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On the category of ultra-groups

B. Tolue∗†, Gh. Moghaddasi‡ and P. Zolfaghari�

Abstract

This article has been prepared based on a new concept of an ultra-group

HM which is depend on a group G and its subgroup H. Our aim is
to introduce the category of ultra-groups and investigate about some
properties of this category.
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1. Introduction

A pair (A,B) of subsets of a group G is called transversal if the equality ab = a′b′

implies a = a′ and b = b′, where a, a′ ∈ A, b, b′ ∈ B. This notion was introduced by
Kurosh in [6] which is the base of the concept of an ultra-group. The de�nition of the
transversal for a pair of subsets can be generalized for a pair of a subgroup and a subset
of a group. A pair (H,M) of subgroup H and subsetM of a group G is right transversal,
if M ∩H = {eG} and M ∩Hg contains at most one element, for all g ∈ G. In the other
words, the pair (H,M) is a right transversal if and only if a subset M of G obtained by
selecting one and only one member from each right coset of H. Moreover, a subset M
of a group G is called right unitary complementary set with respect to a subgroup H if
G = HM . Therefore for any elements m ∈ M and h ∈ H there exists unique elements

h
′
∈ H and m

′
∈ M such that mh = h

′
m
′
. We denote h′ and m′ by mh and mh,

respectively. For any elements m1,m2 ∈ M there exist unique elements [m1,m2] ∈ M
and (m1,m2)h ∈ H such that m1m2 = (m1,m2)h[m1,m2]. Furthermore for every element

a ∈ M , there exists a(−1) ∈ H and a[−1] ∈ M such that a−1 = a(−1)a[−1]. Now we are
ready to de�ne right ultra-group.
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1.1. De�nition. Let M be a right transversal set of a subgroup H over the group G.
The set M together with a binary operation α : M× M → M and a family of unary
operations βh : M → M de�ned by α((m1,m2)) := [m1,m2] and βh(m) := mh for all
h ∈ H is called right ultra-group.

In the de�nition of the right transversal, if we replace the right cosets Hg with the
left cosets gH, thenM is called left transversal, for all g ∈ G. Similarly we can de�ne left
ultra-group by use of left transversal set. We use the notation HM (MH) to represent
the right (left) ultra-group M of subgroup H. In this text we concentrate on the right
ultra-group. If it is necessary, then we denote the ultra-group by the triple (HM , α, βh)
and note that βh is a monomorphism.
The aim of this paper is to introduce some of the basic notions in the ultra-groups cate-
gory. In the next section the category of ultra-groups is studied which is denoted by Ulg.
Some elementary facts such as initial and terminal objects in this category is obtained.
We de�ne the Cartesian and free product of ultra-groups. The monomorphisms and epi-
morphisms of Ulg are one to one and onto homomorphisms, respectively. Especially we
show that each set-indexed family of objects in an ultra-groups category has (co)product
and each pair of parallel morphisms has (co)equalizer. Therefore Ulg is (co)complete.
The ultra-group category has pullback and pushout. Finally, we discuss about the free
object in the category of ultra-groups.

We may hope the category of ultra-groups to be used as a strong tool in proving the
theorems and unsolved problems for the other categories such as category of groups and
quasi-groups. Moreover, we expect one may consider the properties of the ultra groups
in justifying the associate theorems for the groups.

All the notations in this paper is standard, we may refer the reader to see [1, 5, 7] for
more details.

2. Preliminaries and notations

In this section we give some preliminaries about the ultra-groups of a subgroup over
a group.

2.1. De�nition. Let HM be an ultra-group of a subgroup H over a group G. A subset
S ⊆ HM which contains the identity element of the group G, is called a subultra-group
of HM , if S is closed under the operations α and βh in the De�nition 1.1.

