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Characterizations of quasi-metric completeness in
terms of Kannan-type �xed point theorems
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Carmen Alegre∗, Hacer Da§†, Salvador Romaguera‡ and Pedro Tirado�

Abstract

We obtain quasi-metric versions of Kannan's �xed point theorem for
self-mappings and multivalued mappings, respectively, which are used
to deduce characterizations of d-sequentially complete and of left K-
sequentially complete quasi-metric spaces, respectively.
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1. Introduction and preliminaries

Since Hu proved in [10] that a metric space (X, d) is complete if and only if
for any closed subspace C of (X, d), every Banach contraction on C has �xed
point, several authors have investigated the problem of characterizing the metric
completeness with the help of �xed point theorems (see e.g. [13, 18, 25, 26, 27, 28]).
Next we recall those characterizations which will be related with our approach.
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Caristi proved in [6] the following important generalization of the Banach con-
traction principle.

1.1. Theorem (see [6]). Let (X, d) be a complete metric space. If T is a self-

mapping of X such that there is a lower semicontinuous function ϕ : X → [0,∞)
satisfying

(1.1) d(x, Tx) ≤ ϕ(x)− ϕ(Tx),

for all x ∈ X, then T has a �xed point.

A self-mapping T on a metric space (X, d) for which there is a lower semicon-
tinuous function ϕ : X → [0,∞) satisfying condition (1.1) for all x ∈ X, is called
a Caristi mapping on (X, d).

Kirk proved in [13] that Caristi's �xed point theorem allows to characterize the
metric completeness as follows.

1.2. Theorem (see [13]). A metric space (X, d) is complete if and only if every

Caristi mapping on (X, d) has a �xed point.

Almost simultaneously, Subrahmanyam [26] showed that the well-known Kan-
nan �xed point theorem (see Theorem 1.3 below) also allows to characterize the
metric completeness.

1.3. Theorem (see [11]). Let (X, d) be a complete metric space. If T is a

self-mapping of X such that there is a constant c ∈ [0, 1/2) satisfying

(1.2) d(Tx, Ty) ≤ c(d(x, Tx) + d(y, Ty)),

for all x, y ∈ X, then T has a unique �xed point.

The above result suggests the following well-established notion: A self-mapping
T of a metric space (X, d) is said to be a Kannan mapping on (X, d) if there exists
a constant c ∈ [0, 1/2) for which condition (1.2) is satis�ed for all x, y ∈ X.

Then, Subrahmanyam proved the following.

1.4. Theorem (see [26]). A metric space (X, d) is complete if and only if every

Kannan mapping on (X, d) has a �xed point.

On the other hand, and motivated in part by the fact that quasi-metric spaces
provide suitable frameworks in several areas of asymmetric functional analysis,
domain theory, and complexity analysis of algorithms de�ned by recurrence equa-
tions (see [8] and its bibliography, [4, 20, 21, 23, 24] etc.), the development of
the �xed point theory for theses spaces is receiving a signi�cant boost (see e.g.
[1, 2, 3, 5, 7, 9, 12, 15, 16, 17]). In this setting, the problem of characterizing
quasi-metric completeness via �xed point theorems arises in a natural way. This
problem has an extra appeal due to the existence of several di�erent notions of
quasi-metric completeness in the literature, so it seems reasonable to expect the ex-
istence of interesting di�erences with respect to the classical metric setting. In this



69

paper we show that this is the case. Indeed, Romaguera and Tirado [22] extended
Kirk's characterization (Theorem 1.2) to the realm of Smtyh complete quasi-metric
spaces, while here we discuss the problem of characterizing the quasi-metric com-
pleteness by using appropriate versions of Kannan's �xed point theorem. In this
fashion, we shall obtain characterizations of d -sequentially complete and of left
K-sequentially complete quasi-metric spaces, respectively.

We conclude this section by recalling some pertinent notions and properties on
quasi-metric spaces which will be useful later on. (By N we will denote the set of
all positive integer numbers.)

Following the modern terminology (see [8]), a quasi-metric on a set X is a
function d : X ×X → [0,∞) such that for all x, y, z ∈ X :

(i) x = y ⇔ d(x, y) = d(y, x) = 0, and

(ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Given a quasi-metric d on a setX the function ds de�ned onX×X by ds(x, y) =
max{d(x, y), d(y, x)} for all x, y ∈ X, is a metric on X.

