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Abstract

In this paper, we introduce some new operations on type-2 soft sets and
discuss related properties. The notions of primary empty type-2 soft
sets, underlying empty type-2 soft sets and complete type-2 soft sets are
introduced. In particular, we de�ne four new operations (the extension,
the restriction, the extension-restriction, the restriction-extension) each
on union, intersection and di�erence. By using these new de�nitions
we prove certain De Morgan's laws in type-2 soft set theory. Finally,
an example which shows the validity of De Morgan's laws in real life
problems is presented.
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1. Introduction

Soft set theory [19], �rstly initiated by Molodtsov, is a new mathematical tool for
dealing with uncertainties. Di�erent from many traditional tools for dealing with uncer-
tainties, such as fuzzy set theory [26], rough set theory [20], intuitionistic fuzzy sets [8]
and hesitant fuzzy sets [24], the main advantage of soft set theory is that it is free from
the inadequacy of the parametrization tools of those theories. Indeed, Molodtsov [19],
shows applicability of soft sets to several �elds and provides some fundamental results
subsequently augmented by works like Maji et al. [15], Pei and Miao [21] and Aktas
and Cagman [1], among others. The soft set theory is a new approach for research of
uncertain problems and decision problems. Then, it is applied in many di�erent �elds in-
cluding decision-makings, the smoothness of functions, game theory, operations research,
probability theory and theory of measurement. Chen et al. [11], proposed a new de�ni-
tion of soft set parameterization reduction and compared it with attributes reduction in
rough set theory.

Ali et al. [2], presented some new operations in soft set theory and based on the
analysis of several operations on soft sets Sezgin and Atagün [22], studied the theoretical
aspect of operations in soft set theory. In recent decades, the theory of soft sets gone
through remarkably rapid strides with wide-ranging applications especially in soft deci-
sion making. Maji et al. [17] handled some decision making problems by using soft sets.
Cagman and Engino§lu [9], presented uni�int decision making method and discussed an
example which shows the applicability of method in various problems that contain uncer-
tainties. Recently, it has advanced a breadth of the development of information sciences
with intelligent systems, expert and decision support systems, self-adaptation and self-
organizational systems, information and knowledge, approximate reasoning, modeling
and computing with words.

Theory of soft sets and its hybrid models such as rough soft sets and soft rough sets
have been successfully applied in algebraic structures [3, 4, 12, 14, 23, 25]. Soft sets
have been extended in several directions starting with Maji et al. [16], who initiate
fuzzy soft sets. Since then, many authors [5, 7, 18], have studied the fuzzy soft sets in
decision makings and fuzzy soft operations as well. With the improvement of soft sets,
extended mathematical tools for dealing with incompleteness and uncertainty have been
proposed, such as fuzzy parameterized soft set, bipolar soft set, fuzzy soft rough sets and
so on, but these tools have the same limitation that there is a lack of freedom in choice
of parameters. If there exists a correspondence or an association between parameters,
then none of the existing tool can handle the problems entirely. For example, a set of
parameters {solid diet, soft diet, �uid diet, calorie rich diet, �bre rich diet, protein rich
diet} describes the characteristic of di�erent food items. It shows that there exist some
associations between parameters such that calorie rich diet and protein rich diet consist
of some properties in solid diet, soft diet and �uid diet.

In order to deal with associations between parameters, Chatterjee et al. [10], propose
the concept of type-2 soft sets which is a generalization of the Molodtsov's soft sets. It
involves parameterization over an already parameterized set and hence has more freedom
and e�ciency compared to usual soft sets (we termed as type-1 soft sets) in handling
impreciseness. Type-2 soft sets is a new approach to handling uncertainty. Interestingly,
Chatterjee et al. [10], investigates some basic operations on type-2 soft sets and uses the
model of type-2 soft sets in decision making problems. Also, see [13].

The behavior and the selections of initial parameters and associated parameterized sets
corresponding to initial parameters make the study of type-2 soft sets very interesting.
Motivated by this, we consider the operations on type-2 soft sets and related properties.
In this paper, notions of primary empty type-2 soft sets, underlying empty type-2 soft
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sets and complete type-2 soft sets are introduced. In particular, we introduced four
new operations (the extension, the restriction, the extension-restriction, the restriction-
extension) each on union, intersection, and di�erence. By using these new de�nitions
certain De Morgan's laws are proved in type-2 soft set theory. Finally, an example is
presented which shows the validity of De Morgan's laws in real life problems.

2. Preliminaries

We adopt the usual description and terminology for soft sets: U denotes a universe of
objects, E denotes a universal set of parameters and A is a subset of E.

2.1. De�nition ([15]). A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A −→ P (U).

We refer to Molodtsov's soft sets as type-1 soft sets (brie�y T1SS). Note that the
set of all T1SS over U will be denoted by σ (U) .

2.2. De�nition ([6]). Let (F,A) be a T1SS over U .
(i) (F,A) is called null T1SS if F (a) = ∅ for all a ∈ A, denoted by N(U,A).
(ii) A unique T1SS ΦU over U with an empty set of parameters, called the empty

T1SS over U .
(iii) (F,A) is called whole T1SS if F (a) = U, for all a ∈ A, denoted by W(U,A).

2.3. De�nition ([2]). Let(F,A) and (G,B) be two T1SS over U. Then
(i) The extended union of (F,A) and (G,B), denoted by (F,A) ∪̃ε (G,B) = (K,C),

where C = A ∪B, is de�ned ∀α ∈ C, as

K(α) =


F (α), if α ∈ A−B
G(α), if α ∈ B −A

F (α) ∪G(α), if α ∈ A ∩B

(ii) The restricted union of (F,A) and (G,B), denoted by (F,A) ∪̃r (G,B) = (K,C),
where C = A ∩B, is de�ned ∀α ∈ C, as F (α) ∪G(α) = K(α).

(iii) The extended intersection of (F,A) and (G,B), denoted by (F,A) ∩̃ε (G,B) =
(K,C), where C = A ∪B, is de�ned ∀α ∈ C, as

K(α) =


F (α), if α ∈ A−B
G(α), if α ∈ B −A

F (α) ∩G(α), if α ∈ A ∩B

(iv) The restricted intersection of (F,A) and (G,B), denoted by (F,A) ∩̃r (G,B) =
(K,C), where C = A ∩B, is de�ned ∀α ∈ C, as F (α) ∩G(α) = K(α).

2.4. De�nition ([2]). The complement of a T1SS (F,A) is denoted by (F,A)o and is

de�ned by (F,A)
o

=
(
F

o
, A
)
where F

o
: A −→ P (U) is a mapping given by F

o
(α) =

U − F (α) for all α ∈ A.

2.5. De�nition. Let(F,A) and (G,B) be two T1SS over U. The extended di�erence of
(F,A) and (G,B), denoted by (F,A)−ε (G,B) = (K,C), where C = A ∪ B, is de�ned
∀α ∈ C, as

K(α) =


F (α), if α ∈ A−B
G(α), if α ∈ B −A

F (α)−G(α), if α ∈ A ∩B
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2.6. De�nition ([2]). Let(F,A) and (G,B) be two T1SS over U. The restricted di�er-
ence of (F,A) and (G,B), denoted by (F,A) −r (G,B) = (K,C), where C = A ∩ B, is
de�ned ∀α ∈ C, as F (α)−G(α) = K(α).

