nition. Let l(reiθ, f) be the length of the image curve of the line segment joining

reiθ and rei(θ+π) under the mapping w = f(z), f(z) ∈ H

l(reiθ, f) =

∫ r

−r
|f ′(ρeiθ)| dρ.

and let

l(r, f) = max
0≤θ<2π

l(reiθ, f) = max

{∫ r

−r
|f ′(ρeiθ)| dρ : 0 ≤ θ < 2π

}
.

For instance, it is easy to establish that l(r, z) = 2r, l(r, z2) = 2r2. To �nd an example
for bounded function recall the following result from [6]. If f(z) ∈ A then

|f(z)| < 1 ⇒ |f ′(z)| ≤ 25

24
in |z| ≤ 1

2
.

Hence, if f(z) ∈ A, |f(z)| < 1, then l(1/2, f) ≤ 25
24
. It is possible to establish l(r, f) in

known classes of functions. We put now suitable de�nition.
Let Q be a subclass of H and let 0 < r < 1. We write

l(r,Q) ≤ q(r) ⇔ { ∀f ∈ Q ∀r : l(r, f) ≤ q(r) }

and

l(r,Q) = s(r) ⇔ { l(r,Q) ≤ s(r) and ∀r ∃g ∈ Q : l(r, g) = s(r) } .

1.1. Theorem. We have

(1.3) l(r,C) =
2r

1− r2 , l(r, S) =
2r(1 + r2)

(1− r2)2 , l(r, S∗) =
2r(1 + r2)

(1− r2)2 ,

where S, S∗, C denote the subclasses of A consisting of all functions that are univalent,

starlike univalent, convex univalent in D, respectively.

Proof. Recall that if f(z) ∈ C, [3], then we have

|f ′(z)| ≤ 1

(1− r)2 , z = reiθ.
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Therefore, for f(z) ∈ C, we have

l (r, f(z)) = max

{∫ r

−r

∣∣∣f ′(ρeiθ)∣∣∣ dρ : 0 ≤ θ < 2π

}
≤ max

{∫ r

−r

1

(1− ρ)2 dρ : 0 ≤ θ < 2π

}
=

∫ r

−r

1

(1− ρ)2 dρ

=
2r

1− r2 .

Thus l(r,C) ≤ 2r
1−r2 . Furthermore, g(z) = z

1−z is in C and g′(z) = 1
(1−z)2 , hence

l

(
r,

z

1− z

)
= max

{∫ r

−r

∣∣∣∣ 1

(1− ρeiθ)2

∣∣∣∣ dρ : 0 ≤ θ < 2π

}
= max

{∫ r

−r

1

1 + ρ2 − 2ρ cos θ
dρ : 0 ≤ θ < 2π

}
=

∫ r

−r

1

1 + ρ2 − 2ρ
dρ

=
2r

1− r2 .

This completes the proof of the �rst formula of (1.3). To prove the second one recall that
if f(z) ∈ S, [3], then we have

|f ′(z)| ≤ 1 + r

(1− r)3 , z = reiθ.

Therefore, if f(z) ∈ S, we have

l (r, f(z)) = max

{∫ r

−r

∣∣∣f ′(ρeiθ)∣∣∣ dρ : 0 ≤ θ < 2π

}
≤ max

{∫ r

−r

1 + ρ

(1− ρ)3 dρ : 0 ≤ θ < 2π

}
=

∫ r

−r

1 + ρ

(1− ρ)3 dρ

=

[
ρ

(1− ρ)2

]r
−r

=
2r(1 + r2)

(1− r2)2 .
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Thus l(r, S) ≤ 2r(1+r2)

(1−r2)2 . Furthermore, consider the Koebe function f(z) = z
(1−z)2 , then

f ′(z) = 1+z
(1−z)3 , hence

l

(
r,

z

(1− z)2

)
= max

{∫ r

−r

∣∣∣∣ 1 + ρeiθ

(1− ρeiθ)3

∣∣∣∣ dρ : 0 ≤ θ < 2π

}
= max

{∫ r

−r

√
1 + ρ2 + 2ρ cos θ

(1 + ρ2 − 2ρ cos θ)3/2
dρ : 0 ≤ θ < 2π

}

=

∫ r

−r

√
1 + ρ2 + 2ρ

(1 + ρ2 − 2ρ)3/2
dρ

=

∫ r

−r

1 + ρ

(1− ρ)3 dρ

=

[
ρ

(1− ρ)2

]r
−r

=
2r(1 + r2)

(1− r2)2 .

This shows that l(r, S) = 2r(1+r2)

(1−r2)2 . Because the Koebe function is also starlike function

then l(r, S∗) = 2r(1+r2)

(1−r2)2 too. �

In [7] it was introduced the following class

N
′ = {f(z) ∈ A : | arg{f ′(z)}| < π}.

It was proved in [7] that if f(z) ∈ N′, then

|f ′(z)| ≤
(
1 + r

1− r

)2

, z = reiθ.

