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Annotation – In this article given a geometric solution to the well-known Jacobian problem. The two-

dimensional polynomial Keller map is considered in four-dimensional Euclidean space R
4
. Used the concept 

of parallel. A well-known example of Vitushkin is also considered. Earlier it was known that Vitushkin’s map 

has a nonzero constant Jacobian and it is not injective. We will show that the Vitushkin map is not surjective 

and moreover it has two inverse maps in the domain of its definition. 

 

1. Introduction 
 

In works [1], [2], [5], [6] the Jacobian problem is reduced to the injectivity problem of 

polynomial mapping. And in papers [3], [4] the Jacobian problem is reduced to the 

reversibility of a polynomial map with a non-constant nilpotent Jacobi matrix. 

 

2. Properties of Tangent Spaces 
 

Consider the polynomial mapping  

 

F(x,y) = (u,v) 

 

where (x, y), v g(x, y)u f= =  are polynomials from two variables and their Jacobians 

 

(x, y) g (x, y) f (x, y) g (x, y) 1.x y y xf ⋅ − ⋅ =  

 

Such polynomial maps are called kellerovas. The main result of this paper reads as follows: 

 

Theorem 1. Any Keller polynomial map is injective over a field of real numbers R. 

 

The proof of the theorem relies on methods of analytic geometry in the four-dimensional 

space R
4, where R

4 is the field of real numbers. We define the surface π  in space R
4 as a 

graph of Keller mapping F: R
4
 R

4
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Tangent plane K  of the surface  π  at the point 0 0 0 0(x , y ,u , v ) π∈ is determined by the 

following equations: 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(x , y )(x ) (x , y )(y y ),
:

(x , y (x ) g (x , y )(y y ).

x y

x y

u u f x f
K

v v g x

= + − + −


= + − + −
 

 

Let's write parametric equations of tangent plane K : 

 

0 0 0 0 0

0 0 0 0 0

,

,
:

(x , y ) t (x , y )s ,

(x , y ) t g (x , y )s v .

x y

x y

x t

y s
K

u f f u

v g

=


=


′= + +
 ′= + +

                      (2) 

  

where 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(x , y ) x (x , y ) y ,

(x , y ) x (x , y ) y .

x y

x y

u u f f

v v g g

′ = − −

′ = − −
 

Then 

 

 
where 

0 0(0,0, , v )M u′ ′ is the starting point in K, 

 

0 0 0 0(1,0, (x , y ),g ( , y )),x xa f x=
r

 

0 0 0 0(0,1, (x , y ),g ( , y )),y yb f x=
r

- 

 

the guiding vectors of the plane K. As we seen from the parametric equations of the tangent 

plane K, the surface (1)π  at the every point has a two - dimensional tangent plane. 

Therefore, the surface (1)π  has a dimension equal to two. 

 

The following Lemma plays a key role in the proof of the theorem. 

 

Lemma 1. Any tangential plane ( )2K  of the surface (1)π  in space 4
  does not contain a 

line parallel to coordinate planes Oxy  and Ouv . 

 

Proof.  Let 1 1 1 1 1(x , y ,u , v )M =  and 2 2 2 2 2(x , y ,u , v )M =  two different points of the tangent 

plane K . If the line 1 2(M ,M )  is parallel to the Oxy  plane, then 

vector 1 2 2 1 2 1 2 1 2 1(x x , y y , u , v )M M u v= − − − −
uuuuuur

 is expressed linearly via vectors 

1 (1,0,0,0)e =
ur

 and 2 (0,1,0,0)e =
uur

.Then from (2) we get 
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2 1 0 0 2 1 0 0 2 1

2 1 0 0 2 1 0 0 2 1

u (x , y )(x x ) (x , y )(y y ) 0

(x , y )(x x ) (x , y )(y y ) 0

x y

x y

u f f

v v g g

− = − + − =

− = − + − =
 

 

Since the Jacobian equal to 1, then 2 1 2 10, 0x x y y− = − = . Hence 2 1 2 10, 0u u v v− = − = , 

that is 1 2M M≡ . Contradiction. 

 

If the line ( )1 2M M  is parallel to the Ouv  plane, then the vector 1 2M M
uuuuuur

 is expressed 

linearly via vectors 3 (0,0,1,0)e =
ur

 and 4 (0,0,0,1)e =
uur

. Then 2 1 2 10,and 0x x y y− = − = . 

Hence 2 1u u= and 2 1v v= ,that is, the points 1M  and 2M  coincide again. Contradiction. 

 

Consequence. Any tangent plane ( )2K of the surface (1)π  in space R
4
 is not parallel to the 

coordinate planes Oxy  and Ouv . 

