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Abstract: In this paper, we study the tubular surface around a spacelike focal curve in
Lorentz 3-Space. First for better understanding of the subject, the definitions and equations
of the canal surface around a regular curve in 3-dimensional Euclidean space are given.
Section 3, concerned with some important definitions and theorems about focal curves
in 3-dimensional Lorentz space. In section 4, we derive equations for canal and tubular
surfaces around a spacelike focal curve in 3-dimensional Lorentz. Then we obtain the first
and the second fundamental forms on the tubular surfaces in the same space. Gauss and
mean curvatures of this surface are obtained. Finally, in this space it is investigated if the
parameter curves for the tubular surface are geodesic or asymptotic and related theorems
about them are stated and proved.

3-Boyutlu Lorentz Uzayında Bir Uzaybenzeri Focal Eğri Etrafındaki Kanal Yüzeyi

Anahtar Kelimeler
Kanal yüzeyler,
Boru yüzeyler,
Focal eğriler,
Lorentz uzayı

Özet: Bu çalışmada 3-boyutlu Lorentz uzayında bir uzaybenzeri focal eğri etrafındaki
tüp yüzeyini incelendik. Öncelikle konunun daha iyi anlaşılması için 3-boyutlu Öklid
uzayında bir regüler eğriye göre kanal ve tüp yüzeylerinin tanımları ve denklemleri verildi.
3. bölümde 3-boyutlu Lorentz uzayında focal eğriler ile ilgili önemli tanım ve teoremler
verildi. 4. bölümde 3-boyutlu Lorentz uzayında bir uzaybenzeri focal eğri etrafındaki
kanal ve tüp yüzeylerin denklemleri çıkarıldı. Daha sonra bu uzayda tüp yüzeyinin birinci
ve ikinci temel formları çıkarıldı, Gauss ve ortalama eğrilikleri verildi. Sonunda da bu
uzayda tüp yüzeyleri için parametre eğrilerinin geodezik veya asimptot olma durumları
incelendi ve onlarla ilgili teoremler verilip ispatlandı.

1. Preliminaries

Let R3 = {(x1,x2,x3) | x1,x2,x3 ∈ R} be a 3-dimensional
vector space, and let X = (x1,x2,x3) and Y = (y1,y2,y3)
be two vectors in R3. The Lorentz scalar product of X and
Y is defined by

< X ,Y >= x1y1− x2y2 + x3y3. (1)

E3
1 =

(
R3,<,>

)
is called 3−dimensional Lorentzian

space, Minkowski Space or 3−dimensional semi-
Euclidean space. Any X ∈ R3

1 is named

• spacelike if < X ,X >> 0 or X = 0,

• timelike if < X ,X >< 0,

• null if < X ,X >= 0 and X 6= 0.

Let X ,Y ∈ R3
1 and s ∈ I ⊂ R.

• The norm of the vector X in R3
1 is defined as ‖X‖=

|< X ,X >|
1
2 .

• If < X ,Y >= 0, then the vectors X and Y ∈ R3
1 are

said to be orthogonal.

• If ‖X‖= 1, X is called a unit vector.

Similarly, if the velocity vector α ′ (s) = T (s) at each point
s is locally spacelike, timelike or null (lightlike), then α is
spacelike, timelike or null, respectively.
The Lorentzian vector product of X and Y is defined as

X ∧Y = (x2y3− x3y2,x1y3− x3y1,x1y2− x2y1) . (2)

Hyperbolic and Lorentzian spheres of center M =
(m1,m2,m3) with radius r in the space E3

1 can be written
as

H2
0 =

{
A = (a1,a2,a3) ∈ E3

1 |< A−M,A−M >=−r2}
and

S2
1 =

{
A = (a1,a2,a3) ∈ E3

1 |< A−M,A−M >= r2} ,
respectively.
If normal vectors at each point of M are timelike or space-
like vectors, then it is called as spacelike or timelike sur-
face, respecively[6].
Let a curve α = α(s) : I −→ E3

1 be given by arclength s.

We know that its velocity vector is T (s) = α ′(s) =
dα(s)

ds
.

