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Characterizations of quasi-metric completeness in
terms of Kannan-type fixed point theorems

Dedicated to the memory of Professor Lawrence M. Brown
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Abstract

We obtain quasi-metric versions of Kannan’s fixed point theorem for
self-mappings and multivalued mappings, respectively, which are used
to deduce characterizations of d-sequentially complete and of left K-
sequentially complete quasi-metric spaces, respectively.

Keywords: Quasi-metric space, complete, Kannan mapping, fixed point.
2000 AMS Classification: 54H25, 54E50, 47H10.

1. Introduction and preliminaries

Since Hu proved in [10] that a metric space (X,d) is complete if and only if
for any closed subspace C of (X,d), every Banach contraction on C has fixed
point, several authors have investigated the problem of characterizing the metric
completeness with the help of fixed point theorems (see e.g. [13, 18, 25, 26, 27, 28]).
Next we recall those characterizations which will be related with our approach.
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Caristi proved in [6] the following important generalization of the Banach con-
traction principle.

1.1. Theorem (see [6]). Let (X,d) be a complete metric space. If T is a self-
mapping of X such that there is a lower semicontinuous function ¢ : X — [0, 00)
satisfying

(L1)  dz,Tz) < o(z) — p(Tx),
for all x € X, then T has a fixed point.

A self-mapping T on a metric space (X, d) for which there is a lower semicon-
tinuous function ¢ : X — [0, c0) satisfying condition (1.1) for all 2 € X, is called
a Caristi mapping on (X, d).

Kirk proved in [13] that Caristi’s fixed point theorem allows to characterize the
metric completeness as follows.

1.2. Theorem (see [13]). A metric space (X,d) is complete if and only if every
Caristi mapping on (X, d) has a fived point.

Almost simultaneously, Subrahmanyam [26] showed that the well-known Kan-
nan fixed point theorem (see Theorem 1.3 below) also allows to characterize the
metric completeness.

1.3. Theorem (see [11]). Let (X,d) be a complete metric space. If T is a
self-mapping of X such that there is a constant ¢ € [0,1/2) satisfying

(12)  d(Tz,Ty) < c(d(z, Tx) + d(y, Ty)),
for all x,y € X, then T has a unique fized point.

The above result suggests the following well-established notion: A self-mapping
T of a metric space (X, d) is said to be a Kannan mapping on (X, d) if there exists
a constant ¢ € [0,1/2) for which condition (1.2) is satisfied for all z,y € X.

Then, Subrahmanyam proved the following.

1.4. Theorem (see [26]). A metric space (X,d) is complete if and only if every
Kannan mapping on (X,d) has a fized point.

On the other hand, and motivated in part by the fact that quasi-metric spaces
provide suitable frameworks in several areas of asymmetric functional analysis,
domain theory, and complexity analysis of algorithms defined by recurrence equa-
tions (see [8] and its bibliography, [4, 20, 21, 23, 24] etc.), the development of
the fixed point theory for theses spaces is receiving a significant boost (see e.g.
[1, 2, 3, 5, 7,9, 12, 15, 16, 17]). In this setting, the problem of characterizing
quasi-metric completeness via fixed point theorems arises in a natural way. This
problem has an extra appeal due to the existence of several different notions of
quasi-metric completeness in the literature, so it seems reasonable to expect the ex-
istence of interesting differences with respect to the classical metric setting. In this
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paper we show that this is the case. Indeed, Romaguera and Tirado [22] extended
Kirk’s characterization (Theorem 1.2) to the realm of Smtyh complete quasi-metric
spaces, while here we discuss the problem of characterizing the quasi-metric com-
pleteness by using appropriate versions of Kannan’s fixed point theorem. In this
fashion, we shall obtain characterizations of d-sequentially complete and of left
K-sequentially complete quasi-metric spaces, respectively.

We conclude this section by recalling some pertinent notions and properties on
quasi-metric spaces which will be useful later on. (By N we will denote the set of
all positive integer numbers.)

Following the modern terminology (see [8]), a quasi-metric on a set X is a
function d : X x X — [0,00) such that for all z,y,z € X :

(i) x =y < d(z,y) =d(y,x) =0, and

(i) d(z,2) < d(z,y) + d(y, 2).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Given a quasi-metric d on a set X the function d® defined on X x X by d*(x,y) =
max{d(z,y),d(y,z)} for all z,y € X, is a metric on X.