2.7. De�nition ([10]). Let (U,E) be a soft universe and σ(U) be the collection of all
T1SS over (U,E). Then a mapping F : A −→ σ(U), A ⊆ E is called a type-2 soft
set(brei�y T2SS) over (U,E) and it is denoted by [F ∗, A].

In this case, corresponding to each parameter α ∈ A, F ∗(α) is a T1SS. Thus,
for each α ∈ A, there exists a T1SS, (Fα, Lα) such that F ∗(α) = (Fα, Lα) where
Fα : Lα −→ P (U) and Lα ⊂ E. In this case, we refer to the parameter set A as the
�primary set of parameters�, while the set of parameters ∪Lα is known as the �underlying
set of parameters�.

In order to make this idea clear an example is given in the following.

2.8. Example. Let the universe U under consideration be the set of some food items
where

U =

{
rice, pudding, macaroni, pasta, ice cream, chicken soup,

sherbet, chicken sandwich

}
.

Let E be the set of parameters de�ned as,

E =

{
solid diet, soft diet, fluid diet, calorie rich diet, fibre

rich diet, protein rich diet, carbohydrate rich diet

}
.

Suppose,

A =
{
calorie rich diet, fibre rich diet, carbohydrate rich diet

}
.

Then, A ⊂ E.
Let [F ∗, A] be a T2SS over U , which denotes the characteristics of the above men-

tioned food items in terms of food value. We de�ned as

F ∗(calorie rich diet) =

{
solid diet

{macaroni, rice, pasta} ,
soft diet

{pudding, chicken soup}

}
F ∗(fibre rich diet) =

{
solid diet

{chicken sandwich, pasta} ,
soft diet

{ice cream, sherbet}

}
F ∗(carbohydrate rich diet) =

{
solid diet

{rice. macaroni}

}
.

2.9. De�nition ([10]). Let [F ∗, A] and [G∗, B] be two T2SS over U. The union of
[F ∗, A] and [G∗, B], denoted by [F ∗, A]t [G∗, B] = [H∗, C], where C = A∪B, is de�ned
∀α ∈ C, as

H∗(α) =


F ∗(α), if α ∈ A−B
G∗(α), if α ∈ B −A

F ∗(α)∪̃G∗(α), if α ∈ A ∩B

where F ∗(α) ∪̃G∗(α) for all α ∈ A∩B, refers to the usual type-1 soft union between the
respective T1SS corresponding to F ∗(α) and G∗(α) respectively.

2.10. De�nition ([10]). Let [F ∗, A] and [G∗, B] be two T2SS over U. The intersection
of [F ∗, A] and [G∗, B], denoted by [F ∗, A]u [G∗, B] = [H∗, C], where C = A ∩ B, is
de�ned ∀α ∈ C, as H∗(α) = F ∗(α)∩̃G∗(α), where F ∗(α)∩̃G∗(α) for all α ∈ A∩B, refers
to the usual type-1 soft intersection between the respective T1SS corresponding to F ∗(α)
and G∗(α) respectively.
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2.11. De�nition[10]. Let [F ∗, A] and [G∗, B] be two T2SS over common universe U.
Then [F ∗, A] is called a type-2 soft subset of [G∗, B] if and only if A ⊂ B, and F ∗(α) ⊂
G∗(α) ∀α ∈ A, where F ∗(α) ⊂ G∗(α), refers to the containment of T1SS corresponding
to F ∗(α) in T1SS corresponding to G∗(α). It is denoted as [F ∗, A] < [G∗, B].

2.12. De�nition[10]. The complement of a T2SS [F ∗, A] is denoted as [F ∗, A]o and is
de�ned by [F ∗, A]o = [(F ∗)o, A] where (F ∗)o(α) = (Fα, Lα)o, ∀α ∈ A such that F oα(β) =
U − Fα(β) ∀β ∈ Lα.

3. Some new operations on type-2 soft sets

In De�nition 2.2, de�ned that the empty T1SS and the null T1SS are two di�erent
concepts. In T2SS theory, the empty T2SS and the null T2SS are also two di�erent
concepts, but there are two empty T2SS appearing one with respect to an empty set of
primary parameters and other with respect to empty set of the underlying parameters.
We di�erentiate these two empty T2SS as follows:

3.1. De�nition. Let U be an initial universe set, E be the universe set of parameters
and A ⊂ E.

(i) [F ∗, A] is called an null T2SS if and only if for each parameter α ∈ A, the T1SS
corresponding to F ∗ (α) is a null T1SS. A null T2SS is denoted by N∗A.

(ii) We shall denote ∅∗U by the unique T2SS over (U,E) with an empty set of primary
parameters which is called the primary empty T2SS over U .

(iii) [F ∗, A] is called an underlying empty T2SS if and only if for each α ∈ A, the
T1SS corresponding to F ∗ (α) is an empty T1SS. An underlying empty T2SS is denoted
by ∅∗A.

(iv) [F ∗, A] over U is called an absolute T2SS if and only if for each α ∈ A, the T1SS
corresponding to F ∗ (α) is an absolute T1SS. An absolute T2SS is denoted by W ∗A.

3.2. Remarks. By the de�nition of T2SS, F ∗(α) = (Fα, Lα) where Lα ⊂ E for each
α ∈ A and Ω = ∪Lα. Then

(i) Wemay say that Ω a universal set of underlying parameters and Lα is an underlying
set of parameters under T1SS corresponding to F ∗(α) for each α ∈ A.

(ii) We denote F ∗(α) = (Fα, Lα), ∀α ∈ A as F ∗(α) =
{

γ
Fα(γ)

| γ ∈ Lα
}
.

3.3. De�nition. A T2SS [F ∗, A] over U is called parallel if and only if for each α ∈ A,
the underlying set of parameters of T1SS corresponding to F ∗ (α) is equal to Λ, i.e
Λ ⊂ Ω. A parallel T2SS is denoted by χ∗A.

3.4. De�nition. Let [F ∗, A] be a T2SS over U and Ω be a set of all underlying parame-
ters. Then [F ∗, A] is called an underlying absolute T2SS if for each α ∈ A, the underlying
set of parameters of T1SS corresponding to F ∗ (α) is equal to Ω. An underlying absolute
T2SS of A is denoted by π∗A.

3.5. Lemma. If [F ∗, A] is a underlying absolute T2SS of A, then [F ∗, A] is a parallel
T2SS.
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3.6. De�nition. Let [F ∗, A] = π∗A be an underlying absolute T2SS over U . Then π∗A is
called a complete T2SS if and only if for each α ∈ A, the T1SS corresponding to F ∗ (α)
is an absolute T1SS. A complete T2SS of A is denoted by ω∗A = [U∗, A].

In De�nition 2.9 and De�nition 2.10, union and intersection of T2SS are de�ned
respectively. As seen in [10]. We may write the De�nition 2.9 and the De�nition 2.10, as
in the following form,

3.7. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U. The
extended union of [F ∗, A] and [G∗, B], denoted by [F ∗, A]tε [G∗, B] = [I∗, C], where
C = A ∪B, is de�ned ∀α ∈ C, as

I∗(α) =


F ∗(α), if α ∈ A−B
G∗(α), if α ∈ B −A

F ∗(α)∪̃εG∗(α), if α ∈ A ∩B

It may be mentioned here that

F ∗(α) ∪̃εG∗(α) =



γ

Fα(γ)
, if γ ∈ Lα

γ

Gα(γ)
, if γ ∈Mα

γ

Fα(γ) ∪Gα(γ)
, if γ ∈ Lα ∩Mα

for all α ∈ C, where Lα and Mα are underlying set of parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

In other words F ∗(α)∪̃εG∗(α) for all α ∈ C, refers to the extended type-1 soft union
between the respective T1SS corresponding to F ∗(α) and G∗(α) respectively.

