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On multivariate Lupas operators

Murat Bodur*', Fatma Tagdelen* and Giilen Bagcanbaz-Tuncal

Abstract

This paper is primarily concerned with multivariate Lupas operator.
We demonstrate that multivariate Lupas operator preserves the prop-
erties of the general function of modulus of continuity, Lipschitz’s con-
stant and order of a Lipschitz continuous function. Moreover, we obtain
monotonicity of the multivariate Lupas operator under the condition
that the original function is convex. Lastly, two modified extensions
are constructed.
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1. Introduction
Recall the following identity

(1-a)y = Z (O];)!kak, la| < 1,

k=0

where (.), is the Pochammer’s symbol defined as

(@o = 1(a#0),
(1.1) () = ()(a+1)...(a+k—-1), keN.

Taking « = nz (z > 0) in this identity, Lupag constructed the linear positive operators
given by
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for suitable real valued functions f defined on [0, c0), n € N[9]. In [1], Agratini considered
the special case of the operators L, by taking a = % in its formula to get the property
of preservation of linear functions. Namely, he considered the following linear positive

operators

oo

(1.2)  Lna(f;z _2‘"’02

k=0

Qkk' f,nEN,

for real valued, continuous and bounded functions on [0, c0) so that L, 1 (1;2) = 1, and
Ly (t;2) = x. So, it is clear that

ne __ = (nx)k
M= 2kl

k=0

We simply call the operatos L,,1 as (univariate) Lupag operators. For some classical
approximation results related to Lupas operators (1.2) we refer to [1], [6], [7], [11]. In
this work, among others, we especially are interested in the multivariate extension of the
Lupag operators.

Let D C R™, m € N, denote the set

D={x=(z1,72,...,Zm) ER" :0< z; <00, 1 <i<m}.

Throughout, for a function f : D — R, we shall adopt the representation f(x) =
f(z1,@2,...,zm) for f ((z1,22,...,2m)) , X= (21, T2, ..., Tm) €D, and also use the following
standard notation of multivariate setting:

Let 0 =(0,0,...,0), k =(k1, k2, ..., km) € Ng' :=N" U {0} and x €D,

k| : =kit+ka+...+km,
x| : =zxz1+x2+ ... +Tm,
K = kilkal. k!,

n o n!
<k> T K (n— k)Y
oo (oo} oo o o]
For our purposes, we denote
(x)y == (xl)kl (JL'Z)k2 (mm)km )
where each (xz)kl , 1=1,2,...,m, is given by (1.1).
Moreover, for u = (u1, u2, ..., um) and v = (v1,v2,...,Um) € D,
u < v means that u; <wv; forall 1 <i<m.
We will use the consecutive definitions which depend on [5].

1.1. Definition. A continuous, real valued function f is said to be convez in D, if

f (Z%‘Xz) < Zaif (xi)

for every xi1,x2,...,x, € D and for every nonnegative numbers ai,as,...,ar such that
a1+ + ...+ a =1.
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1.2. Definition. A continuous, real valued, nonnegative function w defined in D is said
to be a modulus of continuity, if the ensuing are satisfied.

i) w(0) =w(0,0,...,0) =0,

1) w (u) 1s nondecreasing, namely w (u) < w (v) whenever u < v,
151) w(u) is sub-additive, namely w(u+v) <w (u) +w(v),

for all u = (u1,uz2,...,um), and v = (v1,v2,...,Um) € D.

1.3. Definition. A continuous function from D C R™ into R is said to be Lipschitz
continuous of order o, a € (0,1], if there ezists a constant M > 0 such that f satisfies

1f ) = f @< MY e -yl
i=1

for every x = (z1,Z2, .., Tm), ¥ = (y1,Y2, .-, Ym) € D. The set of Lipschitz continuous
functions is denoted by Lipa (o, D).

Let f be a real valued continuous function on D. Then n—th multivariate Lupag
operator Ly m,f (with m—dimension) can be defined as

09 =2 S (4

for x €D and n € N. It is not to difficult to see that Ly, (1;x) = 1 and for f(t) =
ti, t €D, L, m (ti;X) =z t=1,2,...,m.