608



A. Yıldırım / Canal Surface Around A Spacelike Focal Curve In Lorentz 3-Space

Let as define the unit vector N =
T ′(s)
‖T ′(s)‖

. Finally, define

the vector B as B = N ∧ T . The family {T,N,B} is or-
thonormal triad. These three vectors are called the tangent,
the principal normal and the binormal vectors, respectively.
The family {T,N,B} is called the Frenet frame.
For a non-lightlike curve α, the rate of change of the
Frenet-Serret vector equations may be expressed as

T ′ = κN,
N′ = κT + τB,
B′ = τN

the coefficients κ and τ are the first and the second curva-
tures of the α , respectively [7].
In E3

1 curvatures of an arbitrary curve X is derived as

κ =
‖X ′∧X ′′‖
‖X ′‖3 , τ =

< X ′∧X ′′,X ′′′ >

‖X ′∧X ′′‖2 . (3)

where ∧ is cross product in E3
1 [3].

If α ′ and α ′′ are linearly independent in I, then the curve
α is said to be good [8].
From now on, we will assume that the given curves are
good curves.
Let

f (s) =
1
2

(
‖Cα −α‖2− r2

)
.

If there exist infinitely close joint 4-points between the
curve α with its osculating sphere at s = s0 then we have

f (s0) = f
′
(s0) = f

′′
(s0) = f

′′′
(s0) = 0. (4)

The sphere, ‖Cα −α‖2 = r2 , with the center Cα obtained
in this way is called the osculating Lorentzian sphere.
The plane spanned by the tangent vector and the principle
normal vector of a curve is called the osculating plane.
A point of a smooth curve in E3

1 for which the derivative
of the curve of order 3 belongs to the osculating plane is
called a flattening.
If there exist infinitely close 5-points in the neighbourhood
of a point with the osculator sphere at s = s0 of the curve α ,
it is called a vertex of the curve. Conversely, If there does
not exist infinitely close 5-points in the neighbourhood of
a point with the osculator sphere at s = s0 of the curve α ,
it is called a non-vertex of the curve.
From now on, we assume that all points of the given curves
are non-vertex.

2. Focal Curves in E3
1

In this section, we will show that, in E3
1 it is possible to

obtain a Lorentzian tubular surface around a spacelike
focal curve.

Definition 2.1. [9] Let α = α(s) : I −→ E3
1 be any curve.

That the points of Cα are the centres of the osculating
spheres of α is called the focal curve of α .

Lemma 2.2. Let α be a spacelike curve with spacelike
binormal in E3

1 and its Frenet frame be {T (s),N(s),B(s)}.
Then the focal curve Cα of α is

Cα = α + c1N + c2B (5)

and the focal coefficients of Cα are given by

c1 =−
1
κ
, c2 = c

′
1

1
τ

(6)

where κ 6= 0 and τ 6= 0 are the first and the second curva-
tures of the curve α .

Proof. We can always write the vector Cα −α with re-
spect to the linear independence vectors {T (s),N(s),B(s)}.
Namly

Cα −α = c0T + c1N + c2B (7)

If we take the Lorentz scalar product with T,N and B both
sides of equation (7), then

< T,Cα −α >= c0,

< N,Cα −α >=−c1,

< B,Cα −α >= c2.

On the other hand by using equation (4), we may write

f = 0⇒<Cα −α,Cα −α >= r2,

f ′ = 0⇒< T,Cα −α >= 0,

f ′′ = 0⇒< N,Cα −α >=
1
κ
,

f ′′′ = 0⇒< B,Cα −α >=

(
1
κ

)′
1
τ
.

Making use of the equations c1 =−
1
κ

and c2 = c
′
1

1
τ

. Fi-
nally, we may write the focal curve as

Cα(s) = α (s)− 1
κ (s)

N(s)+
(
− 1

κ (s)

)′
1

τ (s)
B(s).

Lemma 2.3. Let α = α(s) : I −→E3
1 be a spacelike curve

with spacelike binormal. If a non-flattening point of α is a
vertex, then

c′2 + c1τ = 0.

Converse is also true.

Proof. The equation of the Lorentzian spheres with center
at Cα is

f (s) =
1
2

(
‖Cα −α‖2− r2

)
.

If there exist infinitely close 5-points between α and its
osculating sphere at s = s0, then we have

f (s0) = f ′(s0) = f ′′(s0) = f ′′′(s0) = f (4)(s0) = 0.