It is obvious that {e} is a trivial subultra-group for all the ultra-groups HM . Suppose
A,B are two subsets of the ultra-group HM . We use the notation [A,B] for the set of
all [a, b], where a ∈ A and b ∈ B. If B is a singleton {b}, then we denote [A,B] by [A, b].
Moreover, if A is a subultra-group of the ultra-group HM and b ∈ HM , then the subset
[A, b] is called a right coset of A in HM . In the following we recall some results which
are useful in sequel (see [7] for more details). The next lemma is a direct result of the
De�nition 2.1.

2.2. Lemma. [7, Lemma 2.1] Let S be a subultra-group of the ultra-group HM over a
group G and a, b ∈ HM . Then the following conditions are equivalent.
(i) a ∈ [S, b],
(ii) [S, a] = [S, b],

(iii) [a(b
(−1)), b[−1]] ∈ S.

By Lemma 2.2 we deduce [S, a] = [S, b] or [S, a] ∩ [S, b] = ∅, which implies

HM =
⋃
a∈HM

[S, a].
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2.3. Lemma. [7, Lemma 2.4] Let S be a subultra-group of the ultra-group HM over
group G . Then

(i) [ab
(−1)

, b[−1]] ∈ S if and only if there exist s ∈ S such that a = [s, b].
(ii) The relation θ on HM de�ned by aθb if and only if there exists s ∈ S such that
a = [s, b], is an equivalence relation.

From now on we use the notation θ for the equivalence relation which is satis�ed in the
second part of Lemma 2.3.

2.4. De�nition. [7, De�nition 2.8] A subultra-group N of an ultra-group HM over a
group G is called normal if [a, [N, b]] = [N, [a, b]], for all a, b ∈ HM .

For instance if we denote the equivalence class of e with respect to the equivalence
relation of θ in the second part of Lemma 2.3 by [e]θ, then [e]θ = S is a normal subultra-
group of HM . If it is necessary, then we can switch S and θ on some situations, in
sequel.

2.5. Lemma. [7, Lemma 2.5] Let N be a normal subultra-group of an ultra-group HM
over a group G . Then we have the following properties,
(i) [a,N ] = [N, a], for all a ∈ HM .
(ii) [[N, a], [N, b]] = [N, [a, b]], for all a, b ∈ HM .
(iii) If [N, b] = N , then b ∈ N .
(iv) [N,S] is a subultra-group of HM , where S is a subultra-group of HM . Moreover,
[N,S] is a normal subultra-group of HM if S is also normal subultra-group of HM .

2.6. De�nition. Suppose HiMi is an ultra-group of a subgroup Hi over the group
Gi, i = 1, 2, and ϕ is a group homomorphism between two subgroups H1 and H2. A
function f : H1M1 −→ H2M2 is called ultra-group homomorphism provided that for
all m,m1,m2 ∈ H1M1 and h ∈ H1:

(i) f([m1,m2]) = [f(m1), f(m2)],

(ii) (f(m))ϕ(h) = f(mh).

From the other point of view, an ultra-group homomorphism f is a function such that
the following two diagrams commute,

H1M1 ×H1 M1
α1→ H1M1

↓ f × f ↓ f

H2M2 ×H2 M2
α2→ H2M2

H1M1 ×H1
β1→ H1M1

↓ f × ϕ ↓ f

H2M2 ×H2
β2→ H2M2

where αi is the �rst binary operation of HiMi, βi inspired by {βhi | hi ∈ Hi}, i = 1, 2. If
f is a surjective and injective ultra-group homomorphism, then it is called isomorphism
and denoted by H1M1

∼= H2M2. In the sequel ϕ is a group homomorphism between two
subgroups of the group for which the ultra-groups are de�ned. If S is a subultra-group
of H1M1 and ϕ is onto, then f(S) is a subultra-group of H2M2. Moreover, Ker(f) is a
normal subultra-group of H1M1.

2.7. Remark. By considering the same notations as in the De�nition 2.6, we conclude
the following identities.

(i) f(a[−1]) = (f(a))[−1],

(ii) f(ab
(−1)

) = (f(a))(f(b))
(−1)

, where a, b ∈ H1M1.