3.8. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U. The
restricted intersection of [F ∗, A] and [G∗, B], denoted by [F ∗, A]ur [G∗, B] = [I∗, C],
where C = A ∩ B 6= ∅, is de�ned ∀α ∈ C, as F ∗(α)∩̃rG∗(α) = I∗(α). It may be
mentioned here that

F ∗(α)∩̃rG∗(α) =

{
γ

Fα(γ) ∩Gα(γ)
if γ ∈ Lα ∩Mα ,

where Lα and Mα are underlying set of parameters of T1SS (Fα, Lα) and (Gα,Mα)
corresponding to F ∗(α) and G∗(α) respectively.

In other words F ∗(α)∩̃rG∗(α) for all α ∈ C, refers to the restricted type-1 soft inter-
section between the respective T1SS corresponding to F ∗(α) and G∗(α) respectively.

In addition, we de�ne following de�nitions of union and intersection.

3.9. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U. The
restricted union of [F ∗, A] and [G∗, B], denoted by [F ∗, A] tr [G∗, B] = [K∗, C], where
C = A ∩ B 6= ∅, is de�ned ∀α ∈ C, as F ∗(α) ∪̃r G∗(α) = K∗(α), where F ∗(α) ∪̃r G∗(α)
for all α ∈ A∩B, refers to the restricted type-1 soft union between the respective T1SS
corresponding to F ∗(α) and G∗(α) respectively.
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3.10. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over over a common universe
U. The extended intersection of [F ∗, A] and [G∗, B], denoted by [F ∗, A] uε [G∗, B] =
[H∗, C], where C = A ∪B, is de�ned ∀α ∈ C as

H∗(α) =


F ∗(α), if α ∈ A−B
G∗(α), if α ∈ B −A

F ∗(α) ∩̃εG∗(α), if α ∈ A ∩B

where F ∗(α) ∩̃εG∗(α) for all α ∈ A ∩ B, refers to the extended type-1 soft intersection
between the respective T1SS corresponding to F ∗(α) and G∗(α) respectively.

3.11. Lemma. Let [F ∗, A] and [G∗, B] be two T2SS over over a common universe U.
Then extended intersection, restricted intersection, extended union and re-
stricted union of [F ∗, A] and [G∗, B] is also a T2SS.

Proof. Straightforward. �

Let us illustrate above de�nitions in the following example

3.12. Example. Let U = {h1, h2, h3, h4, h5, h6, h7} be a set of houses under considera-
tions,

E =

{
in good location, expensive, beautiful, cheep, wooden, best school
district, with good security, near to market, with pool, furnished

}
be a set of parameters.

Let, A =
{
in good location, cheep, best school district

}
and B =

{
furnished, cheep, best school district

}
. Then A,B ⊂ E. Let [F ∗, A] and

[G∗, B] be two T2SS over (U,E), de�ned by

F ∗(in good location) =

{
near to market

{h2, h3, h7}
,

beautiful

{h1, h3, h4, h6}

}
F ∗(cheep) =

{
wooden

{h2, h3, h7}
,
beautiful

{h1, h5, h7}
,
with good security

{h1, h3}

}
F ∗(best school district) =

{
near to market

{h2, h3, h7}
,

wooden

{h2, h4, h5}
,

beautiful

{h1, h3, h4, h6}

}
G∗(furnished) =

{
wooden

{h1, h2, h7}
,
beautiful

{h5, h6}

}
G∗(cheep) =

{
wooden

{h2, h5, h7}
,

beautiful

{h1, h3, h5, h6}
,
near to market

{h2, h6}

}
G∗(best school district) =

{
near to market

{h3, h4, h7}
,
with pool

{h2, h5, h6}
,
beautiful

{h1, h2, h6}

}
Then,

Extended Union [F ∗, A]tε [G∗, B] = [I∗, C], where C = A ∪ B. For all α ∈ C,
[I∗, C] is as the following,

I∗(in good location) =

{
near to market

{h2, h3, h7}
,

beautiful

{h1, h3, h4, h6}

}

I∗(cheep) =


wooden

{h2, h3, h5, h7}
,

beautiful

{h1, h3, h5, h6, h7}
,
with good security

{h1, h3}
,

near to market

{h2, h6}


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I∗(best school district) =


near to market

{h2, h3, h4, h7}
,

beautiful

{h1, h2, h3, h4, h6}
,
with pool

{h2, h5, h6}
,

wooden

{h2, h4, h5}


I∗(furnished) =

{
wooden

{h1, h2, h7}
,
beautiful

{h5, h6}

}
.

Restricted Intersection [F ∗, A]ur [G∗, B] = [J∗, C], where C = A ∩ B. For all
α ∈ C, [J∗, C] is as the following,

J∗(cheep) =

{
wooden

{h2, h7}
,
beautiful

{h1, h5}

}
J∗(best school district) =

{
near to market

{h3, h7}
,
beautiful

{h1, h6}

}
.

Restricted Union [F ∗, A]tr [G∗, B] = [K∗, C], where C = A ∩ B. For all α ∈ C,
[K∗, C] is as the following,

K∗(cheep) =

{
wooden

{h2, h3, h5, h7}
,

beautiful

{h1, h3, h5, h6, h7}

}
K∗(best school district) =

{
near to market

{h2, h3, h4, h7}
,

beautiful

{h1, h2, h3, h4, h6}

}
.

Extended Intersection [F ∗, A]uε [G∗, B] = [H∗, C], where C = A ∪ B. For all
α ∈ C, [H∗, C] is as the following,

H∗(in good location) =

{
near to market

{h2, h3, h7}
,

beautiful

{h1, h3, h4, h6}

}
H∗(cheep) =

{
wooden

{h2, h7}
,
beautiful

{h1, h5}
,
with good security

{h1, h3}
,
near to market

{h2, h6}

}
H∗(best school district) =

{
near to market

{h3, h7}
,
with pool

{h2, h5, h6}
,

wooden

{h2, h4, h5}
,
beautiful

{h1, h6}

}
H∗(furnished) =

{
wooden

{h1, h2, h7}
,
beautiful

{h5, h6}

}
.

In the above de�nitions, a restriction is contemplated over a restriction and an ex-
tension is contemplated over an extension. We dealt with the primary parameters and
corresponding sets of underlying parameters in the same manner. Interestingly, some-
times primary parameters behaves di�erently from the corresponding sets of underlying
parameters in a type-2 soft set. In this regard, we now investigate some additional
situations such that restriction-extension and extension-restriction. We introduce the
following new notions of union and intersection.

3.13. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U. The
extended-restricted union of [F ∗, A] and [G∗, B], denoted by [F ∗, A]tε−r [G∗, B] =
[I∗, C], where C = A ∪B, is de�ned ∀α ∈ C, as

I∗(α) =


F ∗(α), if α ∈ A−B
G∗(α), if α ∈ B −A

F ∗(α) ∪̃r G∗(α), if α ∈ A ∩B

where F ∗(α)∪̃rG∗(α) for all α ∈ A∩B, refers to the restricted type-1 soft union between
the respective T1SS corresponding to F ∗(α) and G∗(α) respectively.
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3.14. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U. The extended-
restricted intersection of [F ∗, A] and [G∗, B], denoted by [F ∗, A] uε−r [G∗, B] =
[H∗, C], where C = A ∪B, is de�ned ∀α ∈ Cas

H∗(α) =


F ∗(α), if α ∈ A−B
G∗(α), if α ∈ B −A

F ∗(α) ∩̃r G∗(α), if α ∈ A ∩B

where F ∗(α) ∩̃r G∗(α) for all α ∈ A ∩ B, refers to the restricted type-1 soft intersection
between the respective T1SS corresponding to F ∗(α) and G∗(α) respectively.