Calculating these derivatives we easily obtain the desired
result c′2 + c1τ = 0.
The forthcoming theorem, lemmas and corollaries state the
relations between α and its focal curve Cα .

Theorem 2.4. Let α : I −→ E3
1 be a spacelike curve with

spacelike binormal. Let {T,N,B} (resp. {t,n,b}) be the
Frenet frame to α (resp. Cα ). Let κ and τ be first and
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second curvatures of α , respectively. Then we have the
connections

t = εtB, (8)
n = εtεnN, (9)
b =−εnT, (10)

between {T,N,B} and {t,n,b} where

εt =
c′2 + c1τ∣∣c′2 + c1τ

∣∣ , εn =
τ

|τ|
.

Proof. Let σ be the arclength parameter of the focal curve
Cα . If we take the derivative of both sides of (5) with
respect to the arclength parameter s, we have

dCα

ds
=

dCα

dσ

dσ

ds
=
[
c′2 + c1τ

]
B, (11)

and if we take the norm of both sides of (11), we get

ds
dσ

=
1∣∣c′2 + c1τ

∣∣ ,
and if εt =

c′2 + c1τ∣∣c′2 + c1τ
∣∣ , then

t =εtB =
(c′2 + c1τ)∣∣c′2 + c1τ

∣∣B =
dCα

dσ
. (12)

Now, differentiating both sides of (12) with respect to the
arclength parameter s, we obtain

n =εtεnN (13)

and

κc =
|τ|∣∣c′2 + c1τ

∣∣ . (14)

On the other hand, we may write

b = t∧n = (εtB)∧ (εtεnN)

and
b =−εnT. (15)

Then, taking the derivative of (15) with respect to the
arclength parameter s, we obtain

κ = |τc|
∣∣c′2 + c1τ

∣∣ . (16)

Corollary 2.5. Let α = α(s) : I −→ E3
1 be a spacelike

curve with spacelike binormal. If the curve α is Lorentzian
spherical, then

r2 = ‖Cα −α‖2 ,

= ‖c1N + c2B‖2 ,

= c2
2− c2

1,

where r is radius of the Lorentzian spherical and differ-
entiating the last equation with respect to the arclenght
parameter s we get(

r2)′ = 2c2
(
c′2 + c1τ

)
. (17)

Converse is also true. According to equation (17), if r is a
constant, then

c2 = 0.

Because the curve α is a non-vertex curve, c′2 + c1τ 6= 0.

Corollary 2.6. If we consider equations (17) and (17),
the focal coefficients of c1, c2 of the curve α satisfy the
following matrix-vector equation

1
c′1

c′2−
(
r2
)′

2c2

=

 0 −κ 0
−κ 0 τ

0 −τ 0

 0
c1
c2



If the curve α is spherical,
(
r2
)′
= 0

According to this, we can express the following corollary.

Corollary 2.7. Let κ and τ (resp. κc and τc) be the first
and the second curvatures of α (resp. the first and the
second curvatures of the focal curve Cα ). If we consider
equations (14) and (16), then

κc

|τ|
=
|τc|
κ

=
1∣∣c′2 + c1τ

∣∣ = 2 |c2|∣∣(r2)′
∣∣ .

Corollary 2.8. Because det(t,n,b) = 1, the focal curve
Cα is a right-handed curve.

From now on, we assume that the ranking of {t,n,b} will
be {space, time, space} or {space, space, time} type.

Lemma 2.9. Let r be the radius of Lorentzian osculating
sphere. If r is constant, then κ is constant and

r = |c1|=
1
κ
,

where κ and c1 are first curvature of the curve α and the
first focal coefficient of the focal curve Cα , respectively.

Proof. Since r is constant equation (17) implies either
c2 = 0 or c′2 + c1τ = 0. If c′2 + c1τ = 0, then the curve is

spherical. If c2 = 0, c
′
1

1
τ
= 0. This means that c1 =−

1
κ

is
constant.

Lemma 2.10. If we take the derivative of the Frenet frame
{t,n,b} of the focal curve Cα with respect to the arclength
parameter s, we have t′

n′
b′

=

 0 νκc 0
νκc 0 ντc

0 ντc 0

 t
n
b

 ,
where ν =

dσ

ds
= |c′2 + c1τ| . If the radius of the osculating

sphere r is constant, then

ν =
dσ

ds
= r |τ| ,

where s and σ are the arclength parameters of the curve
α and the focal curve Cα , respecively.