It is straightforward that for each ultra-group HM , idHM : HM −→ HM is an
ultra-group homomorphism and the composite of two ultra-group homomorphisms is
an ultra-group homomorphism. Therefore we have the category Ulg, which the objects
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are ultra-groups (denoted by HM, KN, · · · ) and morphisms are ultra-group homomor-
phisms. Indeed, the set of all ultra-group homomorphisms between two ultra-group HM ,

KN is denoted by Hom(HM, KN).

2.8. Theorem. Let f : H′M
′
−→ HM be a ultra-group morphism and let g : H′′M

′′
−→

HM be an injective ultra-group morphism. There is an ultra-group morphism h : H′M
′

−→ H
′′M

′′
such that f = g ◦h if and only if f(H′M

′
) ⊆ g(H′′M

′′
) and ϕ(H ′) ⊆ ψ(H ′′),

where ϕ : H ′ −→ H and ψ : H ′′ −→ H are epimorphism and homomorphism in groups
respectively.

Proof. Su�ciently put h = g−1 ◦ f . �

For each subgroupH of a groupG, the trivial subultra-group {e} is initial and terminal
object. Since | Hom({e}, HM) | = | Hom(HM , {e}) | = 1 for each ultra-group HM .

2.9. De�nition. Let (HiMi, αi, βi) be ultra-groups over the groups Gi, i = 1, 2. Con-
sider the set H1M1 × H2M2 = {(m1,m2) : mi ∈ HiMi, i = 1, 2}, such that α, βh
are de�ned by α((m1,m2), (m

′
1,m

′
2)) = (α1(m1,m

′
1), α2(m2,m

′
2)), and βh(m1,m2) =

(β1(m1), β2(m2)), where h = (h1, h2) ∈ H1 × H2. By an easy computation we can de-
duce that H1M1 × H2M2 is an ultra-group of subgroup H1×H2 over group G1×G2. We
call H1M1 × H2M2 the Cartesian product of two ultra-groups H1M1 and H2M2.

If Ni are subultra-groups of ultra-groups HiMi, then N1 ×N2 is a subultra-group of

H1M1 × H2M2, i = 1, 2. The proof of the following lemma is clear so we omit it.

2.10. Lemma. If (HiMi, αi, βi) are ultra-groups over the groups Gi, then the surjec-
tive map πi : H1M1 × H2M2 −→ HiMi such that πi(m1,m2) = mi is a ultra-group
homomorphism, for mi ∈ HiMi, i = 1, 2.

We can extend the Cartesian product of two ultra-groups to the family of ultra-groups
{HiMi : i ∈ I} easily. The following theorem show that this Cartesian is product in the
category Ulg.

2.11. Theorem. Let {HiMi : i ∈ I} be a family of ultra-groups and {fi : HM −→ HiMi

: i ∈ I} a family of ultra-group homomorphisms, where HM is an arbitrary ultra-group.
Then there is a unique homomorphism f : HM −→

∏
HiMi such that πif = fi, for all

i ∈ I. In other words,
∏

HiMi is a product in the category of ultra-groups.

Proof. We de�ne f : M −→
∏

HiMi by f(m) = {fi(m)}i∈I ∈
∏
Hi
Mi which is a

unique function satis�es πif = fi for all i ∈ I. It is easy to prove that f is an ultra-group
homomorphism. Hence the assertion follows. �

Suppose {(Mi, αi, βi), : i ∈ I} is a family of ultra-groups such that Mi ∩Mj = ∅, for
all distinct i, j ∈ I. Similar to the reduced word for free product of groups we can de�ne
reduced word here (see [6] for more details). The set of all the reduced words is denoted
by

∏∗Mi. Assume G =
∏∗Gi and H =

∏∗Hi are known free products in the category
of groups, i ∈ I. De�ne the binary operation α by