 

3. Proof of Theorem 
 

Let ( ) ( ) ( )1 1 1 1 2 2, , ,F x y u v F x y= = . Then a nonzero vector ( )1 2 2 1 2 1, ,0,0M M x x y y= − −
uuuuuur

, 

where 1 1 1 1 1(x , y ,u , v )M =  and 2 2 2 2 2(x , y ,u , v )M = ,is  parallel to the coordinate plane 

Oxy . Replacing the mapping  ( ),F x y  with the mapping ( ) ( )1 1 1 1, ,F x x y y F x y+ + − , we 

can assume that 1 1 1 1 1(x , y ,u , v )M =  coincides with the origin ( )0,0,0,0O  and the point 

2 2 2 2 2(x , y ,u , v )M =  coincides with the point ( )a,b,0,0M ,where 2 1 2 1, .a x x b y y= − = −  

Let  

 

 
 

three-dimensional hyperplane in R
4
. Parametric equations of a plane ∏ have the form: 

 

,

,
:

,

,

x a

y b

u p

v q

τ

τ

=


=


=
 =

∏  

 

where τ, p, q ∈ R. Parametric equations of a plane  π  have the form: 

 

 

 

 

where t,s ∈ R. We find the intersection of .π ∩∏  Have, 

,

,
:

(t, s),

(t,s).

x t

y s

u f

v g

π

=


=


=
 =
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,

,
:

(at, bt),

(at, bt).

x at

y bt

u f

v g

π

=


=
∩ 

=
 =

∏  

 

As you can see, the curve π ∩∏  has the following radius-vector 

 

( ) ( ) ( )( ), , , , ,r t at bt f at bt g at bt=  

 

Then the tangent vector to the curve π ∩∏  looks like: 

 

( ) ( ) ( )( ), , c ,dr t a b t t′ = , 

where  

 

( ) ( )(at, bt) a (at, bt) b,d (at, bt) a g (at, bt) b.
x y x y

c t f f t g= + = +  

 

Have ( ) ( ) ( )3 4r t OM c t e d t e′ = + +
uuuur ur uur

, where the vector OM
uuuur

is perpendicular to the vector 

( ) ( )3 4c t e d t e+
ur uur

 . We find the outer product of vectors OM
uuuur

 and ( )r t′ . Have  

 

( ) ( ) ( ) ( ) ( )1 2 1 3 1 4 2 3 2 4 3 40 0 .OM r t e e a c t e e a d t e e b c t e e b d t e e e e′∧ = ⋅ ∧ + ⋅ ∧ + ⋅ ∧ + ⋅ ∧ + ⋅ ∧ + ⋅ ∧
uuuur ur uur ur ur ur uur uur ur uur uur ur uur

 

Have ( ) ( ) ( ) ( )( )
2 2 22 2 .r t OM a b c t d t′ ∧ = + +

uuuur
 

 

On the other hand ( ) ( ) ( )( )sinr t OM r t OM tα′ ′∧ = ⋅ ⋅
uuuur uuuur

, where ( )tα  is the angle between 

the vectors ( )r t′  and OM
uuuur

 . Here the area of a parallelogram is understood as a focused 

area. In the vicinity of the point ( )0,0,0,0O ( )sin tα is positive , and in vicinity of the 

points ( ), b,0,0M a ( )sin tα  is negative or vice versa. Here we assume that map F between 

the points O and M has no zeros. Then at some [ ] ( )( )t 0,1 sin tα∈  has zero value. 

Then,
2 2

0a b+ = or ( ) ( )
2 2

0c t d t+ = . Contradiction. The theorem is proved. 

 

3. Vitushkin Example 
 

Is considered the following well-known example of Vitushkin: 

 

( )

( )

2 6 2

3

, 2

1
, , 0

u x y x y xy

v x y xy y
y

= +

= + ≠
 

The map F: R
2
 R

2
 is defined as 
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( ) ( ), , , 0F x y u v y= ≠ . 

 

Vitushkin's map is not injective, namely ( ) ( ) ( )3, 1 1,1 3, 2F F− − = =  and has a constant 

nonzero Jacobian: ( ) 2J F = − . Since 
( ) ( ) ( ), , 0

lim ,
x y x

v x y
→ +

= +∞ and 

( ) ( ) ( ), , 0
lim ,

x y x
v x y

→ −
= −∞  , domain of the Vitushkin map is divided into two parts, with the 

points ( )3, 1,3, 2− −  and ( )1,1,3, 2  lying in different parts of the domin. Namely, these 

points lie in different sides of the hyperplane 0y =  of dimension three. 

 

Theorem 2.  Vitushkin’s map not surjective and has two reverse-mapping. 

 

Proof. 2

2

1
0v u

y
− = > , that is, 

2
u v< . Hence, the upper part of the three-dimensional 

paraboloid 
2

u v=  has no inverse image. Consider the following maps: 

 

( )
( )

( )
( )

3
2 2

2

2 2

3
2 2

2

2 2

1
, , , 0, ,

1
, , , 0, ,

x y x
G x y y y x

y x y y x

x y x
G x y y y x

y x y y x

+

−

 
− 

= > > 
− + − 

 

 
− 

= − < > 
− − − 

 

 

 

An immediate check indicates that  

 

F G E G F+ += =o o , for 
20,y y x> >  

and 

F G E G F− −= =o o ,
20,y y x> > . 

 

Thus, the Vitushkin’s map has the following four properties: 

 

1. The Vitushkin’s map has a nonzero constant Jacobian, 

 

( ) 2J F = − ; 

 

2. The Vitushkin’s map is not injective, 

 

( ) ( ) ( )3, 2 3, 2 1,1F F− − = = ; 

 

3. The Vitushkin’s map not surjective, 

 

2

2

1
0v u

y
− = > , ( ) ( ), ,u v F x y= ;  
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4. The Vitushkin map has two inverse mappings, 

 
1 2

1 2

, 0, ,

, 0, .

F G y y x

F G y y x

−

+

−

−

= > >

= < >
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