Each quasi-metric d on X induces a T0 topology τd onX which has as a base
the family of open balls {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X :
d(x, y) < ε} for all x ∈ X and ε > 0.

If τd is a T1 topology on X, we say that d is a T1 quasi-metric on X.

A sequence (xn)n∈N in a quasi-metric space (X, d) is called left K-Cauchy [19] if
for each ε > 0 there exists nε ∈ N such that d(xn, xm) < ε whenever nε ≤ n ≤ m.

A quasi-metric space (X, d) is called left K-sequentially complete (resp. d -
sequentially complete) [8, 19] if every left K-Cauchy sequence in (X, d) (resp.
every Cauchy sequence in the metric space (X, ds)) converges for the topology
τd, and it is called Smyth complete (see e.g. [14, 22, 23]) if every left K-Cauchy
sequence in (X, d) converges for the topology τds .

The following implications are obvious for a quasi-metric space (X, d):

Smyth complete ⇒ left K-sequentially complete ⇒ d -sequentially complete.

The converse implications do not hold in general. The following known exam-
ples illustrate this fact.

1.5. Example. Let X = N∪{0} and let d be the T1 quasi-metric on X given
by d(x, x) = 0 for all x ∈ X, d(0, x) = 1/x for all n ∈ N, and d(x, y) = 1 other-
wise. Then (X, d) is clearly left K-sequentially complete (note that τd is a compact
topology on X), but it is not Smyth complete because the sequence (n)n∈N is left
K-Cauchy sequence but does not converge for τds .

1.6. Example. Let R be the set of all real numbers and let d be the T1 quasi-
metric on R given by d(x, y) = y−x if x ≤ y, and d(x, y) = 1 if x > y. Then (R, d) is
d -sequentially complete because the Cauchy sequences in the metric space (R, ds)
are eventually constant. However, it is not left K-sequentially complete because
the sequence (−1/n)n∈N is left K-Cauchy but does not converge for τds . Observe
that τd is the well-known Sorgenfrey topology on R.
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2. The results

In [22], Smyth complete quasi-metric spaces were characterized by means of an
appropriate quasi-metric version of Caristi's �xed point theorem.

According to [22], a self-mapping T of a quasi-metric space (X, d) is said to be
a ds-Caristi mapping on (X, d) if there exists a function ϕ : X → [0,∞) which is
lower semicontinuous for τds and satis�es d(x, Tx) ≤ ϕ(x)− ϕ(Tx), for all x ∈ X.

Then it was proved the following.

2.1. Theorem (see [22]). A quasi-metric space (X, d) is Smyth complete if and

only if every ds-Caristi mapping on (X, d) has a �xed point.

In the sequel we shall prove that, however, quasi-metric versions of Kannan's
�xed point theorem for self-mappings and multivalued mappings characterize d -
sequential completeness and left K-sequential completeness, respectively.

2.2. De�nition. Let (X, d) be a quasi-metric space. By a d-Kannan mapping on
(X, d) we mean a self-mapping T of X such that there exists a constant c ∈ [0, 1/2)
satisfying

(2.1) d(Tx, Ty) ≤ c(d(x, Tx) + d(y, Ty)),

for all x, y ∈ X.

2.3. Lemma. Let T be a d-Kannan mapping on a quasi-metric space (X, d) with
constant c ∈ [0, 1/2). Then:

(a) ds(Tx, Ty) ≤ c(d(x, Tx) + d(y, Ty)), for all x, y ∈ X.

(b) T is a Kannan mapping on the metric space (X, ds).

(c) For any x0 ∈ X, the sequence (Tnx0)n∈N is a Cauchy sequence in the metric

space (X, ds).

Proof. (a) Given x, y ∈ X we have

d(Tx, Ty) ≤ c(d(x, Tx)+d(y, Ty)) and d(Ty, Tx) ≤ c(d(y, Ty)+d(x, Tx)),

so

ds(Tx, Ty) ≤ c(d(x, Tx) + d(y, Ty)) ≤ c(d(x, Tx) + d(y, Ty)).

(b) Since d(x, Tx) ≤ ds(x, Tx) and d(y, Ty) ≤ ds(y, Ty) for all x, y ∈ X, it
follows from assertion (a) that T is a Kannan mapping on (X, ds), with constant
c.