α :
∏∗Mi ×

∏∗Mi −→
∏∗Mi

(a, b) 7→ ab = a1a2 · · · anb1b2 · · · bm.
and unary βh as follows

βh :
∏∗Mi −→

∏∗Mi

a 7→
∏n
i=1 βj(ai),

where a = a1a2 · · · an, b = b1b2 · · · bm, ai ∈Mj and h ∈ H. Hence, the triple (
∏∗Mi, α, βh)

is an ultra-group of the group G with respect to the subgroupH. Note that, if an, b1 ∈Mj
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then anb1 means αj(an, b1). We call
∏∗Mi the free product of the family of ultra-groups

{Mi : i ∈ I}. We can de�ne an injective ultra-group homomorphism τj :Mj −→
∏∗
i∈IMi

such that τj(m) = {mi}i∈I , where mi = e for i 6= j and mj = m.

2.12. Notation. Although we have associativity property for the groups, but this prop-
erty is not valid for the binary operation α of the ultra-groups. Therefore, we convent
α(a, b, c) = α(α(a, b), c), where a, b, c are the elements of the ultra-group M and α is its
�rst binary operation over it.

2.13. Theorem. Let {HiMi : i ∈ I} be a family of ultra-groups and {fi : HiMi −→ M :
i ∈ I} a family of ultra-group homomorphisms. Then there is a unique homomorphism
f :

∏∗
HiMi −→ M such that fτi = fi, for all i ∈ I. In other words,

∏∗
HiMi is a

coproduct in the category of ultra-groups.

Proof. Suppose m1m2 · · ·mn is a reduced word in
∏∗
Hi
Mi, with mk ∈Mik . It is enough

to de�ne f(m1m2 · · ·mn) = α(fi1(m1), fi2(m2), · · · , fin(mn)) ∈M . �

2.14. Lemma. Let f be a homomorphism between two ultra groups H1M1 and H2M2

with K = Ker(f) = {m ∈ M1 | f(m) = eM2}. Then f(m1) = f(m2) if and only if
m1 = [k,m2] for some k ∈ K.

Proof. Suppose f(m1) = f(m2), so we have [(f(m1))
(f(m2))

(−1)

,(f(m2))
[−1]]= f([m

m
(−1)
2

1 ,

m
[−1]
2 ]) = e. This means that [m

m
(−1)
2

1 ,m
[−1]
2 ] ∈ K, thus m1 = [k,m2] for some k ∈ K.

Conversely f(m1) = f([k,m2]) = [f(k), f(m2)] = f(m2). �

2.15. Corollary. Suppose HiMi are ultra-groups of Hi over the groups Gi, i = 1, 2.
An ultra-group homomorphism f : H1M1 −→ H2M2 is injective if and only if Ker(f) =
{eM1}.

Proof. Assume Ker(f) = {eM1} and g, h are ultra-group homomorphisms between ultra-
groups HM and H1M1 such that fg(m) = fh(m) for all m ∈H M . Therefore, by well-
de�nedness of the unary operation βh, the fact that f is a homomorphism and identities
of Remark 2.7, we deduce the following equivalent equalities.

(f(g(m)))(f(h(m)))(−1)

= (f(h(m)))(f(h(m)))(−1)

⇐⇒ [(f(g(m)))(f(h(m)))(−1)

, (f(h(m)))[−1]] = [(f(h(m)))(f(h(m)))(−1)

, (f(h(m)))[−1]]

⇐⇒ f [(g(m))(h(m))(−1)

, h(m)[−1]] = eM2 .

