http://www.newtheory.org

ISSN: 2149-1402

Received: 19.03.2018 *Published*: 10.08.2018 Year: 2018, Number: 23, Pages: 85-92 Original Article

On Grill S_p-Open Set in Grill Topological Spaces

Dhanabal Saravanakumar^{1,*} <saravana_13kumar@yahoo.co.in> Nagarajan Kalaivani² <kalaivani.rajam@gmail.com>

¹Department of Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, India. ²Department of Mathematics, Vel Tech Dr. RR and Dr. SR Technical University, Chennai, India.

Abstract - In this paper, we introduce a new type of grill set namely; Gs_p -open sets, which is analogous to the G-semiopen sets in a grill topological space (X, τ, G) . Further, we define Gs_p -continuous and Gs_p -open functions by using a Gs_p -open set and we investigate some of their important properties.

Keywords - Gs_p -open set, $Gs_pO(X)$, Gs_p -continuous function, Gs_p -open function.

1. Introduction and Preliminaries

Choquet [2] introduced the concept of grill on a topological space and the idea of grills has shown to be a essential tool for studying some topological concepts. A collection G of nonempty subsets of a topological space (X, τ) is called a grill on X if (i) $A \in G$ and $A \subseteq B$ implies that $B \in G$, and (ii) $A, B \subseteq X$ and $A \cup B \in G$ implies that $A \in G$ or $B \in G$. A triple (X, τ, G) is called a grill topological space.

Roy and Mukherjee [17] defined a unique topology by a grill and they studied topological concepts. For any point *x* of a topological space (X, τ) , $\tau(x)$ denotes the collection of all open neighborhoods of *x*. A mapping $\varphi : P(X) \to P(X)$ is defined as $\varphi(A) = \{x \in X : A \cap U \in G \text{ for all } U \in \tau(x)\}$ for each $A \in P(X)$. A mapping $\psi : P(X) \to P(X)$ is defined as $\psi(A) = A \cup \varphi(A)$ for all $A \in P(X)$. The map ψ satisfies Kuratowski closure axioms:

(i) $\psi(\emptyset) = \emptyset$,

- (ii) if $A \subseteq B$, then $\psi(A) \subseteq \psi(B)$,
- (iii) if $A \subseteq X$, then $\psi(\psi(A)) = \psi(A)$, and

^{*}Corresponding Author.

(iv) if $A, B \subseteq X$, then $\psi(A \cup B) = \psi(A) \cup \psi(B)$.

Corresponding to a grill G on a topological space (X, τ) , there exists a unique topology τ_G (say) on X given by $\tau_G = \{U \subseteq X : \psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\psi(A) = A \cup \varphi(A) = \tau_G$ -cl(A) and $\tau \subseteq \tau_G$.

The concept of decompositions of continuity on a grill topological space and some classes of sets were defined with respect to grill (see [3, 7, 10] for details). A subset *A* in *X* is said to be

- (i) φ -open if $A \subseteq int(\varphi(A))$,
- (ii) G- α .open if $A \subseteq int(\psi(int(A)))$,
- (iii) G-preopen if $A \subseteq int(\psi(A))$,
- (iv) G-semiopen if $A \subseteq \psi(int(A))$,
- (v) G- β .open if $A \subseteq cl(int(\psi(A)))$.

The family of all G- α .open (resp. G-preopen, G-semiopen, G- β .open) sets in a grill topological space (X,τ,G) is denoted by $G\alpha O(X)$ (rep. GPO(X), GSO(X), $G\beta O(X)$). A function $f: (X,\tau,G) \rightarrow (Y, \sigma)$ is said to be G-semicontinuous if $f^{-1}(V) \in GSO(X)$ for each $V \in \sigma$.

Mashhour et al. [14] introduced a class of preopen sets and he defined pre interior and pre closure in a topological space. A subset *A* in *X* is said to be preopen if $A \subseteq int(cl(A))$ and PO(X) denotes the family of preopen sets. For any subset *A* of *X*, (i) $pint(A) = \bigcup \{U : U \in PO(X) \text{ and } U \subseteq A\}$; (ii) $pcl(A) = \bigcap \{F : X - F \in PO(X) \text{ and } A \subseteq F\}$.

