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Abstract

In this paper the sequence spaces br,s
0 (p), br,s

c (p), br,s
∞ (p) and br,s(p) which are the general-

ization of the classical Maddox’s paranormed sequence spaces have been introduced and
proved that the spaces br,s

0 (p), br,s
c (p), br,s

∞ (p) and br,s(p) are linearly isomorphic to spaces
c0(p), c(p), `∞(p) and `(p), respectively. Besides this, the α−,β− and γ−duals of the
spaces br,s

0 (p), br,s
c (p), and br,s(p) have been computed, their bases have been constructed

and some topological properties of these spaces have been studied. Finally, the classes
of matrices (br,s

0 (p) : µ), (br,s
c (p) : µ) and (br,s(p) : µ) have been characterized, where µ

is one of the sequence spaces `∞,c and c0 and derives the other characterizations for the
special cases of µ .

1. Introduction

We shall denote the space of all real-valued sequences by w as a classical notation. Any vector subspace of w is called a sequence space. The
spaces `∞,c and c0 are the most common and frequently used spaces which are all bounded, convergent and null sequences, respectively. Also
bs,cs, `1 and `p notations are used for the spaces of all bounded, convergent, absolutely and p−absolutely convergent series, respectively,
where 1 < p < ∞.
First, we point out the concept of a paranorm. A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditive function g : X → R such that g(θ) = 0,g(x) = g(−x) and scalar multiplication is continuous, i.e., |αn−α| → 0 and
g(xn− x)→ 0 imply g(αnxn−αx)→ 0 for all α’s in R and all x’s in X , where θ is the zero vector in the linear space X .
Assume here and after that (pk) be a bounded sequences of strictly positive real numbers with sup pk = H and L = max{1,H}. Then, the
linear spaces `∞(p),c(p),c0(p) and `(p) were defined by Maddox [19] (see also Simons [21] and Nakano [20]) as follows:

`∞(p) = {x = (xk) ∈ w : sup
k∈N
|xk|pk < ∞},

c(p) = {x = (xk) ∈ w : lim
k→∞
|xk− l|pk = 0 for some l ∈ R},

c0(p) = {x = (xk) ∈ w : lim
k→∞
|xk|pk = 0}

`(p) =

{
x = (xk) ∈ w : ∑

k
|xk|pk < ∞

}
,

which are the complete spaces paranormed by

g1(x) = sup
k∈N
|xk|pk/L⇐⇒ inf pk > 0 and g2(x) =

(
∑
k
|xk|pk

)1/L

,

respectively. For convenience in notation, here and in what follows, the summation without limits runs from 0 to ∞. By F and Nk, we
shall denote the collection of all finite subsets of N and the set of all n ∈ N such that n≥ k, respectively. We shall assume throughout that
p−1

k +(p′k)
−1 = 1 provided 1 < inf pk ≤ H < ∞.
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Let λ ,µ be any two sequence spaces and A = (ank) be an infinite matrix of real numbers ank, where n,k ∈ N. Then, we say that A defines
a matrix mapping from λ into µ , and we denote it by A : λ → µ , if for every sequence x = (xk) ∈ λ , the sequence Ax = {(Ax)n}, the
A−transform of x, is in µ , where

(Ax)n = ∑
k

ankxk, (n ∈ N). (1.1)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ . Thus, A ∈ (λ : µ) if and only if the series on the right-hand side of
(1.1) converges for each n ∈N and every x ∈ λ , and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ µ . A sequence x is said to be A−summable to
α if Ax converges to α which is called the A−limit of x.

2. The sequence spaces br,s
0 (p), br,s

c (p), br,s
∞ (p) and br,s(p)

In this section, we define the sequence spaces br,s
0 (p), br,s

c (p), br,s
∞ (p) and br,s(p), and prove that br,s

0 (p), br,s
c (p), br,s

∞ (p) and br,s(p) are the
complete paranormed linear spaces.
For a sequence space λ , the matrix domain λA of an infinite matrix A is defined by

λA = {x = (xk) ∈ w : Ax ∈ λ}. (2.1)

In [7], Choudhary and Mishra have defined the sequence space `(p) which consists of all sequences such that S−transforms are in `(p),
where S = (snk) is defined by

snk =

{
1 , 0≤ k ≤ n,
0 , k > n.