3.15. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U. The restricted-
extended union of [F ∗, A] and [G∗, B], denoted by [F ∗, A]tr−ε [G∗, B] = [J∗, C], where
C = A ∩ B 6= ∅, is de�ned ∀α ∈ C, as F ∗(α)∪̃εG∗(α) = J∗(α), where F ∗(α)∪̃εG∗(α)
for all α ∈ A ∩B, refers to the extended type-1 soft union between the respective T1SS
corresponding to F ∗(α) and G∗(α) respectively.

3.16. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U. The restricted-
extended intersection of [F ∗, A] and [G∗, B], denoted by [F ∗, A]ur−ε [G∗, B] = [K∗, C],
where C = A∩B, is de�ned ∀α ∈ C, as F ∗(α)∩̃εG∗(α) = K∗(α), where F ∗(α)∩̃εG∗(α)for
all α ∈ A∩B, refers to the extended type-1 soft intersection between the respective T1SS
corresponding to F ∗(α) and G∗(α) respectively.

3.17. Lemma. Let [F ∗, A] and [G∗, B] be two T2SS over over a common universe
U. Then the restricted-extended intersection, extended-restricted intersection,
restricted-extended union and extended-restricted union of [F ∗, A] and [G∗, B]
is also a T2SS.

Proof. Straightforward. �

Let us illustrate above de�nitions in the following example

3.18. Example. Consider two T2SS [F ∗, A] and [G∗, B] de�ned in the Example 3.12.
Then,

Extended-Restricted Union [F ∗, A]tε−r [G∗, B] = [I∗, C], where C = A ∪B. For
all α ∈ C, [I∗, C] is as the following,

I∗(in good location) =

{
near to market

{h2, h3, h7}
,

beautiful

{h1, h3, h4, h6}

}
I∗(cheep) =

{
wooden

{h2, h3, h5, h7}
,

beautiful

{h1, h3, h5, h6, h7}

}
I∗(best school district) =

{
near to market

{h2, h3, h4, h7}
,

beautiful

{h1, h2, h3, h4, h6}

}
I∗(furnished) =

{
wooden

{h1, h2, h7}
,
beautiful

{h5, h6}

}
.

Extended-Restricted Intersection [F ∗, A]uε−r [G∗, B] = [H∗, C], where C = A∪
B. For all α ∈ C, [H∗, C] is as the following,

H∗(in good location) =

{
near to market

{h2, h3, h7}
,

beautiful

{h1, h3, h4, h6}

}
H∗(cheep) =

{
wooden

{h2, h7}
,
beautiful

{h1, h5}

}
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H∗(best school district) =

{
near to market

{h3, h7}
,
beautiful

{h1, h6}

}
H∗(furnished) =

{
wooden

{h1, h2, h7}
,
beautiful

{h5, h6}

}
.

Restricted-Extended Union [F ∗, A]tr−ε [G∗, B] = [K∗, C], where C = A∩B. For
all α ∈ C, [K∗, C] is as the following,

K∗(cheep) =


wooden

{h2, h3, h5, h7}
,

beautiful

{h1, h3, h5, h6, h7}
,
with good security

{h1, h3}
,

near to market

{h2, h6}


K∗(best school district) =


near to market

{h2, h3, h4, h7}
,
with pool

{h2, h5, h6}
,

wooden

{h2, h4, h5}
,

beautiful

{h1, h2, h3, h4, h6}


Restricted-Extended Intersection [F ∗, A] ur−ε [G∗, B] = [J∗, C], where C =

A ∩B. For all α ∈ C, [J∗, C] is as the following,

J∗(cheep) =

{
wooden

{h2, h7}
,
beautiful

{h1, h5}
,
with good security

{h1, h3}
,
near to market

{h2, h6}

}
J∗(best school district) =

{
near to market

{h3, h7}
,
with pool

{h2, h5, h6}
,

wooden

{h2, h4, h5}
,
beautiful

{h1, h6}

}
.

3.19. Proposition. Let [F ∗, A], [G∗, B] and [I∗, C] be three T2SS de�ned over a com-
mon universe U . Then, for ` ∈ {r, ε, r − ε, ε− r} the following relations hold:

(i) [F ∗, A] t` [F ∗, A] = [F ∗, A]

(ii) [F ∗, A] u` [F ∗, A] = [F ∗, A]

(iii) [F ∗, A] t` [G∗, B] = [G∗, B] t` [F ∗, A]

(iv) [F ∗, A] u` [G∗, B] = [G∗, B] u` [F ∗, A]

(v) ([F ∗, A] t` [G∗, B]) t` [I∗, C] = [F ∗, A] t` ([G∗, B] t` [I∗, C])

(vi) ([F ∗, A] u` [G∗, B]) u` [I∗, C] = [F ∗, A] u` ([G∗, B] u` [I∗, C])

(vii) [F ∗, A] t` ([G∗, B] u` [I∗, C]) = ([F ∗, A] t` [G∗, B]) u` ([F ∗, A] t` [I∗, C])

(viii) [F ∗, A] u` ([G∗, B] t` [I∗, C]) = ([F ∗, A] u` [G∗, B]) t` ([F ∗, A] u` [I∗, C])

Proof. Proofs are straight-forward. �

3.20. Proposition. Let [F ∗, A] be a T2SS de�ned over a common universe U . Then,
for ` ∈ {r, ε, r − ε, ε− r} the following relations hold:

(i) [F ∗, A] t` [F ∗, A]o = W ∗A

(ii) [F ∗, A] u` [F ∗, A]o = N∗A

Proof. It is obvious, therefore omitted. �
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3.21. Proposition. Let [F ∗, A] and [G∗, A] be two T2SS de�ned over a common uni-
verse U . Then, the following relations hold:

(i) [F ∗, A] tr [G∗, B] v [F ∗, A] tε−r [G∗, B] v [F ∗, A] tε [G∗, B]

(ii) [F ∗, A] tr [G∗, B] v [F ∗, A] tr−ε [G∗, B] v [F ∗, A] tε [G∗, B]

(iii) [F ∗, A] ur [G∗, B] v [F ∗, A] uε−r [G∗, B] v [F ∗, A] uε [G∗, B]

(iv) [F ∗, A] ur [G∗, B] v [F ∗, A] ur−ε [G∗, B] v [F ∗, A] uε [G∗, B]

(v) ([F ∗, A] tr−ε [G∗, B]) tε ([F ∗, A] tε−r [G∗, B]) = [F ∗, A] tε [G∗, B]

(vi) ([F ∗, A] tr−ε [G∗, B]) tr ([F ∗, A] tε−r [G∗, B]) = [F ∗, A] tr [G∗, B]

(vii) ([F ∗, A] ur−ε [G∗, B]) uε ([F ∗, A] uε−r [G∗, B]) = [F ∗, A] uε [G∗, B]

(viii) ([F ∗, A] ur−ε [G∗, B]) ur ([F ∗, A] uε−r [G∗, B]) = [F ∗, A] ur [G∗, B]

Proof. Proofs are straight-forward. �

Next, we apply concept of extension and restriction in di�erence of two T2SS.