In this paper, we define a Gs_p -open set in a grill topological space (X, τ, G) and we study some of its basic properties. Moreover, we define Gs_p -continuous, Gs_p -open, Gs_p -closed and Gs_p^* -continuous functions on a grill topological space (X, τ, G) and we discuss some of their essential properties.

Proposition 1.1. [17] Let (X, τ, G) be a grill topological space. Then for all $A, B \subseteq X$: (i) $A \subseteq B$ implies that $\varphi(A) \subseteq \varphi(B)$; (ii) $\varphi(A \cup B) = \varphi(A) \cup \varphi(B)$; (iii) $\varphi(\varphi(A)) \subseteq \varphi(A) = cl(\varphi(A)) \subseteq cl(A)$.

2. Gs_p-Open Sets

Definition 2.1. Let (X,τ,G) be a grill topological space and let A be a subset A of X. Then A is said to be Gs_p -open if and only if there exist a $U \in PO(X)$ such that $U \subseteq A \subseteq \psi(U)$. A set A of X is Gs_p -closed if its complement X - A is Gs_p -open. The family of all Gs_p -open (resp. Gs_p -closed) sets is denoted by $Gs_pO(X)$ (resp. $Gs_pC(X)$).

Example 2.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$ and $G = \{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $Gs_pO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, c\}, \{b, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$.

Theorem 2.1. Let (X,τ,G) be a grill topological space and let $A \subseteq X$. Then $A \in Gs_p O(X)$ if and only if $A \subseteq \psi(pint(A))$.

Proof. If $A \in Gs_p O(X)$, then there exist a $U \in PO(X)$ such that $U \subseteq A \subseteq \psi(U)$. But $U \subseteq A$ implies that $U \subseteq pint(A)$. Hence $\psi(U) \subseteq \psi(pint(A))$. Therefore $A \subseteq \psi(pint(A))$. Conversely, let $A \subseteq \psi(pint(A))$. To prove that $A \in Gs_p O(X)$, take U = pint(A), then $U \subseteq A \subseteq \psi(U)$. Hence $A \in Gs_p O(X)$.

Corollary 2.1. If $A \subseteq X$, then $A \in Gs_p \mathcal{O}(X)$ if and only if $\psi(A) = \psi(pint(A))$.

Proof. Let $A \in Gs_p O(X)$. Then as ψ is monotonic and idempotent, $\psi(A) \subseteq \psi(\psi(\text{pint}(A))) = \psi(\text{pint}(A)) \subseteq \psi(A)$ implies that $\psi(A) = \psi(\text{pint}(A))$. The converse is obvious.

Theorem 2.2. Let (X,τ,G) be a grill topological space. If $A \in Gs_p O(X)$ and $B \subseteq X$ such that $A \subseteq B \subseteq \psi(pint(A))$, then $B \in Gs_p O(X)$.

Proof. Given $A \in Gs_p O(X)$. Then by Theorem 2.1, $A \subseteq \psi(pint(A))$. But $A \subseteq B$ implies that $pint(A) \subseteq pint(B)$ and hence by Theorem 2.4[17], $\psi(pint(A)) \subseteq \psi(pint(B))$. Therefore $B \subseteq \psi(pint(A)) \subseteq \psi(pint(B))$. Hence $B \in Gs_p O(X)$.

Corollary 2.2. If $A \in Gs_p O(X)$ and $B \subseteq X$ such that $A \subseteq B \subseteq \psi(A)$, then $B \in Gs_\alpha O(X)$.

Proof. Follows from the Theorem 2.2 and Corollary 2.1.

Proposition 2.1. If $U \in PO(X)$, then $U \in Gs_pO(X)$.

Proof. Let $U \in PO(X)$, it implies that $U = pint(U) \subseteq \psi(pint(U))$. Hence $U \in Gs_pO(X)$.

Note that the converse of the above proposition need not be true. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $G = \{\{a\}, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $PO(X) = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{c\}, \{a, b\}, \{c\}, \{a, b, c\}, \{b, c, d\}\}$ and $Gs_pO(X) = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Here $\{b, d\}$ and $\{a, b, d\}$ are Gs_p -open sets but not preopen.

Theorem 2.3. Let (X,τ,G) be a grill topological space. If $A \in GSO(X)$, then $A \in Gs_pO(X)$.