(c) Since, by (b), T is a Kannan mapping for the metric space (X, ds), the
classical proof of Kannan's �xed point theorem [11] shows that for any x0 ∈ X,
(Tnx0)n∈N is a Cauchy sequence in the metric space (X, ds). �

Related to Lemma 2.3 (b) we give an example of a self-mapping of a quasi-
metric space (X, d) which is a Kannan mapping on (X, ds) but not a d -Kannan
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mapping.

2.4. Example. Let X = [0,∞) and let d be the quasi-metric on X given by
d(x, y) = max{y−x, 0} for all x, y ∈ X. It is well known that (X, d) is Smyth com-
plete. Now de�ne T : X → X as Tx = 0 if x ∈ [0, 1] and Tx = x/4 if x ∈ (1,∞).
If x > y > 1 we have d(Tx, Ty) = (x− y)/4 but d(x, Tx) = d(y, Ty) = 0, so that
T is not d -Kannan on (X, d). However, it is easy to check that T is a Kannan
mapping on (X, ds) for c = 1/3 (note that ds is the Euclidean metric on X).

2.5. Theorem. Let (X, d) be a d-sequentially complete quasi-metric space. Then,

every d-Kannan mapping on (X, d) has a unique �xed point.

Proof. Let T be a d -Kannan mapping on (X, d). Then, there exists c ∈ [0, 1/2)
such that the contraction condition (2.1) follows for all x, y ∈ X. Fix x0 ∈ X.
From Lemma 2.3 (c), (Tnx0)n∈N is a Cauchy sequence in the metric space (X, ds).
Since (X, d) is d-sequentially complete, there exists z ∈ X such that (Tnx0)n∈N
converges to z for τd, i.e., d(z, T

nx0)→ 0 as n→∞.
Next we show that Tz is the unique �xed point of T. To this end, we �rst show

that d(z, Tz) = 0. Indeed, we have

d(z, Tz) ≤ d(z, Tnx0) + d(Tnx0, T z)

≤ d(z, Tnx0) + c(d(Tn−1x0, T
nx0) + d(z, Tz)),

for all n ∈ N. Since d(z, Tnx0) → 0 and (Tnx0)n∈N is a Cauchy sequence in
the metric space (X, ds), we deduce that d(z, Tz) ≤ cd(z, Tz). Consequently,
d(z, Tz) = 0.

Since by Lemma 2.3 (a),

ds(Tz, T 2z) ≤ c(d(z, Tz) + d(Tz, T 2)),

we deduce that ds(Tz, T 2z) ≤ cd(Tz, T 2z), so ds(Tz, T 2z) = 0, i.e., Tz is a �xed
point of T.

Finally, if Tu = u, it follows from Lemma 2.3 (a) that

ds(u, Tz) = ds(Tu, T 2z) ≤ c(d(u, Tu) + d(Tz, T 2z)).

Since d(u, Tu) = d(Tz, T 2z) = 0, we deduce that ds(u, Tz) = 0, i.e., u = Tz. This
concludes the proof. �

The following examples illustrate Theorem 2.5.

2.6. Example. Let X = [0,∞) and let d be the quasi-metric on X given by
d(x, y) = max{x − y, 0} for all x, y ∈ X. Since ds is the Euclidean metric on X,
(X, d) is d -sequentially complete (in fact, it is left K-sequentially complete because
every sequence in X converges to 0 for τd). De�ne T : X → X as in Example 2.4.
Let x, y ∈ X, and assume, without loss of generality, that x ≤ y. If x, y ∈ [0, 1],
then ds(Tx, Ty) = 0. If x ∈ [0, 1] and y ∈ (1,∞) we obtain

ds(Tx, Ty) =
y

4
≤ 1

3
(x+

3y

4
) =

1

3
(d(x, Tx) + d(y, Ty)).
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Finally, if x, y ∈ (1,∞) we obtain

ds(Tx, Ty) =
y − x
4

<
1

3
(
3x

4
+

3y

4
) =

1

3
(d(x, Tx) + d(y, Ty)).

Therefore T is a d -Kannan mapping on (X, d) for c = 1/3. Thus, all conditions of
Theorem 2.5 are satis�ed. In fact z = 0 is the unique �xed point of T.