Therefore, for f(z) ∈ N′, we have

l (r, f(z)) = max

{∫ r

−r

∣∣∣f ′(ρeiθ)∣∣∣ dρ : 0 ≤ θ < 2π

}
≤ max

{∫ r

−r

(
1 + ρ

1− ρ

)2

dρ : 0 ≤ θ < 2π

}

=

[
ρ+ 4 log(1− ρ) + 4

1− ρ

]r
−r

= 2r + 4 log
1− r
1 + r

+
8r

1− r2 .

Thus l(r,N′) ≤ 2r+4 log 1−r
1+r

+ 8r
1−r2 . Furthermore, The function h(z) = (1+z)2/(1−z)2

shows that l(r,N′) = 2r + 4 log 1−r
1+r

+ 8r
1−r2

If f(z) = 1+z
1−z , then f

′(z) = 2
(1−z)2 , hence

l

(
r,

1 + z

1− z

)
= max

{∫ r

−r

∣∣∣∣ 2

(1− ρeiθ)2

∣∣∣∣ dρ : 0 ≤ θ < 2π

}
= max

{∫ r

−r

2

1 + ρ2 − 2ρ cos θ
dρ : 0 ≤ θ < 2π

}
=

∫ r

−r

2

1 + ρ2 − 2ρ
dρ

=
4r

1− r2 .
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It is known that if P denotes the class of functions h(z) ∈ H, h(z) = 1+ . . ., with positive
real part in the unit disc, then

|h′(z)| ≤ 2

(1− r)2 , z = reiθ.

Therefore, applying the same methods as the above we can obtain that l(r,P) = 4r
1−r2 .

-
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Fig. 1. A picture for De�nition.
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2. Main results

2.1. Theorem. Let f(z) be analytic in D and suppose that f ′(z) be continuous on D.
Then we have

(2.1) l(r, f) ≤ 1

2
L(r, f).

Proof. We will need the following Fejér-Riesz's result:

2.2. Lemma. [2], [3, p.175] Let g(z) be analytic in D and continuous on D and 0 < p.
Then we have

(2.2)

∫ 1

−1

|g(z)|pdz ≤ 1

2

∫
|z|=1

|g(z)|p|dz|,

where the integral on the left is taken along the real axis.

We have

(2.3) l(reiθ, f) =

∫ r

−r
|f ′(ρeiθ)| dρ =

∫ 1

−1

|f ′(rteiθ)| d(rt) =
∫ 1

−1

|f ′(z)| |dz|

for all θ, 0 ≤ θ < 2π. Moreover,

(2.4) L(r, f) =

∫ 2π

0

|teiθf ′(teiθ)|dθ =

∫
|z|=1

|f ′(z)||dz|

Applying Fejér-Riesz's lemma 2.2 for p = 1 and g(z) = f ′(z), we have∫ 1

−1

|f ′(z)||dz| ≤ 1

2

∫
|z|=1

|f ′(z)||dz|,
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therefore, from (2.3) and from (2.4), we have

(2.5) l(reiθ, f) ≤ 1

2
L(r, f)

for all θ, 0 ≤ θ < 2π. This gives

(2.6) l(r, f) = max
0≤θ<2π

l(reiθ) ≤ 1

2
L(r, f).

�

2.3. Remark. Theorem 2.1 says that l(reiθ, f) may not to be too large in comparison
with L(r, f).

2.4. Theorem. Let f(z) be analytic in D and suppose that

(2.7) |f ′(z)| ≤
∣∣∣∣1 + z

1− z

∣∣∣∣ z ∈ D,

then we have

(2.8) l(r, f) ≤ O

(
log

1

1− r

)
as r → 1,

where O means Landau's symbol.

Proof. From the hypothesis (2.7) it follows that

l(reiθ, f) =

∫ r

−r
|f ′(ρeiθ)| dρ

≤
∫ r

−r

1 + ρ

1− ρ dρ

= 2 log(1 + r)− 2r − 2 log(1− r)
for all θ, 0 ≤ θ < 2π. Therefore,

l(r, f) ≤ 2 log(1 + r)− 2r − 2 log(1− r).
This gives (2.8) and it completes the proof of Theorem. 2.4. �

Let us de�ne M(r, f) by

M(r, f) = max
0≤θ<2π

|f(reiθ)|.

Then F. R. Keogh [5] has shown that

2.5. Theorem. [5] Suppose that f(z) ∈ S∗. Then we have

L(r, f) = O

(
M(r, f) log

1

1− r

)
as r → 1,

where O means Landau's symbol.

Furthermore, D. K. Thomas in [14] extended this result for bounded close-to-convex
functions. A function f(z) is said to be close-to-convex if f ∈ A satis�es

(2.9) Re

{
zf ′(z)

eiαg(z)

}
> 0, z ∈ D

for some g(z) ∈ S∗ and some α ∈ (−π/2, π/2). The class of close-to-convex functions is
denoted by K.