Proof. Given $A \in GSO(X)$. Then $A \subseteq \psi(int(A))$. Since $int(A) \subseteq pint(A)$, we have that $\psi(int(A)) \subseteq \psi(pint(A))$ (by Theorem 2.4[17]). Hence $A \subseteq \psi(pint(A))$ and thus $A \in Gs_pO(X)$.

Note that the converse of the above theorem need not be true. By Example 2.1, we have that $GSO(X) = \{\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$. Therefore $\{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, c, d\}$ and $\{b, c, d\}$ are Gs_p -open sets but not G-semiopen.

Proposition 2.2. If $PO(X) = \tau$, then $Gs_pO(X) = GSO(X)$.

Proof. By Theorem 2.3, $GSO(X) \subseteq Gs_pO(X)$. Let $A \in Gs_pO(X)$. Then by Theorem 2.1, $A \subseteq \psi(\text{pint}(A))$. Since $PO(X) = \tau$, we have that pint(A) = int(A) implies that $A \subseteq \psi(\text{pint}(A)) = \psi(\text{int}(A))$ and hence $A \in GSO(X)$. Thus $Gs_pO(X) \subseteq GSO(X)$.

Theorem 2.4. Let (X,τ,G) be a grill topological space. (i) If $A_i \in Gs_p O(X)$ for each $i \in J$, then $\bigcup_{i \in J} A_i \in Gs_p O(X)$; (ii) If $A \in Gs_p O(X)$ and $U \in PO(X)$, then $A \cap U \in Gs_p O(X)$.

Proof. (i) Since $A_i \in Gs_p O(X)$, we have that $A_i \subseteq \psi(pint(A_i))$ for each $i \in J$. Thus, we obtain $A_i \subseteq \psi(pint(A_i)) \subseteq \psi(pint(\bigcup_{i \in J} A_i))$ and hence $\bigcup_{i \in J} A_i \subseteq \psi(pint(\bigcup_{i \in J} A_i))$. This shows that $\bigcup_{i \in J} A_i \in Gs_p O(X)$.

(ii) Let $A \in Gs_p O(X)$ and $U \in PO(X)$. Then $A \subseteq \psi(pint(A))$ and pint(U) = U. Now, $A \cap U \subseteq \psi(pint(A)) \cap U = (pint(A) \cup \varphi(pint(A))) \cap U = (pint(A) \cap U) \cup (\varphi(pint(A)) \cap U) \subseteq pint(A \cap U) \cup \varphi(pint(A) \cap U)$ (by Theorem 2.10[17]) = $pint(A \cap U) \cup \varphi(pint(A \cap U)) = \psi(pint(A \cap U))$. Therefore $A \cap U \in Gs_p O(X)$.

Remark 2.1. The following example shows that if $A, B \in Gs_p O(X)$, then $A \cap B \notin Gs_p O(X)$.

From Example 2.1, take $A = \{b, c\}$ and $B = \{c, d\}$, then $A, B \in Gs_p O(X)$ but $A \cap B = \{c\} \notin Gs_p O(X)$.

Theorem 2.5. Let (X,τ,G) be a grill topological space and $A \subseteq X$. If $A \in Gs_p C(X)$, then $pint(\psi(A)) \subseteq A$.

Proof. Suppose $A \in Gs_p C(X)$. Then $X - A \in Gs_p O(X)$ and hence $X - A \subseteq \psi(pint(X - A)) \subseteq pcl(pint(X - A)) = X - pint(pcl(A)) \subseteq X - pint(\psi(A))$, implies that $pint(\psi(A)) \subseteq A$.

Theorem 2.6. Let (X,τ,G) be a grill topological space and $A \subseteq X$ such that $X - pint(\psi(A)) = \psi(pint(X - A))$. Then $A \in Gs_p C(X)$ if and only if $pint(\psi(A)) \subseteq A$.

Proof. Necessary part is proved by Theorem 2.5. Conversely, suppose that $pint(\psi(A)) \subseteq A$. Then $X - A \subseteq X - pint(\psi(A)) = \psi(pint(X - A))$, implies that $X - A \in Gs_p O(X)$. Hence $A \in Gs_p C(X)$.

Definition 2.2. Let (X,τ,G) be a grill topological space and $A \subseteq X$. Then

(i) Gs_p -interior of A is defined as union of all Gs_p -open sets contained in A.