Each quasi-metric d on X induces a Ty topology 74 on X which has as a base
the family of open balls {By(z,7) : = € X, € > 0}, where By(z,¢) = {y € X :
d(z,y) < e} for all z € X and € > 0.

If 74 is a T3 topology on X, we say that d is a T} quasi-metric on X.

A sequence (z,,)nen in a quasi-metric space (X, d) is called left K-Cauchy [19] if
for each € > 0 there exists n. € N such that d(x,,z,,) < € whenever n. <n < m.

A quasi-metric space (X,d) is called left K-sequentially complete (resp. d-
sequentially complete) [8, 19| if every left K-Cauchy sequence in (X,d) (resp.
every Cauchy sequence in the metric space (X,d®)) converges for the topology
T4, and it is called Smyth complete (see e.g. [14, 22, 23]) if every left K-Cauchy
sequence in (X, d) converges for the topology 74s.

The following implications are obvious for a quasi-metric space (X, d):

Smyth complete = left K-sequentially complete = d-sequentially complete.

The converse implications do not hold in general. The following known exam-
ples illustrate this fact.

1.5. Example. Let X = NU{0} and let d be the T} quasi-metric on X given
by d(xz,x) = 0 for all z € X, d(0,z) = 1/z for all n € N, and d(z,y) = 1 other-
wise. Then (X, d) is clearly left K-sequentially complete (note that 74 is a compact
topology on X), but it is not Smyth complete because the sequence (n),¢n is left
K-Cauchy sequence but does not converge for 7g4s.

1.6. Example. Let R be the set of all real numbers and let d be the T} quasi-
metric on R given by d(z,y) = y—zif x <y,and d(x,y) = 1if x > y. Then (R, d) is
d-sequentially complete because the Cauchy sequences in the metric space (R, d*)
are eventually constant. However, it is not left K-sequentially complete because
the sequence (—1/n),en is left K-Cauchy but does not converge for 74:. Observe
that 7, is the well-known Sorgenfrey topology on R.



70

2. The results

In [22], Smyth complete quasi-metric spaces were characterized by means of an
appropriate quasi-metric version of Caristi’s fixed point theorem.

According to [22], a self-mapping T of a quasi-metric space (X, d) is said to be
a d*-Caristi mapping on (X, d) if there exists a function ¢ : X — [0,00) which is
lower semicontinuous for 74s and satisfies d(z, Tx) < p(x) — ¢(Tz), for all z € X.

Then it was proved the following.

2.1. Theorem (see [22]). A quasi-metric space (X,d) is Smyth complete if and
only if every d*-Caristi mapping on (X,d) has a fized point.

In the sequel we shall prove that, however, quasi-metric versions of Kannan'’s
fixed point theorem for self-mappings and multivalued mappings characterize d-
sequential completeness and left K-sequential completeness, respectively.

2.2. Definition. Let (X, d) be a quasi-metric space. By a d-Kannan mapping on
(X, d) we mean a self-mapping T of X such that there exists a constant ¢ € [0,1/2)
satisfying

(2.1)  d(Tz,Ty) < c(d(x, Tz) + d(y, Ty)),
for all z,y € X.
2.3. Lemma. Let T be a d-Kannan mapping on a quasi-metric space (X,d) with
constant ¢ € [0,1/2). Then:
(a) d°(Tz,Ty) < c(d(x, Tx) +d(y,Ty)), for all x,y € X.
(b) T is a Kannan mapping on the metric space (X, d?).
(¢c) For any xo € X, the sequence (T"xg)nen is a Cauchy sequence in the metric
space (X,d®).
Proof. (a) Given z,y € X we have
d(Tz,Ty) < e(d(z, Tz)+d(y,Ty)) and d(Ty,Tz) < c(d(y, Ty)+d(z,Tx)),
s0
d*(Tz,Ty) < c(d(z, Tx) + d(y, Ty)) < c(d(z, Tz) + d(y, Ty)).