It is known that K ⊂ S. An univalent function f ∈ S belongs to K if and only if
the complement E of the image-region F = {f(z) : |z| < 1} is the union of rays that are
disjoint (except that the origin of one ray may lie on another one of the rays).
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Recall that A(r, f) is the area enclosed by C(r, f), where C(r, f) is the image of
|z| = r < 1 under the mapping w = f(z). In [15] D. K. Thomas has shown that

2.6. Theorem. [15, Th.1] If f(z) ∈ S∗, then

L(r, f) ≤ 2
√
πA(r, f)

(
1 + log

1 + r

1− r

)
as r → 1.

Also, in [12] Ch. Pommerenke has shown that

2.7. Theorem. [12] If f(z) ∈ K, then

L(r, f) = O

{
M(r, f)

(
log

1

1− r

)5/2
}

as r → 1.

Moreover, in [8, 9] the second author has shown that

2.8. Theorem. If zf ′(z) ∈ S∗, then

L(r, f) = O

{
A(r, f) log

1

1− r

}1/2

as r → 1.

Here, we consider a related problem.

2.9. Theorem. Let f(z) be of the form (1.1) and suppose that

(2.10)

∣∣∣∣1 +Re
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z

1− z

∣∣∣∣α z ∈ D,

where 0 < α < 1/2. Then we have

(2.11) L(r, f) = O

(
A(r, f) log

1

1− r

)1/2

as r → 1,

where O means Landau's symbol.

Proof. It is known, for instance see [16, p.227], that if h(z) = u(z) + iv(z) is analytic in
|z| ≤ R, then

(2.12) h(z) =
1

2π

∫ 2π

0

u(Reiϕ)
Reiϕ + z

Reiϕ − z dϕ+ iv(0).

Moreover, if |z| < R, v(0) = 0, then

(2.13) |h(z)| ≤ 1

2π

∫ 2π

0

|u(Reiϕ)|
∣∣∣∣Reiϕ + z

Reiϕ − z

∣∣∣∣dϕ.
Applying the harmonic function theory, Schwarz's lemma, Hayman's result [4, p.280] and
[1, p.491]:∫ 2π

0

dθ

|1− reiθ|α =


O
(
(1− r)1−α

)
for the case 1 < α,

O
(
log 1

1−r

)
for the case α = 1,

O (1) for the case 0 ≤ α < 1,

where 0 < r < 1, 0 ≤ θ ≤ 2π, 0 ≤ α, and using the symbol C to be an absolute positive
constant, not necessary the same value at each time throughout in this paper, we have

L(r, f) =

∫ 2π

0

|zf ′(z)|dθ

≤
∫ 2π

0

∫ r

0

∣∣f ′(z) + zf ′′(z)
∣∣dρdθ

=

∫ r

0

∫ 2π

0

|f ′(z)|
∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ dθdρ.
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Therefore, we have

L(r, f) ≤ 1

2π

∫ r

0

∫ 2π

0

|f ′(z)|
(∫ 2π

0

∣∣∣∣1 +Re
ζf ′′(ζ)

f ′(ζ)

∣∣∣∣ ∣∣∣∣ζ + z

ζ − z

∣∣∣∣ dϕ)dθdρ

≤ 1

2π

∫ r

0

∫ 2π

0

|f ′(z)|

{∫ 2π

0

∣∣∣∣1 + ζ

1− ζ

∣∣∣∣2α dϕ

}1/2{∫ 2π

0

∣∣∣∣ζ + z

ζ − z

∣∣∣∣2 dϕ
}1/2

dθdρ

≤ C
∫ r

0

∫ 2π

0

|f ′(z)|
(

1

|ζ|2 − |z|2

)1/2

dθdρ

≤ C
∫ r

0

∫ 2π

0

|f ′(z)|
(

1

1− ρ2

)1/2

dθdρ

= C

∫ r

0

∫ 2π

0

∣∣∣∣ f ′(z)√
1 + ρ

∣∣∣∣ ( 1

1− ρ

)1/2

dθdρ,

where z = ρeiθ, ζ = |ζ|eiϕ, 0 ≤ |z| = ρ < |ζ| < 1, |ζ| =
√

(1 + ρ2)/2 and where 0 < r < 1.

If ρ ≥ (
√
5− 1)/2, then

1

1 + ρ
≤ ρ.

Therefore, for r1 ≥ (
√
5− 1)/2, we have

L(r, f) ≤ C
(∫ r

0

∫ 2π

0

|f ′(z)|2

1 + ρ
dθdρ

)1/2(∫ r

0

∫ 2π

0

1

1− ρdθdρ
)1/2

≤ C
(∫ r1

0

∫ 2π

0

|f ′(z)|2

1 + ρ
dθdρ+

∫ r

r1

∫ 2π

0

ρ|f ′(z)|2dθdρ
)1/2(

log
1

1− r

)1/2

≤ C
(∫ r1

0

∫ 2π

0

|f ′(z)|2

1 + ρ
dθdρ+A(r, f)−A(r1, f)

)1/2(
log

1

1− r

)1/2

.

If r → 1, we get (2.11). �

Some length problems for analytic functions were considered also in our recent papers
[10, 11].
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