2.7. Example. Let X = [0, 1] ∪ {2} and let d be the quasi-metric on X given
by d(2, x) = 0 for all x ∈ X, nd d(x, y) = |x− y| otherwise. Clearly (X, d) is
d-sequentially complete. De�ne T : X → X as T2 = 0 and Tx = x/4 if x ∈ [0, 1].
It is easy to check that T is a d-Kannan mapping on (X, d) for c = 1/3. Thus,
all condition of Theorem 2.5 are satis�ed. It is interesting to observe that for any
x0 ∈ X the sequence (Tnx0)n∈N converges to 2 for τd but 2 is not the �xed point
of T. This situation illustrates the proof of Theorem 2.5 which shows that T2 is
the unique �xed point of T ; in fact (Tnx0)n∈N converges to T2 for τds .

2.8. Theorem. A quasi-metric space (X, d) is d-sequentially complete if and

only if every d-Kannan mapping on (X, d) has a �xed point.

Proof. Suppose that (X, d) is d-sequentially complete. Then, every d -Kannan
mapping on (X, d) has a (unique) �xed point by Theorem 2.5.

For the converse suppose that (X, d) is not d-sequentially complete. Then there
exists a Cauchy sequence (xn)n∈N in (X, ds) that does not converge for τd. Then,
for each x ∈ X there exists nx ∈ N such that d(x, xn) > 0, for all n ≥ nx (indeed,
otherwise there is x ∈ X such that for each n ∈ N we can �nd mn ≥ n for
which d(x, xmn

) = 0; since (xn)n∈N is a Cauchy sequence in (X, ds) it follows that
(xn)n∈N converges to x for τd, a contradiction).

Now, for each x ∈ X put Cx = {xn : n ≥ nx}. Clearly d(x,Cx) > 0 (indeed,
if d(x,Cx) = 0, for some x ∈ X, reasoning as in the parenthetical part of the
preceding paragraph, we deduce that that sequence (xn)n∈N converges to x for τd,
a contradiction).

Since (xn)n∈N is a Cauchy sequence in (X, ds), for each x ∈ X there exists
n(x) ≥ nx such that

ds(xn, xm) <
1

4
d(x,Cx),

for all m,n ≥ n(x).
De�ne T : X → X as Tx = xn(x) for all x ∈ X.
Since n(x) ≥ nx, we have that d(x, xn(x)) > 0, and hence T has not �xed point.

We shall show that, nevertheless, T is a d -Kannan mapping on (X, d) for c =
1/4. Indeed, let x, y ∈ X and suppose, without loss of generality, that n(x) ≤ n(y).
Then

ds(Tx, Ty) = ds(xn(x), xn(y)) <
1

4
d(x,Cx)

≤ 1

4
d(x, xn(x)) =

1

4
d(x, Tx).
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Since d(Tx, Ty) ≤ ds(Tx, Ty) and d(Ty.Tx) ≤ ds(Tx, Ty), we conclude that T
is a d -Kannan mapping on (X, d) for c = 1/4. This contradiction �nishes the
proof. �

Let (X, d) be a quasi-metric space. The closure for τd of a subset A of X will
be denoted by A, and the set of all non-empty closed subsets of the topological
(X, τd) by Cld(X).

2.9. De�nition. Let (X, d) be a quasi-metric space. By a left-Kannan mul-
tivalued mapping on (X, d) we mean a multivalued mapping T : X → Cld(X)
such that there exists a constant c ∈ [0, 1/2) for which the following condition is
satis�ed:

For each x, y ∈ X and each u ∈ Tx there exists v ∈ Ty such that

(2.2) d(u, v) ≤ c(d(x, u) + d(y, v)).

2.10. Theorem. Let (X, d) be a left K-sequentially complete quasi-metric space.

Then, every left-Kannan multivalued mapping on (X, d) has a �xed point, i.e.,

there is z ∈ X such that z ∈ Tz.

Proof. Let T be a left-Kannan multivalued mapping on (X, d). Then, there
exists c ∈ [0, 1/2) such that the contraction condition (2.2) in De�nition 2.9 follows
for all x, y ∈ X.

Fix x0 ∈ X. Choose x1 ∈ Tx0. Then, there exists x2 ∈ Tx1 such that

d(x1, x2) ≤ c(d(x0, x1) + d(x1, x2)).

Therefore

d(x1, x2) ≤
c

1− c
d(x0, x1).