3.22. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U such that A∩
B 6= ∅. The restricted di�erence of [F ∗, A] and [G∗, B] is denoted by [F ∗, A]�̂r[G

∗, B]
and is de�ned as [F ∗, A]�̂r[G

∗, B] = [K∗, C] where C = A ∩ B and for all c ∈ C,
K∗(c) = F ∗(c) �r G∗(c), where K∗(c) = F ∗(c) �r G∗(c) refers to restricted di�erence
between the respective T1SS corresponding to F ∗(c) and G∗(c) respectively.

3.23. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U such that
A ∩ B 6= ∅. The restricted-extended di�erence of [F ∗, A] and [G∗, B] is denoted by
[F ∗, A]�̂r−ε[G

∗, B] and is de�ned as [F ∗, A]�̂r−ε[G
∗, B] = [K∗, C] where C = A∩B and

for all c ∈ C, K∗(c) = F ∗(c)�ε G∗(c), where K∗(c) = F ∗(c)�ε G∗(c) refers to extended
di�erence between the respective T1SS corresponding to F ∗(c) and G∗(c) respectively.

3.24. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U . The ex-
tended di�erence of [F ∗, A] and [G∗, B] is denoted by [F ∗, A]�̂ε[G

∗, B] and is de�ned
as [F ∗, A]�̂ε[G

∗, B] = [K∗, C] where C = A ∪B and for all c ∈ C,

H∗(c) =


F ∗(c), if c ∈ A−B
G∗(c), if c ∈ B −A

F ∗(c)�ε G∗(c), if c ∈ A ∩B

where F ∗(c) �ε G∗(c) refers to extended di�erence between the respective T1SS corre-
sponding to F ∗(c) and G∗(c) respectively.

3.25. De�nition. Let [F ∗, A] and [G∗, B] be two T2SS over a universe U . The extended-
restricted di�erence of [F ∗, A] and [G∗, B] is denoted by [F ∗, A] �ε−r [G∗, B] and is
de�ned as [F ∗, A]�ε−r [G∗, B] = [K∗, C] where C = A ∪B and for all c ∈ C,

H∗(c) =


F ∗(c), if c ∈ A−B
G∗(c), if c ∈ B −A

F ∗(c)�r G∗(c), if c ∈ A ∩B

where F ∗(c) �r G∗(c) refers to restricted di�erence between the respective T1SS corre-
sponding to F ∗(c) and G∗(c) respectively.



866

3.26. Proposition. Let [F ∗, A] be a T2SS de�ned over a common universe U . Then,
for ` ∈ {r, ε, r − ε, ε− r} the following relations hold:

(i) [F ∗, A]�̂`N∗A = [F ∗, A]�̂`N∗E = [F ∗, A]

(ii) [F ∗, A]�̂`[F
∗, A] = N∗(U,E)

(iii) W ∗A�̂`[F
∗, A] = [F ∗, A]o

(iv) W ∗E�̂`[F
∗, A] = [F ∗, A]o

Proof. Proofs are straight-forward. �

3.27. Proposition. Let [F ∗, A] and [G∗, B] be two T2SS de�ned over a common uni-
verse U . Then, the following relations hold:

(i) [F ∗, A]�̂r[G
∗, B] v [F ∗, A]�̂ε−r[G

∗, B] v [F ∗, A]�̂ε[G
∗, B]

(ii) [F ∗, A]�̂r[G
∗, B] v [F ∗, A]�̂r−ε[G

∗, B] v [F ∗, A]�̂ε[G
∗, B]

Proof. Proofs are straight-forward. �

3.28. De�nition. The restricted complement of a T2SS [F ∗, A] is denoted as [F ∗, A]or =
[(F ∗)or , A] = ω∗A�̂r[F

∗, A] and is de�ned as (F ∗)or (α) = U∗�rF
∗(α) for all α ∈ A, where

ω∗A = [U∗, A] is a complete T2SS of A over U .

3.29. Lemma. Let [F ∗, A] be a T2SS over a universe U . Then [F ∗, A]or=[F ∗, A]o.

Proof. Proof is straightforward therefore omitted. �

By Lemma 3.29, we will use the De�nition 3.28, for complements in rest of paper and
use the symbol [F ∗, A]o in place of [F ∗, A]or for complement of [F ∗, A].

4. De Morgan's laws in Type-2 soft set theory

In this section, we show that the following De Morgan's laws type of results holds in
T2SS theory for the newly de�ned the restricted union, the extended union, the restricted
intersection, the extended intersection, the restricted-extended union, the extended-
restricted union, the restricted-extended intersection and the extended-restricted inter-
section.

4.1. Theorem. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U such
that A ∩B 6= ∅. Then,

(i) ([F ∗, A] tr [G∗, B])o = [F ∗, A]o ur [G∗, B]o

(ii) ([F ∗, A] ur [G∗, B])o = [F ∗, A]o tr [G∗, B]o

Proof. (i) Let [F ∗, A]tr [G∗, B] = [H∗, A∩B] such that C = A∩B 6= ∅. Then, H∗(α) =

F ∗(α)∪̃rG∗(α) for all α ∈ C. Since ([F ∗, A] tr [G∗, B])
o

= [H∗, A ∩B]
o
, by Lemma 3.29,

we have (H∗)
o
(α) = U∗�rF

∗(α)∪̃rG∗(α) for all α ∈ C. Thus,

(H∗)
o
(α) =

{
γ

U − (Fα(γ)) ∪r (Gα(γ))
if γ ∈ Lα ∩Mα

=

{
γ

(U − Fα(γ)) ∩r (U −Gα(γ))
if γ ∈ Lα ∩Mα

=

{
γ

(F o
α(γ)) ∩r (Go

α(γ))
if γ ∈ Lα ∩Mα

where Lα and Mα are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.
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On the other hand, [F ∗, A]o ur [G∗, B]o = [(F ∗)
o
, A]ur [(G∗)

o
, B] = [K∗, A∩B], where

C = A ∩B. Since K∗(α) = (F ∗)
o
(α)∩̃r(G∗)

o
(α) for all α ∈ A ∩B. Thus,

K∗(α) =

{
γ

(F oα(γ)) ∩r (Goα(γ))
if γ ∈ L′α ∩M ′α

where L′α and M ′α are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

Since (H∗)o and K∗ are indeed the same set-valued mapping, we conclude that
([F ∗, A] tr [G∗, B])o = [F ∗, A]o ur [G∗, B]o as required. Similarly, we can prove (ii). �

4.2. Theorem. Let [F ∗, A] and [G∗, B] be two T2SS over a common universe U. Then,

(i) ([F ∗, A] tε [G∗, B])o = [F ∗, A]o uε [G∗, B]o

(ii) ([F ∗, A] uε [G∗, B])o = [F ∗, A]o tε [G∗, B]o

Proof. (i) Let [F ∗, A] tε [G∗, B] = [H∗, C] such that C = A ∪ B. For all α ∈ C, by
de�nition, we have

H∗(α) =


F ∗(α), if α ∈ A−B,
G∗(α), if α ∈ B −A,
F ∗(α)∪̃εG∗(α), if α ∈ A ∩B.

and

(H∗)
o
(α) =


U∗�rF

∗(α), if α ∈ A−B,
U∗�rG

∗(α), if α ∈ B −A,
U∗�rF

∗(α) ∪̃εG∗(α), if α ∈ A ∩B.
It may be mentioned here that,

U∗�rF
∗(α) =

{
β

U − Fα(β)
=

β

F oα(β)
if β ∈ Lα, α ∈ A−B ,

U∗�rG
∗(α) =

{
δ

U −Gα(δ)
=

δ

Goα(δ)
if δ ∈Mα, α ∈ B −A

where Lα and Mα are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

And

U∗�rF
∗(α)∪̃εG∗(α) =



γ

U − Fα(γ)
, if γ ∈ L′α,

γ

U −Gα(γ)
, if γ ∈M ′α,

γ

U − Fα(γ) ∪Gα(γ)
, if γ ∈ L′α ∩M ′α.