Motivated from the excellent work of Cao, Ding and Xu as for multivariate Baskakov
operator [5], in this work, apart from the approximation properties of Ly, ,,, we deal with
some classical shape properties that the multivariate Lupag operator L., ., satisfies. We
show that the operator L, ,, preserves the properties of a general function of modulus
of continuity, Lipschitz’s constant and order of a Lipschitz continuous function, and also
that the monotonic convergence of the sequence of the multivariate Lupas operators Ly, m,
when the attached function is convex. It is clear that the case m =1 gives the results of
[6]. On the other hand, similar results for multivariate Szasz-Mirakyan operator, which
has a close similarity with the Lupag operators, were obtained in [10]. Note that a brief
history for this kind of approach for some univariate operators can also be reached in [5].

2. Shape Preserving Properties
Firstly, we study the monotonicity of the sequence of multivariate Lupasg operators

Lnm (f;x) defined by (1.3) from inspiring [6].

2.1. Theorem. Let f be a convez function defined on D. Then Ly m f is monotonically
nonincreasing in n for all n.

Proof. For simplicity, we take m = 2. The proof for higher dimensions will be similar.
From the definition of L, (f;x), with taking into account of multivariate notation, we
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have

nm fv )_ n+1l,m fv )

_ omnlxl—lxl ) okl N (MX)i — ((n+1)x k
= 2 {2 Zzwk\kv () Z: z\k\kl |

_ genlxl—lxl ) olxl =~ (n@1)y, (na2)e, By ko
ey = Y S G ng,ﬁ.f(n,n

k1=0 ko=0
B i i n41)z1), ((n+1)x2)k2f( k1 ko )
k [ k ! ’
K120 h9=0 2k1 ! 2k2 Lol n+1 n+1
Using the facts 2°* = 37 =% , i = 1,2, then the summations in the bracket in (2.1)
1;=0 i
reduce to
(22 S S g e S e (b
’ 2u l1! 2k1 ]ﬁ! 2l2 l2! 2k2 kz! n’'n
11=0k1=0102=0ko=0
_ i i (nt Do (nt Do (b ks
2k1 k1! k2 ko! 7’L+171’L+1 ’
k1=0ko=0

Replacing k; with k; — l;, ¢ = 1,2, then (2.2) gives rise to

(ﬂiﬂl)kl,ll (nT2) kg 12
Z Z Z Z lll 12|2l1+12 ok1+ka—11—l2 (kl 711)! (k*lz)!

11=012=0 k1=l ko=l3

Xf(k1;l17k2;l2)

i i TL-|—1 ZL‘1 kp ((TL-I—l)ZL‘g)ka k1 ko
s 2ki+k2 | k! n+1’n+1 ’

Changing the order of the summations and replacing k; — l;, with l;, ¢ = 1,2, then the
last formula reduces to

ko

Z Z 21: Z (nx1) I ”302)12 (ml)kl I (x2)/c2 lzf bl
2k1+k2 LW ) (k1 — 1) (k2 —12)! n’'n

k1=1ko=1 11=012=0
(A1) ar)y, ((n+1)$2)k2f< k2 )}

k1! ko! n+1l' n+1

b nml)zl (ml)kl I (n+1) wl)kl k1
+kz TR D R —aT f( )_ 7ol f(n+1’0)

1=1 ;=0

L2 nm2)12 (22 )k2 Iy (n+1) $2)k2 ko

+kzzl 9% 122:20 L (ks —Io)! f( ) S — (0’ n—|—1)

+/((0,0)) = f((0,0)) .



Denoting
I - = i ki nxl nxQ)lQ: (xl)kl Iy (xQ)kz [P f li lﬁ
’ o 11=013=0 lll lg k1 — ll). (kg — l2) n’ n

s ()

s () - 2 ().

e (nx2), k2 Iy ((n+1)$2)k2 ko
72 kQ—ZQ) f( )_ 2! f(o’n+1)’

it sufficies to show that I, I;, and I» are nonnegative.
For 11, let

2 (71381)[1 (1’1),“7[1
Qi 1= <ll>((n+1)$1)kl >0

and

Xl1 = <Z—170>7 ll :0,17...71€1.