Now, the hypothesis Ker(f) = {eM1} implies that the [(g(m))(h(m))(−1)

, h(m)[−1]] = eM1 ,

but also we know [(h(m))h(m)(−1)

, h(m)[−1]] = eM1 . By uniqueness of left inverse for
every element of right ultra-group and since βh is a monomorphism, we conclude that
g(m) = h(m) for all m ∈ MH . Conversely, suppose that m ∈ Ker(f). Put g(m) = m
and h(m) = e. Therefore fg(m) = fh(m) and g = h. �

2.16. Theorem. Suppose HiMi are ultra-groups of Hi over the groups Gi, i = 1, 2. An
ultra-group homomorphism f : H1M1 −→ H2M2 is monomorphism if and only if it is an
injective ultra-group homomorphism.

Proof. Let f be a monomorphism. De�ne the homomorphisms g(m) = m and h(m) =
[K,m] for all m ∈ H1M1, where K = {m ∈ M1 | f(m) = eM2}. Therefore fg(m) =
f(m) = [eM2 , f(m)] = [f(K), f(m)] = f([K,m]) = fh(m) for all m ∈ H1M1. Since
f is a monomorphism, thus m = [K,m] and with the right cancelation for the right
ultra-groups conclude that K = {eM1} . The converse clear. �
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2.17. Theorem. Suppose HiMi are ultra-groups of Hi over the groups Gi, i = 1, 2 and
ϕ is an onto group homomorphism between H1 and H2. An ultra-group homomorphism
f : H1M1 −→ H2M2 is an epimorphism if and only if f is a surjective ultra-group
homomorphism.

Proof. Suppose that f : H1M1 −→ H2M2 is an ultra-group epimorphism and L = Imf .
Clearly L is a subultra-group of H2M2. If f is not a surjective ultra-group homomorphism,
then there exists an a ∈ H2M2 − L. Put X = {[L,m] | m ∈ H2M2} ∪ {a}, where [L,m]
the right coset of ultra-group (see [7] for more details). De�ne the permutation σ on the
set X by

σ(x) =

{ a, x = L
L, x = a
[L,m], x = [L,m], m ∈ H2M2 − L.

Consider two ultra-group homomorphisms g, h : H2M2 −→ S(X) by the rules as follows,

g(m)(s) =

{
[[L,m′],m], if s = [L,m′] for some m′ ∈ H2M2

a, if s = a,

and h(m) = σ ◦ g(m) ◦ σ−1, where S(X) is the permutation group on X, ◦ denotes the
usual composition and σ−1 is the inverse permutation of σ. Therefore, gf = hf and
by hypothesis g = h. But a ∈ ( H2M2 − L) and g(a) = h(a) which is a contradiction,
because easily one can see if a 6∈ L, then g(a) 6= h(a). Thus, we conclude that such an
element a in H2M2 − L does not exist and the assertion is clear. �

A category is balanced if every monic epic morphism is an isomorphism. Monic
epics are sometimes called bimorphisms. In the category Ulg the monomorphisms and
epimorphisms are the homomorphisms which are one to one and onto respectively. Thus
we have the following corollary.

2.18. Corollary. The category Ulg is a balanced category.

We continue with the following useful lemma.

2.19. Lemma. Let f, g :H1 M1 −→H2 M2 be a pair of morphisms in the category Ulg.
Then N = {m ∈H1 M1 | f(m) = g(m)} is a subultra-group of H1M1.

Proof. Obviously e ∈ N , and f([m1,m2]) = [f(m1), f(m2)] = [g(m1), g(m2)] = g([m1,m2])

for all m1,m2 ∈ N . Moreover, we have f(mh) = f(m)ϕ(h) = g(m)ϕ(h) = g(mh) for all
m ∈ H1M1 and h ∈ H where ϕ is a group homomorphism between two subgroups H1

and H2. �

The equalizer of two arbitrary ultra-group morphisms f, g : HM −→ H
′M

′
is the

subultra-group K = {m ∈ HM : f(m) = g(m)} together with the inclusion ultra-group
morphism i : K −→ HM . Since by Lemma 2.19 the subset K of M is a subultra-group