=



γ

F oα(γ)
, if γ ∈ L′α,

γ

Goα(γ)
, if γ ∈M ′α,

γ

F oα(γ) ∩Goα(γ)
, if γ ∈ L′α ∩M ′α.

for all α ∈ A ∩ B, where L′α and M ′α are the sets of underlying parameters of T1SS
(Fα, Lα) and (Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

On the other hand, [F ∗, A]o uε [G∗, B]o = [K∗, C] such that C = A∩B. For all α ∈ C,
by de�nition, we have
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K∗(α) =


(F ∗)o(α), if α ∈ A−B,
(G∗)o(α), if α ∈ B −A,

((F ∗)o(α))∩̃ε((G∗)o(α)), if α ∈ A ∩B.
It may be mentioned here that,

(F ∗)o(α) =

{
β

F oα(β)
if β ∈ Lα, ∀α ∈ A−B ,

(G∗)o(α) =

{
δ

Goα(δ)
if δ ∈Mα, ∀α ∈ B −A

where Lα and Mα are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.
And

((F ∗)o(α))∩̃ε((G∗)o(α)) =



γ

F oα(γ)
, if γ ∈ L′α,

γ

Goα(γ)
, if γ ∈M ′α,

γ

F oα(γ) ∩Goα(γ)
, if γ ∈ L′α ∩M ′α.

for all α ∈ A ∩ B, where L′α and M ′α are the sets of underlying parameters of T1SS
(Fα, L

′
α) and (Gα,M

′
α) corresponding to F ∗(α) and G∗(α) respectively.

Since (H∗)o and K∗ are indeed the same set-valued mapping, we conclude that
([F ∗, A] tε [G∗, B])o = [F ∗, A]o uε [G∗, B]o as required. Similarly, we can prove (ii). �

4.3. Theorem. Let [F ∗, A] and [G∗, B] be two T2SS over same universe U such that
A ∩B 6= ∅. Then,

(i) ([F ∗, A] tr−ε [G∗, B])o = [F ∗, A]o ur−ε [G∗, B]o

(ii) ([F ∗, A] ur−ε [G∗, B])o = [F ∗, A]o tr−ε [G∗, B]o

Proof. (i) Let [F ∗, A] tr−ε [G∗, B] = [H∗, A ∩ B] such that C = A ∩ B 6= ∅. Then,
H∗(α) = F ∗(α)∪̃εG∗(α) for all α ∈ C. Since ([F ∗, A] tr−ε [G∗, B])

o
= [H∗, A ∩ B]

o
, by

Lemma 3.29, we have

(H∗)
o
(α) = U∗�rF

∗(α)∪̃εG∗(α)

=



γ

U − Fα(γ)
, if γ ∈ L′α,

γ

U −Gα(γ)
, if γ ∈M ′α,

γ

U − Fα(γ) ∪Gα(γ)
, if γ ∈ L′α ∩M ′α.

=



γ

F oα(γ)
, if γ ∈ L′α,

γ

Goα(γ)
, if γ ∈M ′α,

γ

F oα(γ) ∩Goα(γ)
, if γ ∈ L′α ∩M ′α.

for all α ∈ A ∩ B, where L′α and M ′α are the sets of underlying parameters of T1SS
(Fα, Lα) and (Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

On the other hand, [F ∗, A]o ur−ε [G∗, B]o = [(F ∗)
o
, A] ur−ε [(G∗)

o
, B] = [K∗, A ∩ B],

where C = A ∩B. Then K∗(α) = (F ∗)
o
(α)∩̃ε(G∗)

o
(α). It may be mentioned here that,
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K∗(α) =



γ

F oα(γ)
, if γ ∈ L′α,

γ

Goα(γ)
, if γ ∈M ′α,

γ

F oα(γ) ∩Goα(γ)
, if γ ∈ L′α ∩M ′α.

for all α ∈ A ∩ B, where L′α and M ′α are the sets of underlying parameters of T1SS
(Fα, L

′
α) and (Gα,M

′
α) corresponding to F ∗(α) and G∗(α) respectively.

Since (H∗)o and K∗ are indeed the same set-valued mapping, we conclude that
([F ∗, A] tr−ε [G∗, B])o = [F ∗, A]o ur−ε [G∗, B]o as required. Similarly, we can prove
(ii). �

4.4. Theorem. Let [F ∗, A] and [G∗, B] be two T2SS over same universe U. Then,

(i) ([F ∗, A] tε−r [G∗, B])o = [F ∗, A]o uε−r [G∗, B]o

(ii) ([F ∗, A] uε−r [G∗, B])o = [F ∗, A]o tε−r [G∗, B]o

Proof. (i) Let [F ∗, A]tε−r [G∗, B] = [H∗, A∩B] such that C = A∩B 6= ∅. For all α ∈ C,
by de�nition, we have

H∗(α) =


F ∗(α), if α ∈ A−B,
G∗(α), if α ∈ B −A,
F ∗(α)∪̃rG∗(α), if α ∈ A ∩B.

and

(H∗)
o
(α) =


U∗�rF

∗(α), if α ∈ A−B,
U∗�rG

∗(α), if α ∈ B −A,
U∗�rF

∗(α)∪̃rG∗(α), if α ∈ A ∩B.
It may be mention that,

U∗�rF
∗(α) =

{
β

U − Fα(β)
=

β

F oα(β)
if β ∈ Lα, ∀α ∈ A−B

U∗�rG
∗(α) =

{
δ

U −Gα(δ)
=

δ

Goα(δ)
if δ ∈Mα, ∀α ∈ B −A

where Lα and Mα are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively. And

U∗�rF
∗(α)∪̃rG∗(α) =

{
γ

U − Fα(γ) ∪Goα(γ)
=

γ

F oα(γ) ∪Goα(γ)
if

γ ∈ L′α ∩M ′α,
∀α ∈ A ∩B

where L′α and M ′α are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively.

On the other hand, [F ∗, A]o uε−r [G∗, B]o = [K∗, C] such that C = A ∪ B. For all
α ∈ C, by de�nition, we have

K∗(α) =


(F ∗)o(α), if α ∈ A−B,
(G∗)o(α), if α ∈ B −A,

((F ∗)o(α))∩̃r((G∗)o(α)), if α ∈ A ∩B.
It may be mention that

(F ∗)o(α) =

{
β

F oα(β)
if β ∈ Lα, ∀α ∈ A−B

(G∗)o(α) =

{
δ

Goα(δ)
if δ ∈Mα, ∀α ∈ B −A
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where Lα and Mα are the sets of underlying parameters of T1SS (Fα, Lα) and
(Gα,Mα) corresponding to F ∗(α) and G∗(α) respectively. And

((F ∗)o(α))∩̃r((G∗)o(α)) =

{
γ

F oα(γ) ∩Goα(γ)
if γ ∈ L′α ∩M ′α ∀α ∈ A ∩B

for all α ∈ A ∩ B, where L′α and M ′α are the sets of underlying parameters of T1SS
(Fα, L

′
α) and (Gα,M

′
α) corresponding to F ∗(α) and G∗(α) respectively.