787

ki )
Then, as in [6], using the formula ((n + 1) i), = > <kz> (nazi), (xi)g,,» 1=1,2, 1t

readily follows that

k1
Zall =1

11=0
and
k1
k
S i, = <?0> .
11=0 n

Hence, convexity of f gives that

k1

f(nliro) = ((n+11)x1)k1 ZIZ: (), @)1, <]z€11>f(2 0)

0

which implies that I; > 0. The case I> > 0 is obtained in a similar way by taking

(k2 ("302)12 ($2)k2—12
IBlz = <12>((n_"_1)mg)k2 > 0.

Xy <0 lﬁ) l2 :0,1,...7162.
n

Similarly, it holds

ko
Z ﬂlz = 17

I2=0

and
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and

ko
k2
Z Biy X1, = <07 n+1> )

1o=0

so, the result I> > 0 follows from convexity of f. Finally, for I, we may take

ko
a;1 = Qg Z ﬁlg 2 0
15=0
k1 ko
as nonnegative constants satisfying > oy, > Bi, | = 1, and 27, = (&, 2), where
11=0 15=0
ay, and (i, are the same as given above. So, from the convexity of f we reach to the
following.
k1 k2
Z Z nl‘l)l (nxz)l2 (iﬁl)kl 11( )k2 lzf(ll lg)
2 (n+ D)y, (n+ Va2,  \n'n
N i i k1 nml)ll (”M)zz (wl)klfll (5”2)1%712 (171 l£>
= e (n+ 1))y, (n+1)22),, n’'n
= (M),
n+l'n+1
which shows that 7 > 0. This completes the proof. O

2.2. Theorem. Let w be a function of modulus of continuity. Then, for each n €
N, L, mw is also a function of modulus of continuity.

Proof. Let x = (z1,22,...,Tm), ¥ = (¥1,¥2,--.,ym) € D, and x < y. Then, taking multi-
variate notation into consideration, we have

—nly = n, k
Lom(w;y) = 2 "Z(Qﬁfﬁ“ (E)
—nly —Xx k k
2 "Z Q\klk' = “(ﬁ>
= gl Z Z Z Z Z Z 1!2\kl k1)

k1=0ko=0 km=011=01i2=0 im =0

R

n n n

for i = (1,42, ...,im) € Ng'. Changing the order of the summations and taking k, — i, =
jr, 7 =1,2,...,m, we can easily obtain

2.3) Lo (wiy) =2 n|y|zz .2|1+Jw (n(yfx))jw(i:j)»

i=0 j=
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where j = (j1,j2, ..., jm) - On the other hand, for x € D we have

o) omnlxI N (M%)
Lnm (wix) =2 Zzw ()
_ —n|(y—(y—x))|
- Z ()
R o (= [ 1
= 2 §:2\ z: o (n)

Cnlyl = (n%); o= (R (y = x)); /1

= 2-

If we subtract (2.3) from (2.4), we arrive at

(2.5)

_ 2o (nx), (n(y —%x); [
Lo (@39) = Lnm (w3%) < 271287 St e (o
i=0 j=0 : :

_  9-nly—x| J
= 2 S (1)

= Lpnm (w,y —x).

The last inequality shows the sub-additivity of L, m. Moreover, from (2.5) we easily
obtain that L,m (w;x) < Lpm (w;y) when x < y. Obviously, this gives that Ly . is
nondecreasing. Finally, from the definition of the operators L, m, Ln,m (w;0) = w (0) =
0 is obvious. Therefore L, nw is also a function of modulus of continuity, this completes
the proof. |

Here, we present the preservation of the Lipschitz constant and order of a Lipschitz
continuous function by the multivariate Lupag operators Ly, n,.

2.3. Theorem. Let f € Lipy (a, D). Then Lpmf € Lipy (o, D).
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Proof. Assume that x <y. Then, writing (2.5) for f, we get
\an(f'Y)* nm(f; )\