of HM , and fi = gi. Moreover, for any other ultra-group K
′
, let j : K

′
−→ HM be

an ultra-group morphism such that fj = gj. Thus j(K
′
) is a subultra-group of K by

argument [7, Proposition 2.10]. We can de�ne an ultra-group morphism h : K
′
−→ K

by h(k
′
) = j(k

′
). Hence j satis�es the equality j = ih and the uniqueness of i follows by

in [1, Proposition 2.4.3].
In particular, the equalizers of the pair (f, f) always exists and is just the identity

on HM . One can construct an example of equalizer in Ulg. For instance, every normal
subultra-group is an equalizer. Let N be a normal subultra-group of ultra-group HM .
The equivalence relation θ on HM which is de�ned by
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a θ b⇐⇒ [ab
−1

, b[−1]] ∈ N ,

is a congruence over ultra-group HM . Then N can be considered as the equalizer of two
ultra-group homomorphisms f1, f2 : HM −→ HM/θ which is de�ned by f1(m) = [e]θ
and f2(m) = [m]θ for all m ∈ HM .

In abstract algebra a complete category is a category in which all small limits exists.
It follows from the existence theorem for limits that a category is complete if and only
if it has pullbacks and products. In the following we are ready to prove one of our main
results.

2.20. Theorem. The category of Ulg is complete.

Proof. By the above argument it is enough to present products and pullbacks for Ulg.
Clearly by Theorem 2.11, Ulg has product. Consider the following diagram,

H3M3

H2M2

H1M1

g

f

for the arbitrary ultra-groups H1M1, H2M2, H3M3 and the ultra-group homomorphisms
f and g. Consider Q = {(m1,m2) ∈ H1M1 × H2M2 : f(m1) = g(m2)}. Similar to
the proof of Lemma 2.19, Q is a subultra-group of H1M1 × H2M2. Now assume π1

: Q −→ H1M1 and π2 : Q −→ H2M2 such that πi(m1,m2) = mi for i = 1, 2. We
show that the triple (Q, (π1, π2)) is a pullback of f and g. At �rst we have fπ1 = gπ2

by the above construction. Let νi : HM −→ HiMi be ultra-group homorphisms such
that fν1 = gν2 for an arbitrary ultra-group HM , i = 1, 2. De�ne ρ : HM −→ Q by
ρ(m) = (υ1(m), υ2(m)). Obviously πiρ = υi for i = 1, 2. For uniqueness of ρ, let ξ :HM
−→ Q be another ultra-group morphism with the properties ξiρ = υi for i = 1, 2. By
the de�nition of ξ, and the equality πiρ = υi, we have the result. Therefore we have the
following diagram

H3M3

H2M2

H1M1

Q

HM

g

f

π2

π1

υ2

υ1

ρ

�

Although being cocomplete is equivalent to completeness of the category, because
of some interesting preliminaries which occur in the proving process, we are going to



444

demonstrate that the category of Ulg is cocomplete. In the sequel we obtain the smallest
congruence relation generated by a set.

2.21. Lemma. Let fi : HM −→ H
′M

′
be two arbitrary ultra-group morphisms, i = 1, 2

and S = {(f1(m), f2(m)) | m ∈ HM}. Then S∗ =
⋃∞
i=0

Si is the smallest congruence
relation contain S, where

S0 = S ∪ {(m
′
,m
′
) | m

′
∈ f1(HM) or m

′
∈ f2(HM)} ∪ S−1

S1 = S0 ◦ S0 = {(f1(m), f2(m
′
)) | f1(m

′
) = f2(m),m,m

′
∈H M},

Sn = (Sn−1 ◦ Sn−1) ∪ {(ϑ, µ)} ∀n ≥ 2

where

(ϑ, µ) = ([[· · · [[f1(m1), f1(m2)], f1(m3)], · · · ], f1(mn)], [[· · · [[f2(m1), f2(m2)], f2(m3)],

· · · ], f2(mn)]), mi ∈H M for i = 1, 2, · · · , n.