Since (H∗)o and K∗ are indeed the same set-valued mapping, we conclude that
([F ∗, A] tr−ε [G∗, B])o = [F ∗, A]o ur−ε [G∗, B]o as required. Similarly, we can prove
(ii). �

In order to explain above theorems an example is given in the following.

4.5. Example. A car company is desirable to select the unsuitable robots on di�erent
robot attributes. Assume a set U of seven robots under consideration, which is denoted
by U = {h1, h2, h3, h4, h5, h6, h7} and E is a parameter set, where

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}

=


aluminum material, medium size, smallweight, high cost, with a good

driving system, high load capacity, high repeatability,
high speed, medium memory capacity, high degree of freedom

.

This company has two decision makers from consultancy departments: F ∗ is from the
production department, G∗ is from the engineering department. They make observations
on provided primary attributes: aluminum material, medium size, small weight, high
cost.

The F ∗ considers a set of parameters

A =
{
aluminum material, small weight, high cost

}
and the G∗ considers a set of parameters

B =
{
medium size, small weight, high cost

}
such that A,B ⊆ E. They have obser-

vations (type-2 soft sets) [F ∗, A] and [G∗, B] as follows

F ∗(aluminum material) =

{
high speed

{h2, h4, h5}
,
high degree of freedom

{h6, h7}

}
F ∗(small weight) =

{
medium memory capacity

{h3, h5}
, high repeatability

{h1, h3,h7}
, high degree of freedom{h1, h4, h6}

}
F ∗(high cost) =

{
high speed

{h1, h3, h5}
,
high repeatability

{h1, h7}
,
high load capacity

{h1, h2, h7}

}
and

G∗(medium size) =

{
high load capacity

{h3, h4, h6}
,
high degree of freedom

{h2, h5, h7}

}

G∗(small weight) =


medium memory capacity

{h3, h5, h7}
,

high speed

{h2, h3, h5}
,

high degree of freedom

{h2, h4, h6}


G∗(high cost) =

{
high repeatability

{h2, h3, h7}
,
high load capacity

{h2, h4, h6}

}
Note that the set of underlying parameters of decision makers is{
high load capacity, high repeatability, high speed, high degree of freedom,

medium memory capacity

}
.
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Now this company interesting to obtain most unsuitable robots based on above obser-
vations of decision makers. Then company may consider one of the two problems (Γ1)
and (Γ2) on primary attributes as in the following.

(Γ1) In order to get most unsuitable robots based on these observations company
interesting on results of each primary attributes: aluminum material, medium size,
small weight, high cost.

(i) Suppose company looks at both complete set of primary parameters and the
complete sets underlying parameters of decision makers. The following two methods to
obtain the results

(p1) In �rst method company combine both observations by using extended union and
then takes the complement of it. Then [F ∗, A]tε [G∗, B] = [I∗, C], where C = A ∪ B.
For all α ∈ C, [I∗, C] is as the following,

I∗(aluminum material) =

{
high speed

{h2, h4, h5}
,
high degree of freedom

{h6, h7}

}
I∗(medium size) =

{
high load capacity

{h3, h4, h6}
,
high degree of freedom

{h2, h5, h7}

}

I∗(small weight) =


medium memory capacity

{h3, h5, h7}
,

high speed

{h2, h3, h5}
,

high degree of freedom

{h1, h2, h4, h6}
,
high repeatability

{h1, h3, h7}


I∗(high cost) =

{
high repeatability

{h1, h2, h3, h7}
,

high speed

{h1, h3, h5}
,
high load capacity

{h1, h2, h4, h6, h7}

}
.

Then

(I∗)o(aluminum material) =

{
high speed

{h1, h3, h6, h7}
,

high of freedom

{h1, h2, h3, h4, h5}

}
(I∗)o(medium size) =

{
high load capacity

{h1, h2, h5, h7}
,
high degree of freedom

{h1, h3, h4, h6}

}

(I∗)o(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high speed

{h1, h4, h6, h7}
,

high degree of freedom

{h3, h5, h7}
,
high repeatability

{h2, h4, h5, h6}


(I∗)o(high cost) =


high repeatability

{h4, h5, h6}
,

high speed

{h2, h4, h6, h7}
,

high load capacity

{h3, h5}


These are the most unsuitable robots on the complete set primary attributes and on

the complete sets of underlying parameters corresponding to primary attributes.
(q1) In this method company �rst takes complements of both observations F ∗ and G∗

and obtain unsuitable robots from both of them. Then by using extended intersection
company gets the result.

(F ∗)o(aluminum material) =

{
high speed

{h1, h3, h6, h7}
,
high degree of freedom

{h1, h2, h3, h4, h5}

}

(F ∗)o(small weight) =


medium memory capacity

{h1, h2, h4, h6, h7}
,
high degree of freedom

{h2, h3, h5, h7}
,

high repeatability

{h2, h4, h5, h6}


(F ∗)o(high cost) =

{
high speed

{h2, h4, h6, h7}
,
high load capacity

{h3, h4, h5, h6}
,

high repeatability

{h2, h3, h4, h5, h6}

}
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and

(G∗)o(medium size) =

{
high load capacity

{h1, h2, h5, h7}
,
high degree of freedom

{h1, h3, h4, h6}

}

(G∗)o(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high speed

{h1, h4, h6, h7}
,

high degree of freedom

{h1, h3, h5, h7}


(G∗)o(high cost) =

{
high repeatability

{h1, h4, h5, h6}
,
high load capacity

{h1, h3, h5, h7}

}
Now [F ∗, A]ouε [G∗, B]o = [K∗, C] where C = A∪B. For c ∈ C, [K∗, C] is as following,

K∗(aluminum material) =

{
high speed

{h1, h3, h6, h7}
,
high degree of freedom

{h1, h2, h3, h4, h5}

}
K∗(medium size) =

{
high load capacity

{h1, h2, h5, h7}
,
high degree of freedom

{h1, h3, h4, h6}

}

K∗(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high speed

{h1, h4, h6, h7}
,

high degree of freedom

{h3, h5, h7}
,
high repeatability

{h2, h4, h5, h6}


K∗(high cost) =

{
high repeatability

{h4, h5, h6
,

high speed

{h2, h4, h6, h7}
,
high load capacity

{h3, h5}

}
Since (I∗)o and K∗ are indeed the same results, we conclude the validity Theorem 4.2.

Hence (I∗)o or K∗ are non-appropriate robots for this company in term of the complete
sets of primary attributes and corresponding underlying parameters.

(ii) Suppose company looks at the complete set of primary parameters and restricted
set of underlying parameters corresponding to common primary parameters of decision
makers. The following two methods to obtain the results

(p2) In the �rst method company combining both observations by using extended-
restricted union and then takes the complement of it. Then [F ∗, A]tε−r [G∗, B] = [I∗, C],
where C = A ∪B. For all α ∈ C, [I∗, C] is as following,

I∗(aluminum material) =

{
high speed

{h2, h4, h5}
,
high degree of freedom

{h6, h7}

}
I∗(medium size) =

{
high load capacity

{h3, h4, h6}
,
high degree of freedom

{h2, h5, h7}

}
I∗(small weight) =

{
medium memory capacity

{h3, h5, ,h7}
,
high degree of freedom

{h1, h2, h4, h6}

}
I∗(high cost) =

{
high repeatability

{h1, h2, h3, h7}
,

high load capacity

{h1, h2, h4, h6, h7}

}
.