Now, let us state the equations for canal and tubular sur-
faces around any good curve in E3.
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3. Canal Surfaces in E3

Let us recall the definitions and the results of [1, 9]. A
canal surface is named as the envelope of a family of
1-parameter spheres. In other words, it is the envelope
of a moving sphere with varying radius, defined by the
trajectory with center α(t) and a radius function r(t). This
moving sphere S(t) touches it at a characteristic circle
K(t). If the radius function r(t) = r is a constant, then it is
called a tubular or pipe surface. Let {T,N,B} be the Frenet
vector fields of α , where T , N and B are tangent, principal
normal and binormal vectors to α , respectively. Since the
canal surface K(t,θ) is the envelope of a family of one
parameter spheres with the center α and radius function r,
it is parametrized as

Figure 1. A section of the canal surface (Doğan 2012).

K(t,θ) = α(t)− r(t)r
′
(t)

α
′
(t)∥∥α
′
(t)
∥∥

±cosθr(t)

√∥∥α
′
(t)
∥∥2− r′(t)2∥∥α
′
(t)
∥∥ N(t)

±sinθr(t)

√∥∥α
′
(t)
∥∥2− r′(t)2∥∥α
′
(t)
∥∥ B(t).

This surface is called the canal surface around the curve α .
Clearly, N(t) and B(t) are spanning the plane that contains
the characteristic circle. If the spine curve α(s) has an
arclenght parametrization

(
‖α ′(s)‖= 1

)
, then the canal

surface is reparametrized as

K(s,θ) = α(s)− r(s)r
′
(s)T (s)

±cosθr(s)
√

1− r′(s)2N(s)

±sinθr(s)
√

1− r′(s)2B(s).

For the constant radius case r(s) = r, the canal surface is
called a tubular (pipe) surface and in this case the equation
takes the form

L(s,θ) = α(s)+ r (cosθN(s)+ sinθB(s)) ,

where 0≤ θ ≤ 2π .
Let a regular curve α : I −→ M be parametrized so that
‖α ′ (s)‖= 1. Then we haveT

′
(s)

N
′
(s)

B
′
(s)

=

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

T (s)
N(s)
B(s)

 ,

where κ and τ are the curvature and the torsion of the
curve α (s) , respectively.
Now, let us see what happens if we take the focal curve Cα

of α instead of the curve α itself in E3
1.

4. Canal Surfaces in E3
1

Now, we state and prove an important theorem related to
our present study. However, first we need the following
definition.

Definition 4.1. A canal surface in E3
1 is named as the en-

velope of a family of 1-parameter Lorentzian spheres. In
other words, it is the envelope of a moving Lorentzian
sphere with varying radius, defined by the trajectory with
center Cα(s) and a radius function r(t). This moving
sphere S(t) touches it at a Lorentzian characteristic cir-
cle K(t). If the radius function r(t) = r is a constant, then
it is called as a Lorentzian tubular or pipe surface in E3

1.

Theorem 4.2. Let α = α(s) : I −→ E3
1 be a spacelike

curve with spacelike binormal. Then, the canal surface
around its spacelike focal curve Cα(s) can be parametrized
as follows

K(s, t) = Cα(s)−
r(s)r′(s)

ν
B(s)

∓λ (t)r(s)

√
1−
(

r′(s)
ν

)2

T (s)

±µ (t)r(s)

√
1−
(

r′(s)
ν

)2

N(s).

Proof. Let K be any point of the canal surface and Cα

be the center of a Lorentzian spheres S2
1(s). Then the

difference K(s, t)−Cα(s) can be written in terms of the
orthogonal vectors {t,n,b} as

K(s, t)−Cα(s) = c(s, t)t(s)+b(s, t)n(s)
+a(s, t)b(s).