—nly ZZ - X)); i+ i
< 2 o — = 21 Ill 2IJI_]| ; ( n ) - (n)’
Mo~ Ix (y_ ))J —n x .7

k=1

= M2 x\Z zmjv Z(J:)
k=1

= M{Ln (tl sy1 — 1) + L (15592 — 22) + oo 4+ Lt (G Ym — Tm) }

by the hypothesis that f € Lipar (a, D), where i = (41, 42, ..., tm) and j = (j1, j2, ..., jm ) belong
to Ng'. Following the same steps of the proof of Theorem 2 in [6] for each sum in the last
formula, we reach to

|Lngm (f3¥) = Lan,m (f3%)]
< MYy — |,
k=1

which shows that Ln,mf € Lipa (o, D). In a similar way, we can show the case when
x > y. Finally, we can consider the case that x1 > y1, T2 > y2,...,Ti—1 > Yi—1, Ti+1 >
Yit1y ooy Tm > Ym, and z; < y;. Since (y1, Y2, -, Yi—1, Ti, Yi+1,--, Ym) € D, then we obtain
from the above arguments that
| Lnm (f5¥) = Lnm (f; %)
‘L’ﬂ,’m (.fa (y17y23 ceey ym)) - L’ﬂ,m (f7 (y17y27 "'7yi*1> ‘r’ia yi+1,"'a ym))|
+ |L”ﬂ,m (f7 (yla Y2, .eey yi*17xi7yi+1,"'aym)) - Ln,m (f7 (331, T2, ey xm))'

IN

m

MYy — x|
k=1

Clearly, if the last case holds for more than one components, then the result follows
similarly. O

IN

3. Extensions

So as to gain approximation process in space of integrable functions, we propose new
integral modification, i.e. the Kantorovich type [1]:

nmf7 ZPnk (,bnkf) (nGN)

where

and

k41 ko1 km+1

¢n,k(f)lznm/n / /ftl to, .otm)dtm...dtadts.

km
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A number of solution can be found for multivariate Lupag-Kantorovich operator, which
has been identified above, about shape preserving and approximation properties. How-
ever, the objective in this study is to give definition only.

Now, we establish n—th multivariate generalized Lupas operator to investigate and
understand their properties reckon weighted approximation in [8]. A lot of work has been
done in this regard, some are [3], [4], [2].

Let p be a function defined on R™ := [0, 0c0) and have the following properties:

(p1) p is a continuously differentiable function on R,

(p2) p(0) =0, inf p'(z) > 1.

xRt

These conditions ensure that p is strictly increasing and the inverse p~! () of p exists
on R*. For example, p(z) = = + z? is a function which is given from [2| satisfies the
conditions (p1) and (p2). Let f be a real valued continuous function defined on D, which
is explained above for multivariate Lupag operator and p (x), x = (21, ...,Zm) € D denote
a function acting from the set D onto D such that each component of which is given by
p(x;), 1 <i < m, namely

p(x) = (p(x1), p(x2); ... p(Tm)) -

1

Denoting the inverse of p by p~*, which means that

P~ () = (p 7 (@), p 7 (@2), s 7 (@)
Then n—th multivariate generalized Lupag operator L, ., f is defined as
- - 1y (kY (np(x))
» o) — o—nlp(x)] 1 (k K
where (op7) () = £ (7 (5) o7 (2) .oop™ (52)) nEN.
Here, we recall the extended version of the notion of the p—converity, due to Aral
et.al [2], to the multivariate case as in [3].

3.1. Definition. A continuous, real valued function f is called as p—conver in D, if
fop!is convex in the sense of Definition 1.1.

We need the following definition for the generalized Lipschitz class used, for bivariate
case, in [3].

3.2. Definition. A continuous function from D C R™ into R is said to be p—Lipschitz
continuous of order o, a € (0,1], if there ezists a constant M > 0 such that f satisfies

If )= F(y)l < MZ o (i) = p (ys)*

for every x = (z1, %2, e, Tm), ¥ = (Y1,Y2, .-, Ym) € D.

The set of p—Lipschitz continuous functions is denoted by Lip%, (o, D).

Note that clearly when p (x) = x one obtaines the multivariate Lupas operators given
by (1.3).

It can be shown that the multivariate generalized Lupas operators L}, ,, f preserve
some properties.

The following two theorems can be given in the light of all these;

3.3. Theorem. Let f be a p—convez function defined on D. Then LY, ,, is monotonically
nondecreasing in n.

Proof. The theorem can be proved similar with multivariate Lupag operator so it can be
omitted. 0
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3.4. Theorem. Let f € Liph, (o, D), 0 < a < 1. Then L%, ,, (f;x) € Liph, (o, D).

Proof. Also, omitted. O
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