Proof. It is not hard to deduce that S∗ is the equivalence relation of H′M
′
× H

′M
′

containing S. By construction of S∗ and some basic properties of subultra-group, S∗

satis�es the congruence property and it is a congruence. Moreover, let L be another
congruence contains S. It is not di�cult to obtain that S∗ ⊆ L. Therefore S∗ is the
smallest congruence contains S. �

2.22. Theorem. The category Ulg is cocomplete.

Proof. Since in Theorem 2.13 we present the coproduct in the category Ulg, it is enough
to prove that Ulg has coequalizers.

Suppose f, g : HM −→ H
′M

′
are two ultra-group homomorphisms. De�nition 2.3 implies

thatN = {[(f(m))(g(m))(−1)

, g(m)[−1]] | m ∈ HM} is a subultra-group of H′M
′
. Consider

S which is de�ned by (f(m), g(m)) ∈ S if and only if [f(m)g(m)−1

, g(m)[−1]] ∈ N .

Moreover, note that [f(m)g(m)−1

, g(m)[−1]] ∈ N is equivalent to [f(m), N ] = [g(m), N ]
by Lemma 2.2. Further, let S∗ be the smallest equivalence relation on HM such that

S ⊆ S∗ (see Lemma 2.21). Also suppose H′M
′
/S∗ is the factor ultra-group together with

the natural projection ultra-group morphism h : H
′M

′
−→ H

′M
′
/S∗, which is known

to be surjective. We just verify that the coequalizer (f, g) is ( H
′M

′
/S∗, h). Due to

the de�nition of S, (hf)(m) = [f(m), N ] = [g(m), N ] = (hg)(m) for every m ∈ HM .

Let i : H
′M

′
−→ H

′′M
′′
be another ultra-group morphism such that if = ig. Since

if(m) = ig(m) we deduce Kerh = N ⊆ Keri. Now according to Theorem 2.8, there

exists j : H′M
′
/N −→ H

′′M
′′
such that i = jh. �

However, we know the dual of pullbacks is pushouts, in order to emphasis on the
importance of this notion, we intend to discuss about it in the end brie�y. Suppose the
following diagram.

H3M3

H2M2

H1M1

g

f
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By Theorem 2.13 we know the coproduct of H1M1 and H2M2 is the free product HM
=H1M1 ∗ H2M2. Now, it is enough to construct the coequalizer of (HM, (τ1g, τ2f)).
Theorem 2.22 implies that the coequlizer is HM/S∗, where S∗ was introduced in Theorem
2.22. Hence we can complete the above diagram as the following.

H3M3 H1M1

H2M2 HM

HM/S∗

g

f

τ2

τ1

ξ

ξτ1

ξτ2

3. Free ultra-group

Let F be a free group on the non-empty set X (see [3] for more details). The Nielsen-
Schreier theorem states that every subgroup of a free group is itself a free group. Choose
H one of the subgroups of F . Constructing all the ultra-groups of a subgroup over a
group has been vastly discussed in [7]. Suppose (W (X), α, βh) is the ultra-group of the
subgroupH over the free group F , where α and βh are binary and unary operations, for all
h ∈ H. Let w1, w2 ∈W (X). Since W (X) ⊆ F elements of W (X) are all reduced words.
The binary operation on the free group F is just juxtaposition of two reduced words.
Therefore, since w1w2 ∈ F and F = HW (X) we deduce w1w2 = (w1,w2)h[w1, w2], where
(w1,w2)h ∈ H and [w1, w2] ∈ W (X). It is not hard to see that α(w1, w2) = [w1, w2]
by an ultra-group de�nition. Furthermore, since W (X)H ⊆ F = HW (X) we have
wh = whwh. Thus βh(w) = wh, for w ∈ W (X) and all h ∈ H. We call W (X) the
free ultra-group on the non-empty set Y ⊆ X, where Y is the set of all one letter word
such that the words of W (X) is obtained. In the rest of the article without making
causing any problems with the overall content, we consider the free ultra-group W on
the non-empty set X.