(b) Since d(z,Tz) < d*(xz,Tx)and d(y,Ty) < d*(y,Ty) for all z,y € X, it
follows from assertion (a) that 7" is a Kannan mapping on (X, d®), with constant
C.

(c) Since, by (b), T is a Kannan mapping for the metric space (X,d*®), the
classical proof of Kannan’s fixed point theorem [11] shows that for any zy € X,
(T"x0)nen is a Cauchy sequence in the metric space (X, d?). O

Related to Lemma 2.3 (b) we give an example of a self-mapping of a quasi-
metric space (X, d) which is a Kannan mapping on (X, d®) but not a d-Kannan
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mapping.

2.4. Example. Let X = [0,00) and let d be the quasi-metric on X given by
d(z,y) = max{y—xz,0} for all z,y € X. It is well known that (X, d) is Smyth com-
plete. Now define T: X - X as Te =01if x € [0,1] and Tz = x/4 if © € (1, 00).
If £ >y > 1 we have d(Tz, Ty) = (x — y)/4 but d(z,Tz) = d(y,Ty) = 0, so that
T is not d-Kannan on (X,d). However, it is easy to check that 7" is a Kannan
mapping on (X, d?) for ¢ = 1/3 (note that d° is the Euclidean metric on X).

2.5. Theorem. Let (X,d) be a d-sequentially complete quasi-metric space. Then,
every d-Kannan mapping on (X, d) has a unique fized point.

Proof. Let T be a d-Kannan mapping on (X, d). Then, there exists ¢ € [0,1/2)
such that the contraction condition (2.1) follows for all z,y € X. Fix zo € X.
From Lemma 2.3 (¢), (T™xg)nen is a Cauchy sequence in the metric space (X, d*).
Since (X,d) is d-sequentially complete, there exists z € X such that (T"xg)nen
converges to z for 74, i.e., d(z, T™x¢) — 0 as n — oo.

Next we show that Tz is the unique fixed point of T. To this end, we first show
that d(z,Tz) = 0. Indeed, we have

d(z,Tz) < d(z,T"xzo)+ d(T"x0,Tz)
< d(z,T"xz0) + c(d(T”flxo, T"xo) + d(z,T%2)),

for all n € N. Since d(z,T"x0) — 0 and (T™zg)nen is a Cauchy sequence in
the metric space (X,d®), we deduce that d(z,Tz) < cd(z,Tz). Consequently,
d(z,Tz) = 0.

Since by Lemma 2.3 (a),

d*(Tz,T%2) < c(d(z,Tz) +d(Tz,T?)),

we deduce that d*(Tz,T?z) < cd(Tz,T?z), so d*(Tz,T?z) = 0, i.e., Tz is a fixed
point of T
Finally, if Tu = wu, it follows from Lemma 2.3 (a) that

d*(u, Tz) = d*(Tu,T?z) < c(d(u, Tu) + d(Tz, T?2)).

Since d(u, Tu) = d(Tz,T?z) = 0, we deduce that d*(u,Tz) = 0, i.e., u = Tz. This
concludes the proof. O

The following examples illustrate Theorem 2.5.

2.6. Example. Let X = [0,00) and let d be the quasi-metric on X given by
d(z,y) = max{z — y,0} for all z,y € X. Since d* is the Euclidean metric on X,
(X,d) is d-sequentially complete (in fact, it is left K-sequentially complete because
every sequence in X converges to 0 for 7). Define T : X — X as in Example 2.4.
Let z,y € X, and assume, without loss of generality, that z < y. If z,y € [0, 1],
then d*(Tz,Ty) = 0. If x € [0,1] and y € (1, 00) we obtain

y 1 3y> 1

d*(Tz, Ty) = 4 < g(x + i g(d(m,Tx) +d(y,Ty)).
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Finally, if z,y € (1, 00) we obtain

y—x 1 3z 3y 1

S(Tx,Ty) = —(—+=)== T Ty)).

&*(Tz, Ty) = == < 5 + ) = 5(d(z, Tz) +d(y, Ty))

Therefore T is a d-Kannan mapping on (X, d) for ¢ = 1/3. Thus, all conditions of
Theorem 2.5 are satisfied. In fact z = 0 is the unique fixed point of T.