Thus $Gs_pint(A) = \bigcup \{U : U \in Gs_p O(X) \text{ and } U \subseteq A\};$

(ii) Gs_p -closure of A is defined as intersection of all Gs_p -closed sets containing A.

Thus $\operatorname{Gs}_p\operatorname{cl}(A) = \cap \{F : X - F \in \operatorname{Gs}_p O(X) \text{ and } A \subseteq F\}.$

Theorem 2.7. Let (X,τ,G) be a grill topological space and $A \subseteq X$. Then (i) $Gs_p int(A)$ is a Gs_p -open set contained in A; (ii) $Gs_p cl(A)$ is a Gs_p -closed set containing A; (iii) A is Gs_p -closed if and only if $Gs_p cl(A) = A$; (iv) A is Gs_p -open if and only if $Gs_p int(A) = A$; (v) $Gs_p int(A) = X - Gs_p cl(X - A)$; (vi) $Gs_p cl(A) = X - Gs_p int(X - A)$.

Proof. Follows form the Definition 2.15 and Theorem 2.4(i).

Theorem 2.8. Let (X,τ,G) be a grill topological space and $A, B \subseteq X$. Then the following are hold: (i) If $A \subseteq B$, then $Gs_{pint}(A) \subseteq Gs_{pint}(B)$; (ii) $Gs_{pint}(A \cup B) \supseteq Gs_{pint}(A) \cup Gs_{pint}(B)$; (iii) $Gs_{pint}(A \cap B) = Gs_{pint}(A) \cap Gs_{pint}(B)$.

Proof. Follows from the Theorem 2.8.

Definition 2.3. A function $f: (X,\tau,G) \to (Y, \sigma)$ is said to be Gs_p -continuous if $f^{-1}(V) \in Gs_p O(X)$ for each $V \in PO(Y)$.

Example 2.2. Let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}$, $\sigma = \{\emptyset, Y, \{1, 2\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\}$ and $G = \{\{a, b, c\}, X\}$. Then $Gs_pO(X) = P(X)$ and $PO(Y) = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. Define $f: (X, \tau, G) \rightarrow (Y, \sigma)$ by f(a) = 2, f(b) = 1, f(c) = 4 and f(d) = 3. Then inverse image of every preopen sets in Y is Gs_p -open in X. Hence f is Gs_p -continuous.

Remark 2.2. The concepts of G-semicontinuous and Gs_p -continuous are independent.

(i) From Example 2.2, we have that $GSO(X) = \{\emptyset, X, \{a, b\}, \{c, d\}\}$ and the function f is Gs_p continuous. Also $f^{-1}(\{1, 2, 3\}) = \{a, b, d\}$ is not G-semiopen in X for the open set $\{1, 2, 3\}$ of Y. Hence f is not G-semicontinuous.

(ii) Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, \sigma = \{\emptyset, Y, \{1, 2\}, \{3, 4\}\}$ and $G = \{\{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $GSO(X) = \tau, Gs_pO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ and PO(Y) = P(Y). Define $f: (X, \tau, G) \rightarrow (Y, \sigma)$ by f(a) = 4, f(b) = 3, f(c) = 2 and f(d) = 1. Then the function f is G-semicontinuous. Also the inverse image $f^{-1}(\{3\}) = \{b\}$ is not Gs_p -open in X for the preopen set $\{3\}$ of Y. Hence f is not Gs_p -continuous.

From (i) and (ii), we got the concepts of G-semicontinuous and Gs_p -continuous are independent.

Theorem 2.9. For a function $f: (X, \tau, G) \to (Y, \sigma)$, the following are equivalent:

- (i) f is Gs_p -continuous;
- (ii) For each $F \in PC(Y)$, $f^{-1}(F) \in Gs_pC(X)$;
- (iii) For each $x \in X$ and each $V \in PO(Y)$ containing f(x), there exists a $U \in Gs_pO(X)$ containing x such that $f(U) \subseteq V$.

Proof. (i) \Leftrightarrow (ii): It is obvious.

(i) \Rightarrow (iii): Let $V \in PO(Y)$ and $f(x) \in V(x \in X)$. Then by (i), $f^{-1}(V) \in Gs_pO(X)$ containing x. Taking $f^{-1}(V) = U$, we have that $x \in U$ and $f(U) \subseteq V$.