3.1. Theorem. The ultra-group W which is described in the above argument is a free
object in Ulg.

Proof. It is enough to show that ultra-group W satis�es the universal property. Let
i : X −→ W be the inclusion map, KM be any ultra-group of a subgroup K over the
group G and g : X −→ KM a function. We claim that there exists a unique ultra-group
homomorphism ψ :W −→ KM such that the following diagram commutes.
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X

KM

W
i

g
ψ

Since F is a free group on the set X, for the group G and the functions g′ : X −→ G and
i′ : X −→ F such that g′ |X= g and i′ |X= i, there exists a unique group homomorphism
ϕ : F −→ G such that ϕ ◦ i′ = g′. Note that, since F = HW we have ϕ(w) =
ϕ(h1h2 . . . hnw1w2 . . . wm) = ϕ(h1h2 . . . hn)ϕ(w1w2 . . . wm) for w ∈ F , hi ∈ H, 1 ≤
i ≤ n and wj ∈ W, 1 ≤ j ≤ m. Moreover, ϕ(h1h2 . . . hn) ∈ ϕ(H) ≤ G. Hence it is
enough to de�ne the ultra-group homomorphism ψ(w1w2 . . . wm) = ϕ(w1w2 . . . wm) =
ϕ(w1)ϕ(w2) . . . ϕ(wm). �

Finally, the free ultra-group on X is unique. In other words, if two free ultra-groups
on X are given, then there exists an ultra-groups isomorphism between them. Suppose
W1 and W2 are free ultra-groups on X and ij : X −→Wj , j = 1, 2 are inclusion maps. If
we consider W1 as a free ultra-group on X and W2 as an arbitrary ultra-group, then by
Theorem 3.1 which demonstrate the universal property of free object we deduce that the
ultra-group homomorphism ϕ1 :W1 −→W2 such that ϕ1 ◦ i1 = i2. By changing the role
of W1 and W2, there exists a unique ultra-group homomorphism ϕ2 : W2 −→ W1 such
that ϕ2◦i2 = i1. Now by substituting i2 from the �rst equation we obtain ϕ2◦ϕ1◦i1 = i1.
Thus the following diagram commutes.

X

W1

W1

i1

i1
ϕ2 ◦ ϕ1

Since W1 is a free ultra-group on X, the universal property implies that ultra-group
homomorphism ϕ2 ◦ ϕ1 is unique, so ϕ2 ◦ ϕ1 = idW1 . Similarly, ϕ1 ◦ ϕ2 = idW2 . Thus
W1 and W2 are isomorphic. Hence we have the following result.

3.2. Corollary. The free ultra-group on a set is unique up to isomorphism.

Now, we are ready to describe the free functor for the ultra-groups, and subsequently
conclude adjoint being of free and forgetful functor. Recall that the forgetful functor
U is a functor from Ulg to the category Set which maps each ultra-group HM to its
underlying set and each ultra-group homomorphism to the corresponding set function.

3.3. Remark. The free functor from the category of sets to Ulg is denoted by F, which
maps each set X to the free ultra-group W that was discussed previously. Moreover,
it maps every function to an ultra-group homomorphism. Suppose f : X1 → X2 is
a function in the category of sets, and consider the inclusion maps i1 : X1 −→ W1,
i2 : X2 −→W2. Clearly, i2 ◦f : X1 →W2. By the universal property of a free objectW1,
there exists a unique ultra-group homomorphism ϕ :W1 −→W2 such that ϕ◦ i1 = i2 ◦f .
Hence F(f) = ϕ.

We complete this paper by the following corollary which is a direct result of the above
remark.
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3.4. Corollary. The (free) functor F : Set → Ulg given by F(X) = W is a left adjoint
to the forgetful functor U : Ulg → Set.
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