By using the connections in (8), the last equation can be
rewritten as

K(s, t)−Cα(s) = −a(s, t)εnT (s)−b(s, t)εtεnN(s)

+c(s, t)εtB(s) (18)

where a, b and c have partial derivatives with respect to
the variables s and t on I. On the other hand, taking the
norm of both sides of equation (18) we obtain

‖K(s, t)−Cα(s)‖2 = r2(s). (19)

The equation (19) expresses that K(s, t) lies on a
Lorentzian sphere S2

1(s). Additionally, K(s, t)−Cα(s) is
an orthogonal vector to the canal surface which means that

< K(s, t)−Cα(s),Ks > = 0, (20)
< K(s, t)−Cα(s),Kt > = 0. (21)

The equations in (20) and (21) indicate that velocity vector
of parameter curves Ks and Kt of the canal surface are
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tangent to S2
1(s). By making use of (18) and (19), we

immediately obtain the equations

a2−b2 + c2 = r2,
aas−bbs + ccs = rr′.

}
(22)

Using the partial derivative

Ks = (−asεn +bεtεnκ)T

+(−aεnκ +bsεtεn + cεtτ)N

+(νεt +bεtεnτ + csεt)B (23)

of (18) with respect to s, we may rewrite equation (20) as

< K(s, t)−Cα(s),Ks >= aas−bbs+ccs+cν = 0. (24)

Then equation (22) together with (24), lead to the equalities

−cν = rr′

and

a2−b2 = r2

[
1−
(

r′

ν

)2
]
. (25)

from which we obtain

a = ∓r

√
1−
(

r′

ν

)2

cosh t,

b = ∓r

√
1−
(

r′

ν

)2

sinh t.

If we substitute these values of a and b in (18), we obtain
the equation

K(s, t) =Cα(s)−
εtr(s)r′(s)

ν
B(s)

∓ εn(cosh t)r(s)

√
1−
(

r′(s)
ν

)2

T (s)

± εtεn(sinh t)r(s)

√
1−
(

r′(s)
ν

)2

N(s). (26)

If the radius r is constant, the equation (26) takes the form

L(s, t) =Cα(s)+ εn cosh trT (s)− εtεn sinh trN(s). (27)

This means that equation (27) is the Lorentzian tubular
surface with parameters s and t. Without loss of generality,
in (27) we can take εt = εn = 1. With this choice, (27)
reads as

L(s, t) =Cα(s)+ r cosh tT (s)− r sinh tN(s). (28)

In the next section, we give the fundamental forms which
are crutial for the characterization of the Lorentzian tubular
surfaces.

5. Fundamental Forms

Let α = α(s) : I −→ E3
1 be any unit speed spacelike curve

with spacelike binormal. A parametrization L(s, t) of the
Lorentzian tubular surface around its spacelike focal curve
Cα(s) has given in (28). The partial derivatives of L with
respect to the surface parameters s and t can be expressed
in terms of Frenet vector fields of α as

Ls = −sinh tT + cosh tN + rτ (1− sinh t)B,

Lt = r sinh tT − r cosh tN.

We can also choose a unit normal vector field U as

U =
Ls∧Lt

‖Ls∧Lt‖
= cosh tT − sinh tN,

where we know that

‖Ls∧Lt‖2 = EG−F2 = r4
τ

2 (1− sinh t)2 . (29)

The first fundamental form I of L is defined as

I = Edx2 +2Fdxdy+Gdy2

where

E =< Ls,Ls >=−1+ r2
τ

2 (1− sinh t)2 ,

F =< Ls,Lt >= r,

G =< Lt ,Lt >=−r2.

On the other hand, the second fundamental form II of L is
defined as

II = edx2 +2 f dxdy+gdy2

in which

e =<U,Lss >= κ + rτ
2 sinh t(1− sinh t),

f =<U,Lst >=−1,
g =<U,Ltt >= r.

Corollary 5.1. The tubular surface in (28) is a timelike
surface.

Definition 5.2. [1] Let M be any surface and the set
{E,F,G} be the coefficients of its first fundamental form.
M is called a regular surface if EG−F2 6= 0.

Lemma 5.3. L(s, t) is a regular tube, iff sinh t 6= 1.

Proof. It can easily be proved by using equation (29) and
definition 5.2.

Theorem 5.4. The mean and the Gaussian curvatures of
a regular surface L(s, t) are

H =
eG−2 f F +gE

2(EG−F2)
=

1
2

(
rK− 1

r

)
(30)

and

K =
eg− f 2

EG−F2 =− sinh t
r2 (1− sinh t)

(31)

respectively.
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6. Some Special Parameter Curves on The Lorentzian
Tubular Surfaces in E3

1

Theorem 6.1. [5] Let the curve γ lie on a surface. If γ

is an asymptotic curve, then the acceleration vector is
orthogonal to the normal vector of the surface.