Then

(I∗)o(aluminum material) =

{
high speed

{h1, h3, h6, h7}
,
high degree of freedom

{h1, h2, h3, h4, h5}

}
(I∗)o(medium size) =

{
high load capacity

{h1, h2, h5, h7}
,
high degree of freedom

{h1, h3, h4, h6}

}
(I∗)o(small weight) =

{
medium memory capacity

{h1, h2, h4, h6}
,
high degree of freedom

{h3, h5, h7}

}
(I∗)o(high cost) =

{
high repeatability

{h4, h5, h6}
,
high load capacity

{h3, h5}

}
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These are the most unsuitable robots on the complete set of primary parameters and
on restricted sets of underlying parameters corresponding to common primary parameters
of decision makers.

(q2) In this method company �rst takes complement of both observation F ∗ and G∗.
Then by using extended-restricted intersection company gets the result.

Since [F ∗, A]o and [G∗, B]o are calculated in Method (q1) in (i). Now [F ∗, A]ouε−r
[G∗, B]o = [K∗, C] where C = A ∪B. For c ∈ C, [K∗, C] is as following,

K∗(aluminum material) =

{
high speed

{h1, h3, h6, h7}
,
high degree of freedom

{h1, h2, h3, h4, h5}

}
K∗(medium size) =

{
high load capacity

{h1, h2, h5, h7}
,
high degree of freedom

{h1, h3, h4, h6}

}
K∗(small weight) =

{
medium memory capacity

{h1, h2, h4, h6}
,
high degree of freedom

{h3, h5, h7}

}
K∗(high cost) =

{
high speed

{h2, h4, h6, h7}
,
high load capacity

{h3, h4, h5, h6}

}
These are the most unsuitable robots on complete set primary parameters and on the

restricted sets of underlying parameters corresponding to common primary parameters
of decision makers.

Since (I∗)o and K∗ are indeed the same results, we conclude the validity of (i) in
Theorem 4.4. Hence (I∗)o or K∗ are non-appropriate robots for this company with
respect to all primary attributes and restricted underlying parameters corresponding to
common primary attributes.

(Γ2) Now the company is interesting to select robots only on common primary at-
tributes of decision makers: small weight, high cost.

(iii) Suppose company looks at both common primary parameters and on restricted
underlying parameters corresponding to common primary parameters of decision makers.
The following two methods to obtain the results

(p3) In �rst method company combining both observations by using restricted union
and then takes the complement of it. Then [F ∗, A]tr [G∗, B] = [I∗, C], where C = A∩B.
For all α ∈ C, [I∗, C] is as the following,

I∗(small weight) =

{
medium memory capacity

{h3, h5, h7}
,
high degree of freedom

{h1, h2, h4, h6}

}
I∗(high cost) =

{
high repeatability

{h1, h2, h3, h7}
,
high load capacity

{h1, h2, h4, h6, h7}

}
.

Then

(I∗)o(small weight) =

{
medium memory capacity

{h1, h2, h4, h6}
,
high degree of freedom

{h3, h5, h7}

}
(I∗)o(high cost) =

{
high repeatability

{h4, h5, h6}
,
high load capacity

{h3, h5}

}
These are the most unsuitable robots on common primary attributes and restricted

underlying parameters corresponding to common primary parameters of decision makers.
(q3) In this method company �rst takes complement of both observation F ∗ and G∗.

Then by using restricted intersection company gets the result.
Since [F ∗, A]o and [G∗, B]o are calculated in Method (q1) in (i). Now [F ∗, A]our

[G∗, B]o = [K∗, C] where C = A ∩B. For c ∈ C, [K∗, C] is as following,
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K∗(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high degree of freedom

{h3, h5, h7}


K∗(high cost) =

{
high repeatability

{h4, h5, h6}
,
high load capacity

{h3, h5}

}
Since (I∗)o and K∗ are indeed the same results, we conclude the validity Theorem 4.1.

Hence (I∗)o or K∗ are non-appropriate robots for this company in terms common pri-
mary parameters and common underlying parameters corresponding to common primary
parameters of decision makers.

(iv) Suppose company interesting on common primary parameters and on the com-
plete sets of underlying parameters corresponding to common primary parameters of
decision makers. The following two methods to obtain the results

(p4) In the �rst method company combining both observation by using restricted-
extended union and then takes the complement. Then [F ∗, A]tr−ε [G∗, B] = [I∗, C],
where C = A ∩B. For all α ∈ C, [I∗, C] is as following,

I∗(small weight) =


medium memory capacity

{h3, h5, h7}
,

high speed

{h2, h3, h5}
,

high degree of freedom

{h1, h2, h4, h6}
,
high repeatability

{h1, h3, h7}


I∗(high cost) =


high repeatability

{h1, h2, h3, h7}
,

high speed

{h1, h3, h5}
,

high load capacity

{h1, h2, h4, h6, h7}

 .

Then

(I∗)o(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high speed

{h1, h4, h6, h7}
,

high degree of freedom

{h3, h5, h7}
,
high repeatability

{h2, h4, h5, h6}


(I∗)o(high cost) =


high repeatability

{h4, h5, h6}
,

high speed

{h2, h4, h6, h7}
,

high load capacity

{h3, h5}


These are the most unsuitable robots on common primary parameters and on the

complete sets of underlying parameters corresponding to common primary parameters of
decision makers.

(q4) In this method company �rst takes the complements of both observation F ∗ and
G∗. Then by using restricted-extended intersection company gets the result.

Since [F ∗, A]o and [G∗, B]o are calculated in Method (q1) in (i). Now [F ∗, A]our−ε
[G∗, B]o = [K∗, C] where C = A ∩B. For c ∈ C, [K∗, C] is as following,

K∗(small weight) =


medium memory capacity

{h1, h2, h4, h6}
,

high speed

{h1, h4, h6, h7}
,

high degree of freedom

{h3, h5, h7}
,
high repeatability

{h2, h4, h5, h6}


K∗(high cost) =


high repeatability

{h4, h5, h6}
,

high speed

{h2, h4, h6, h7}
,

high load capacity

{h3, h5}


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These are the most unsuitable robots on common primary parameters and on the
complete sets of underlying parameters corresponding to common primary parameters of
decision makers.

Since (I∗)o and K∗ are indeed the same results, we conclude the validity of (i) in
Theorem 4.3. Hence (I∗)o or K∗ are non-appropriate robots for this company with
respect to common primary parameters and the complete sets of underlying parameters
corresponding to common primary parameters of decision makers.

5. Conclusion

In this paper, we have presented a study of operations on type-2 soft sets. We have
investigated two di�erent type of empty type-2 soft sets such as primary empty type-2
soft set and underlying empty type-2 soft set. We have introduced four new operations
(the extension, the restriction, the extension-restriction, the restriction-extension) each
on union, intersection and di�erence. Moreover, we have proved that four type of De
Morgan's laws hold in type-2 soft set theory with respect to these new de�nitions of union
and intersection. These operations can �nd vast applications in �elds like approximate
reasoning, decision making, medical diagnosis, market analysis, analysis of funds, dietet-
ics, etc. The advantages of our new operations are noteworthy. As to future research,
one can discuss whether these ideas can help to consider type-2 soft sets based decision
making problems.
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