Following this process we construct a sequence (xn)n∈N where xn ∈ Txn−1 and

d(xn, xn+1) ≤
c

1− c
d(xn, xn−1),

for all n ∈ N. Hence

d(xn, xn+1) ≤
(

c

1− c

)n

d(x0, x1),

for all n ∈ N. Consequently (xn)n∈N is a left K-Cauchy sequence in (X, d) [8,
Proposition 1.2.6]

Since (X, d) is left K-sequentially complete there exists z ∈ X such that d(z, xn)→
0 as n→∞.We shall show that z ∈ Tz. Indeed, for each n ∈ N there exists zn ∈ Tz
such that

(2.3) d(xn+1, zn) ≤ c(d(xn, xn+1) + d(z, zn)).

From the triangle inequality and (5) it follows that

d(z, zn) ≤ d(z, xn+1) + c(d(xn, xn+1) + d(z, zn)),



74

for all n ∈ N. Since d(z, xn+1) → 0 and d(xn, xn+1) → 0 as n → ∞, we deduce
that d(z, zn)→ 0 as n→∞, so z ∈ Tz because Tz is closed for τd. This concludes
the proof. �

2.11. Lemma (see [8, Proposition 1.2.4]). Let (X, d) be a quasi-metric space.

If a left K-Cauchy sequence in (X, d) has a subsequence that converges for τd to

some x ∈ X, then the sequence converges to x ∈ X for τd.

2.12. Theorem. A quasi-metric space (X, d) is left K-sequentially complete if

and only if every left-Kannan multivalued mapping on (X, d) has a �xed point.

Proof. Suppose that (X, d) is left K-sequentially complete. Then, every left-
Kannan multivalued mapping on (X, d) has a �xed point by Theorem 2.10.

For the converse suppose that (X, d) is not left K-sequantially complete. Then
there exists a left K-Cauchy sequence (xn)n∈N in (X, d) that does not converge for
τd. Similarly to the proof of Theorem 2.8, and using Lemma 2.11, we deduce that
for each x ∈ X there exists nx ∈ N such that d(x, xn) > 0, for all n ≥ nx.

Now, for each x ∈ X put Cx = {xn : n ≥ nx}. Then x /∈ Cx and thus
d(x,Cx) > 0, where, as usual, d(x,Cx) := inf{d(x, y) : y ∈ Cx}.

Since (xn)n∈N is a left K-Cauchy sequence in (X, d), for each x ∈ X there exists
n(x) ≥ nx such that

d(xn, xm) <
1

4
d(x,Cx),

whenever m ≥ n ≥ n(x).
For each x ∈ X put Dx = {xn : n ≥ n(x)}. Then Dx ⊆ Cx, so Dx ⊆ Cx.

De�ne T : X → Cld(X) as Tx = Dx for all x ∈ X.
Since, for each x ∈ X, x /∈ Cx it follows that x /∈ Tx, and thus T has no �xed

points.

We shall show that, nevertheless, T is a left-Kannan multivalued mapping on
(X, d) for c = 1/3. Indeed, let x, y ∈ X and suppose, without loss of generality
that n(x) ≤ n(y). Then Dy ⊆ Dx, so Ty ⊆ Tx, and hence for each u ∈ Ty we can
take v = u ∈ Tx, and thus d(u, v) = 0. On the other hand, given u ∈ Tx there
exists v ∈ Ty such that d(u, v) < d(x,Cx)/12 + d(u, Ty). Since for each ε > 0
there exists nε ≥ n(x) such that d(u, xnε

) < ε we deduce (recall that xn(y) ∈ Ty
and Tx ⊆ Cx):

d(u, v) <
1

12
d(x,Cx) + d(u, Ty) ≤ 1

12
d(x,Cx) + d(u, xnε

) + d(xnε
, Ty)

<
1

12
d(x,Cx) + ε+ d(xnε

, xn(y)) <
1

12
d(x,Cx) + ε+

1

4
d(x,Cx)

≤ ε+
1

3
d(x, Tx) ≤ ε+

1

3
d(x, u).