Theorem 6.2. Let L(s, t) be a Lorentzian tubular surface
around spacelike focal curve of α(s), then the curves Ls
and Lt can not be asymptotic.

Proof. For the s−parameter curves we obtain the first
coefficient e of second fundamental form as

e =<U,Lss >=
(
κ + rτ

2 sinh t
)
(1− sinh t) 6= 0

showing that they can not be asymptotic. Similarly, for
the t−parameter curves we obtain the third coefficient g of
second fundamental form as

g =<U,Ltt >= r 6= 0

which implies that they can not be asymptotic.

Theorem 6.3. [2] Let the curve γ lie on a surface. If γ

is a geodesic curve, then the acceleration vector γ
′′

and
the normal vector U of the surface are linearly dependent.
That is, U ∧ γ

′′
= 0.

Theorem 6.4. Let L(s, t) be a Lorentzian tubular surface
around a spacelike focal curve of α(s), then
(1) The Ls curves can not be geodesic
(2) The Lt curves are geodesic curves.

Proof. For the s−parameter curves, we have

U ∧Lss = −sinh t
[
τ cosh t + rτ

′ (1− sinh t)
]

T

+cosh t
[
τ cosh t + rτ

′ (1− sinh t)
]

N

−rτ
2 (1− sinh t)cosh tB.

If the last equation were zero, i.e., U ∧Lss = 0., we would
have

sinh t
[
τ cosh t + rτ

′ (1− sinh t)
]
=0,

cosh t
[
τ cosh t + rτ

′ (1− sinh t)
]
=0,

rτ
2 (1− sinh t)(cosh t) =0 (32)

since the vectors {T,N,B} are linearly independent. How-
ever, since L(s, t) is a regular surface, equation (32) can
not be zero. Therefore U ∧Lss 6= 0 which shows that Ls
curves can not be geodesics. On the other hand, since

U ∧Ltt =U ∧ rU = 0 (33)

the t−parameter curves Lt are geodesics. Converse is also
true and it is trivial.

Example 6.5. Let γ be a spacelike curve in E3
1 defined by

γ : I 7−→ E3
1

s 7−→ γ (s) =
(

sinh
s√
2
,cosh

s√
2
,

s√
2

)
,

where −4 ≤ s ≤ 4. Figure 2 includes the graph of the
curve.

Figure 2. The curve γ of Example 6.5.

Its velocity vector of the curve is

.
γ(s) =

(
1√
2

cosh
s√
2
,

1√
2

sinh
s√
2
,

1√
2

)
.

In this example, we will consider the Lorentz scalar prod-
uct in (1) and the Lorentzian vectorial product in (2). The
Frenet vectors {T,N,B} of the curve γ are

T =

(
1√
2

cosh
s√
2
,

1√
2

sinh
s√
2
,

1√
2

)
,

N =

(
sinh

s√
2
,cosh

s√
2
,0
)
,

B =

(
− 1√

2
cosh

s√
2
,− 1√

2
sinh

s√
2
,

1√
2

)
.

Figure 3. The focal curve Cγ of the curve γ in Example
6.5.

The curvatures of γ are found to be κ =
1
2

and τ =−1
4

by

making use ot the equation in (3). Hence, τ/κ is constant.
Therefore, the curve γ is the Lorentz circular helix in E3

1.
The focal coefficients of γ can be computed from (6) as
C1 =−2 and C2 = 0. For this specific example, by using
(5), the focal curve Cγ of γ may be computed as

Cγ = γ−2N.

The last equation and equation (28) with r = 2 lead to the
components
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x(s, t) = −sinh
s√
2
+

2√
2

cosh t cosh
s√
2

−2sinh t sinh
s√
2
,

y(s, t) = −cosh
s√
2
+

2√
2

cosh t sinh
s√
2

−2sinh t cosh
s√
2
,

z(s, t) =
s√
2
+

2√
2

cosh t.

of the tubular surface L(s, t) = (x(s, t),y(s, t),z(s, t)).
Tubular surface around the focal curve Cγ is shown in
Figure 3.
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[2] Hacısalihoğlu, H. H. 2000. Differensiyel Geometri II.
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