(iii) \Rightarrow (i): Let $V \in PO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V \in PO(Y)$ and hence by (iii), there exists a $U \in Gs_pO(X)$ containing x such that $f(U) \subseteq V$. Thus, we obtain $x \in U \subseteq \psi$ (pint(U)) $\subseteq \psi$ (pint($f^{-1}(V)$)). This shows that $f^{-1}(V) \subseteq \psi$ (pint($f^{-1}(V)$)). Hence f is Gs_p -continuous.

Theorem 2.10. A function $f: (X,\tau,G) \to (Y, \sigma)$ is Gs_p -continuous if and only if the graph function $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is Gs_p -continuous.

Proof. Suppose that f is Gs_p -continuous. Let $x \in X$ and $W \in PO(X \times Y)$ containing g(x). Then there exist a $U \in PO(X)$ and $V \in PO(Y)$ such that $g(x) = (x, f(x)) \in U \times V \subseteq W$. Since f is Gs_p -continuous, there exists a $G \in Gs_pO(X)$ containing x such that $f(G) \subseteq V$. By Theorem 2.4(b), $G \cap U \in Gs_pO(X)$ and $g(G \cap U) \subseteq U \times V \subseteq W$. This shows that g is Gs_p -continuous. Conversely, suppose that g is Gs_p -continuous. Let $x \in X$ and $V \in \alpha(Y)$ containing f(x). Then $X \times V \in PO(X \times Y)$ and by Gs_p -continuity of g, there exists a $U \in Gs_pO(X)$ containing x such that $g(U) \subseteq X \times V$. Thus we have that $f(U) \subseteq V$ and hence f is $G-s_p$.continuous.

Definition 2.3. Let (X, τ) be a topological space and (Y, σ, G) a grill topological space. A function $f: (X, \tau) \to (Y, \sigma, G)$ is said to be Gs_p -open (resp. Gs_p -closed) if for each $U \in PO(X)$ (resp. for each $U \in PC(X)$), f(U) is Gs_p -open (resp. Gs_p -closed) in (Y, σ, G) .

Theorem 2.11. A function $f: (X, \tau) \to (Y, \sigma, G)$ is Gs_p -open if and only if for each $x \in X$ and each pre-neighbourhood U of x, there exists a $V \in Gs_p O(Y)$ such that $f(x) \in V \subseteq f(U)$.

Proof. Suppose that f is a G- s_p open function and let $x \in X$. Also let U be any pre-neighbourhood of x. Then there exists $G \in PO(X)$ such that $x \in G \subseteq U$. Since f is Gs_p open, f(G) = V (say) $\in Gs_pO(Y)$ and $f(x) \in V \subseteq f(U)$. Conversely, suppose that $U \in PO(X)$. Then for each $x \in U$, there exists a $V_x \in Gs_pO(X)$ such that $f(x) \in V_x \subseteq f(U)$. Thus $f(U) = \bigcup\{V_x : x \in U\}$ and hence by Theorem 2.4(a), $f(U) \in Gs_pO(Y)$. This shows that f is Gs_p -open.

Theorem 2.12. Let $f: (X, \tau) \to (Y, \sigma, G)$ be a G-s_p open function. If $V \subseteq Y$ and $F \in PC(X)$ containing $f^{-1}(V)$, then there exists a $H \in Gs_p O(Y)$ containing V such that $f^{-1}(H) \subseteq F$.

Proof. Suppose that f is G- s_p open. Let $V \subseteq Y$ and $F \in PC(X)$ containing $f^{-1}(V)$. Then $X - F \in PO(X)$ and by Gs_p -openness of f, $f(X - F) \in Gs_pO(X)$. Thus $H = Y - f(X - F) \in Gs_pC(Y)$ consequently $f^{-1}(V) \subseteq F$ implies that $V \subseteq H$. Further, we obtain that $f^{-1}(H) \subseteq F$.

Theorem 2.13. For any bijection $f: (X, \tau) \to (Y, \sigma, G)$, the following are equivalent: (i) $f^{-1}: (Y, \sigma, G) \to (X, \tau)$ is Gs_p -continuous; (ii) f is Gs_p -open; (iii) f is Gs_p -closed.

Proof. It is obvious.