Since ε is arbitrary we deduce that

d(u, v) ≤ 1

3
d(x, u).
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We have shown that T is a left-Kannan multivalued mapping on (X, d) for c = 1/3.
This �nishes the proof. �

2.13. Remark. Let (R, d) be the quasi-metric space of Example 1.6. By Theorem
2.5, every d -Kannan mapping on (R, d) has a unique �xed point. However there
exists a left-Kannan multivalued mapping on it without �xed points, by Theorem
2.12. Finally, if (X, d) is the quasi-metric space of Example 2.4 or the quasi-metric
space of Example 2.6, then every left-Kannan multivalued mapping on (X, d) has
a �xed point by Theorem 2.12.

Acknowledgement. Carmen Alegre, Salvador Romaguera and Pedro Tirado are
supported under grant MTM2015-64373-P (MINECO/FEDER, UE).

References

[1] C. Alegre and J. Marín, Modi�ed w -distances on quasi-metric spaces and a �xed point
theorem on complete quasi-metric spaces, Top. Appl. 203 (2016), 32-41.

[2] C. Alegre, J. Marín and S. Romaguera, A �xed point theorem for generalized contractions
involving w -distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2014,
2014:40.

[3] S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type variational
principle with applications to equilibrium problems and �xed point theory, Nonlinear Anal.
TM&A 69 (2008), 126-139.

[4] M. Ali-Akbari, B. Honari, M. Pourmahdian and M.M. Rezaii, The space of formal balls and
models of quasi-metric spaces, Math. Struct. Comput. Sci. 19 (2009), 337-355.

[5] I. Altun, N. Al Ari�, M. Jleli, A. Lashin and B. Samet, A new concept of (α, Fd)-contraction
on quasi metric space, J. Nonlinear Sci. Appl. 9 (2016), 3354-3361.

[6] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215 (1976), 241-251.

[7] S. Cobza³, Completeness in quasi-metric spaces and Ekeland Variational Principle, Top.
Appl. 158 (2011), 1073-1084.

[8] S. Cobza³, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel,
2013.

[9] H. Da§, G. Minak and I. Altun, Some �xed point results for multivalued F -contractions on
quasi metric spaces, RACSAM, DOI: 10.1007/s13398-016-0285-3, to appear.

[10] T.K. Hu, On a �xed point theorem for metric spaces, Amer. Math. Monthly 74 (1967),
436-437.

[11] R. Kannan, Some results on �xed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
[12] E. Karapinar and S. Romaguera, On the weak form of Ekeland's Variational Principle in

quasi-metric spaces, Top. Appl. 184 (2015), 54-60.
[13] A.W. Kirk, Caristi's �xed point theorem and metric convexity, Colloq. Math. 36 (1976),

81-86.
[14] H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins

of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook
of the History of General Topology, vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.

[15] A. Latif, and S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory
Appl. 2011 (2011), Article ID 178306, 8 pages.

[16] J. Marín, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and �xed points
for multivalued maps, Fixed Point Theory Appl. 2011 (2011), Article ID 603861, 10 pages.

[17] J. Marín, S. Romaguera and P. Tirado, Generalized contractive set-valued maps on complete
preordered quasi-metric spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 269246, 6
pages.

[18] S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49 (1984),
21-26.



76

[19] I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasi-
pseudo-metric spaces, Mh. Math. 93 (1982), 127-140.

[20] S. Romaguera, M.P. Schellekens and O. Valero, Complexity spaces as quantitative domains
of computation, Top. Appl. 158 (2011), 853-860.

[21] S. Romaguera and P. Tirado, The complexity probabilistic quasi-metric space, J. Math.
Anal. Appl. 376 (2011), 732-740.

[22] S. Romaguera and P Tirado, A characterization of Smyth complete quasi-metric spaces via
Caristi's �xed point theorem, Fixed Point Theory Appl. 2015, 2015:183.

[23] S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric complete-
ness in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453-472.

[24] M.P. Schellekens, A characterization of partial metrizability: domains are quanti�able,
Theor. Comput. Sci. 305 (2003), 409-432.

[25] N. Shioji, T. Suzuki, W. Takahashi, Contractive mappings, Kannan mappings and metric
completeness, Proc. Amer. Math. Soc. 126 (1998), 3117-3124.

[26] P.V. Subrahmanyam, Completeness and �xed-points, Mh. Math. 80 (1975), 325-330.
[27] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric complete-

ness, Top. Methods Nonlinear Anal. 8 (1996), 371-382.
[28] T. Suzuki, A generalized Banach contraction principle that characterizes metric complete-

ness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.