2.7. Example. Let X = [0,1] U {2} and let d be the quasi-metric on X given
by d(2,2) = 0 for all x € X, nd d(z,y) = |x — y| otherwise. Clearly (X,d) is
d-sequentially complete. Define T': X — X as T2 =0 and Tz = 2/4 if x € [0, 1].
It is easy to check that T is a d-Kannan mapping on (X,d) for ¢ = 1/3. Thus,
all condition of Theorem 2.5 are satisfied. It is interesting to observe that for any
xo € X the sequence (T"x)nen converges to 2 for 74 but 2 is not the fixed point
of T. This situation illustrates the proof of Theorem 2.5 which shows that T2 is
the unique fixed point of T'; in fact (T™x)nen converges to T2 for 74s.

2.8. Theorem. A quasi-metric space (X,d) is d-sequentially complete if and
only if every d-Kannan mapping on (X, d) has a fized point.

Proof. Suppose that (X,d) is d-sequentially complete. Then, every d-Kannan
mapping on (X, d) has a (unique) fixed point by Theorem 2.5.

For the converse suppose that (X, d) is not d-sequentially complete. Then there
exists a Cauchy sequence (2, )nen in (X, d®) that does not converge for 74. Then,
for each x € X there exists n, € N such that d(z,z,) > 0, for all n > n, (indeed,
otherwise there is x € X such that for each n € N we can find m,, > n for
which d(z, z,,, ) = 0; since (z,,)nen is a Cauchy sequence in (X, d®) it follows that
(zn)nen converges to x for 74, a contradiction).

Now, for each z € X put C, = {z,, : n > n,}. Clearly d(z,C,) > 0 (indeed,
if d(z,C,) = 0, for some = € X, reasoning as in the parenthetical part of the
preceding paragraph, we deduce that that sequence (x,,)nen converges to x for 74,
a contradiction).

Since (z,)nen is a Cauchy sequence in (X, d®), for each z € X there exists
n(x) > n, such that

1
d*(zp, xm) < Zd(x,Cm),

for all m,n > n(x).
Define T': X — X as T'wx = xy(,) for all x € X.
Since n(x) > ng, we have that d(z, z,,,)) > 0, and hence T has not fixed point.

We shall show that, nevertheless, T is a d-Kannan mapping on (X,d) for ¢ =
1/4. Indeed, let x,y € X and suppose, without loss of generality, that n(z) < n(y).
Then

1
d? (T.%‘,Ty) =d° (mn(x),xn(y)) < Zd(a’:, CI)

1 1
< zd(a?,:vn(m)) = Zd(m,Tx).
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Since d(Txz,Ty) < d*(Tx,Ty) and d(Ty.Tx) < d*(Tx,Ty), we conclude that T
is a d-Kannan mapping on (X,d) for ¢ = 1/4. This contradiction finishes the
proof. O

Let (X,d) be a quasi-metric space. The closure for 74 of a subset A of X will

be denoted by A, and the set of all non-empty closed subsets of the topological
(X, 74) by Cla(X).

2.9. Definition. Let (X,d) be a quasi-metric space. By a left-Kannan mul-
tivalued mapping on (X,d) we mean a multivalued mapping T : X — Cly(X)
such that there exists a constant ¢ € [0,1/2) for which the following condition is
satisfied:

For each x,y € X and each u € Tx there exists v € Ty such that

(2.2)  d(u,v) < cd(z,u) +d(y,v)).

2.10. Theorem. Let (X, d) be a left K-sequentially complete quasi-metric space.
Then, every left-Kannan multivalued mapping on (X,d) has a fized point, i.e.,
there is z € X such that z € Tz.

Proof. Let T be a left-Kannan multivalued mapping on (X,d). Then, there
exists ¢ € [0, 1/2) such that the contraction condition (2.2) in Definition 2.9 follows
for all z,y € X.