Definition 2.4. Let (X,τ,G) be a grill topological space. A subset *A* of *X* is said to be a Gs_p^* -set if $A = U \cap V$, where $U \in PO(X)$ and $\psi(pint(V)) = pint(V)$.

Theorem 2.14. Let (X,τ,G) be a grill topological space and let $A \subseteq X$. Then $A \in PO(X)$ if and only if $A \in Gs_pO(X)$ and A is Gs_p^* -set in (X,τ,G) .

Proof. Let $A \in PO(X)$. Then $A \in Gs_pO(X)$, implies that $A \subseteq \psi(pint(A))$. Also A can be expressed as $A = A \cap X$, where $A \in PO(X)$ and $\psi(pint(X)) = pint(X)$. Thus A is a Gs_p^* -set. Conversely, Let $A \in Gs_pO(X)$ and A be a Gs_p^* -set. Thus $A \subseteq \psi(pint(A)) = \psi(pint(U \cap V))$, where $U \in PO(X)$ and $\psi(pint(V)) = pint(V)$. Now $A \subseteq U \cap A \subseteq U \cap \psi(pint(U \cap V)) = U \cap \psi(U \cap pint(V)) \subseteq U \cap \psi(U) \cap \psi(pint(V)) = U \cap pint(V) = pint(A)$. Hence $A \in PO(X)$.

Definition 2.5. A function $f: (X,\tau,G) \to (Y, \sigma)$ is Gs_p^* -continuous if for each $V \in PO(Y)$, $f^{-1}(V)$ is a Gs_p^* -set in (X, τ,G) .

Theorem 2.15. Let (X,τ,G) be a grill topological space. Then for a function $f: (X,\tau,G) \to (Y, \sigma)$, the following are equivalent: (i) *f* is precontinuous; (ii) *f* is Gs_p -continuous and Gs_p^* -continuous.

Proof. Straightforward.

References

- [1] M. E. Abd El-Monsef and A. M. Kozae, *Some generalized forms of compactness and closeness*, Delta J. Sci., 9 (2) (1985), 257-269.
- [2] G. Choquet, *Sur les notions de filtre et grille*, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171-173.
- [3] E. Hatir and S. Jafari, *On some new classes of sets and a new decomposition of continuity via grills*, J. Adv. Math. Studies, 3 (1) (2010), 33-40.
- [4] Talal Al-Hawary and A. Al-Omari, *ω-continuous like mappings*, Al-Manarah J. 13(6) (2007), 135-147.

- [5] T. A. Al-Hawary-with A. Al-Omari, *Decompositions of Continuity*, Turkish J. Math., 30(20)(2006). 187-195.
- [6] Talal Al-Hawary and A. Al-Omari, *Between open and ω-open sets*, Q &A in General Topology 24, 67-77, 2006.
- [7] T. A. Al-Hawary, On Generalized preopen sets, Proyectiones: revista de matematica 31(4) (2013), 63-76.
- [8] T. Al-Hawary, ρ -closed sets, Acta Universitatis aplulensis 35(2013), 29-36.
- [9] T. Al-Hawary, *Decompositions of continuity via ζ-open sets*, Acta Universitatis aplulensis 34(2013), 137-142.
- [10] K. Kuratowski, Topologie, Warsazawa, 1933.
- [11] N. Levine, *A decomposition of continuity in topological spaces*, Amer Math. Monthly, 68 (1961), 36-41.
- [12] N. Levine, *Semiopen sets and semicontinuity in topological spaces*, Amer. Math. Monthly, 70 (1993), 36-41.
- [13] D. Mandal and M. N. Mukerjee, *On a class of sets via grill: A decomposition of continuity*, An. St. Univ. Ovidius Constanta, 20 (2012), 307-316.
- [14] A. S. Mashhour, M. E. Abd EL-Monsef, and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.
- [15] O. Nijastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [16] A. Al-Omari and T. Noiri, *Decompositions of continuity via grills*, Jordan J. Mat. Stat. 4 (2011) 33-46.
- [17] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33 (4) (2007), 771-786.
- [18] B. Roy and M. N. Mukherjee, *Concerning topologies induced by principal grills*, An. Stiint. Univ. AL. I. Cuza Iasi. Mat. (N. S.), 55 (2) (2009), 285-294.
- [19] W. J. Thron, Proximity structure and grills, Math. Ann., 206 (1973), 35-62.