Fix 2y € X. Choose x1 € Tzg. Then, there exists xo € Tz such that

d(x1,29) < e(d(zg, z1) + d(z1, 22)).
Therefore

c
d(.’lﬁh.’lﬁg) S 176[(.’130,,%1).
— C
Following this process we construct a sequence (z,)ncy Where z,, € Tx, 1 and
c
d(xnaxn+1) S 1fcd(xna xn71)7

for all n € N. Hence

d(l‘n, In+1) S <

c
1—c

)nd(xo,xl),

for all n € N. Consequently (z,)nen is a left K-Cauchy sequence in (X,d) [8,
Proposition 1.2.6]

Since (X, d) is left K-sequentially complete there exists z € X such that d(z, z,) —
0 as n — oo. We shall show that z € T'z. Indeed, for each n € N there exists z,, € Tz
such that

(2.3)  d(xpt1,2n) < c(d(@n, Tpe1) +d(z, 20))-
From the triangle inequality and (5) it follows that
d(z7 Z’ﬂ) < d(Z, 'TTH‘l) + C(d(.’lj‘n, xn-i-l) + d(Z, ZTL))’
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for all n € N. Since d(z,2,+1) — 0 and d(x, 1) — 0 as n — oo, we deduce
that d(z, z,) — 0 as n — 00, so z € T'z because T'z is closed for 74. This concludes
the proof. O

2.11. Lemma (see [8, Proposition 1.2.4]). Let (X,d) be a quasi-metric space.
If a left K-Cauchy sequence in (X, d) has a subsequence that converges for 74 to
some x € X, then the sequence converges to x € X for 74.

2.12. Theorem. A quasi-metric space (X,d) is left K-sequentially complete if
and only if every left-Kannan multivalued mapping on (X, d) has a fized point.

Proof. Suppose that (X, d) is left K-sequentially complete. Then, every left-
Kannan multivalued mapping on (X, d) has a fixed point by Theorem 2.10.

For the converse suppose that (X, d) is not left K-sequantially complete. Then
there exists a left K-Cauchy sequence (2, )nen in (X, d) that does not converge for
74. Similarly to the proof of Theorem 2.8, and using Lemma 2.11, we deduce that
for each x € X there exists n, € N such that d(x,z,) > 0, for all n > n,.

Now, for each * € X put C, = {z, : n > n,}. Then x ¢ C, and thus
d(z,C,) > 0, where, as usual, d(x, C,) := inf{d(z,y) : y € C, }.

Since (z,, )nen is a left K-Cauchy sequence in (X, d), for each « € X there exists
n(x) > n, such that

1 _
ATy, Tim) < Zd(w,Cm),

whenever m > n > n(x).

For each » € X put D, = {2, : n > n(x)}. Then D, C C,, so D, C C,.

Define T : X — Cly(X) as Ta = D, for all z € X.

Since, for each » € X, z ¢ C, it follows that = ¢ Tx, and thus T has no fixed
points.

We shall show that, nevertheless, T' is a left-Kannan multivalued mapping on
(X,d) for ¢ = 1/3. Indeed, let z,y € X and suppose, without loss of generality
that n(x) < n(y). Then D, C D,,s0 Ty C Tx, and hence for each v € Ty we can
take v = u € T, and thus d(u,v) = 0. On the other hand, given u € Tz there

exists v € Ty such that d(u,v) < d(z,C,)/12 + d(u, Ty). Since for each ¢ > 0
there exists n. > n(z) such that d(u,z,,) < ¢ we deduce (recall that z,,,) € Ty

and T, C C,):

1 — 1 —
d(u,v) < Ed(l‘, Cy) +d(u,Ty) < Ed(m, Cy) + d(u,x,,.) + d(2n,, Ty)

1 — 1 _ 1 __
< Ed(m, Cr) +e+d(Tn,, Tne)) < ﬁd(m, Cy)+e+ Zd(m, C.)

1 1
e+ gd(:v,TgE) <e+ gd(x,u).

Since € is arbitrary we deduce that

d(u,v) < =d(z,u).

W =
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We have shown that 7' is a left-Kannan multivalued mapping on (X, d) for ¢ = 1/3.
This finishes the proof. d

2.13. Remark. Let (R, d) be the quasi-metric space of Example 1.6. By Theorem
2.5, every d-Kannan mapping on (R,d) has a unique fixed point. However there
exists a left-Kannan multivalued mapping on it without fixed points, by Theorem
2.12. Finally, if (X, d) is the quasi-metric space of Example 2.4 or the quasi-metric
space of Example 2.6, then every left-Kannan multivalued mapping on (X, d) has
a fixed point by Theorem 2.12.
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