Başar and Altay [3] have studied the space bs(p) which is formerly defined by Başar in [4] as the set of all series whose sequences of partial
sums are in `∞(p). More recently, Altay and Başar have studied the sequence spaces rt(p),rt

∞(p) in [1] and rt
c(p),rt

0(p) in [2] which are
derived by the Riesz means from the sequence spaces `(p), `∞(p),c(p) and c0(p) of Maddox, respectively.
With the notation of (2.1), the spaces `(p),bs(p),rt(p),rt

∞(p),rt
c(p) and rt

0(p) may be redefined by

`(p) = [`(p)]S,bs(p) = [`∞(p)]S,rt(p) = [`(p)]tR

rt
∞(p) = [`∞(p)]tR,r

t
c(p) = [c(p)]tR,r

t
0(p) = [c0(p)]tR.

In [8], Demiriz and Çakan have defined the sequence spaces er
0(u, p) and er

c(u, p) which consists of all sequences such that Er,u- transforms
are in c0(p) and c(p), respectively Er,u = {er

nk(u)} is defined by

er
nk(u) =

{ (n
k
)
(1− r)n−krkuk , (0≤ k ≤ n),

0 , (k > n)

for all k,n ∈ N and 0 < r < 1.
In [5] and [6], the Binomial sequence spaces br,s

0 , br,s
c , br,s

∞ and br,s
p , which are the matrix domains of Binomial mean Br,s in the sequence

spaces c0, c, `∞ and `p, respectively, are introduced, some inclusion relations and Schauder basis for the spaces br,s
0 , br,s

c , br,s
∞ and br,s

p are
given, and the α−,β− and γ− duals of those spaces are determined. For more papers related to sequence spaces and matrix domains of
different infinite matrices one can see [13, 12] and references therein. The main purpose of this paper is to introduce the sequence spaces
br,s

0 (p), br,s
c (p), br,s

∞ (p) and br,s(p) which are the set of all sequences whose Br,s−transforms are in the spaces c0(p), c(p), `∞(p) and `(p),
respectively; where Br,s denotes the matrix Br,s = {br,s

nk} defined by

br,s
nk =

{
1

(s+r)n

(k
n
)
sn−krk , 0≤ k ≤ n,

0 , k > n,

where sr > 0. Also, we have constructed the basis and computed the α−,β− and γ−duals and investigated some topological properties of
the spaces br,s

0 (p), br,s
c (p), br,s

∞ (p) and br,s(p).
Following Choudhary and Mishra [7], Başar and Altay [3], Altay and Başar [1, 2], Demiriz [8], Kirişçi [14, 15], Candan and Güneş [16]
and Ellidokuzog̃lu and Demiriz [9], we define the sequence spaces br,s

0 (p), br,s
c (p), br,s

∞ (p) and br,s(p), as the sets of all sequences such that
Br,s−transforms of them are in the spaces c0(p), c(p), `∞(p) and `(p), respectively, that is,

br,s
0 (p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣pn

= 0

}
,

br,s
c (p) =

{
x = (xk) ∈ w : ∃l ∈ C 3 lim

n→∞

∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk− l

∣∣∣∣pn

= 0

}
,

br,s
∞ (p) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn

< ∞

}
,

br,s(p) =

{
x = (xk) ∈ w : ∑

n

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn

< ∞

}
.
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In the case (pn) = e = (1,1,1, ...), the sequence spaces br,s
0 (p), br,s

c (p), br,s
∞ (p) and br,s(p) are, respectively, reduced to the sequence spaces

br,s
0 , br,s

c , br,s
∞ and br,s

p which are introduced by Bişgin [5, 6]. With the notation of (2.1), we may redefine the spaces br,s
0 (p), br,s

c (p), br,s
∞ (p)

and br,s(p) as follows:

br,s
0 (p) = [c0(p)]Br,s , br,s

c (p) = [c(p)]Br,s ,br,s
∞ (p) = [`∞(p)]Br,s and br,s(p) = [`(p)]Br,s .

Define the sequence y = {yn(r,s)}, which will be frequently used, as the Br,s−transform of a sequence x = (xk), i.e.,

yn(r,s) :=
1

(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk; for all k ∈ N. (2.2)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. br,s
0 (p), br,s

c (p) and br,s
∞ (p) are the complete linear metric space paranormed by g, defined by

g(x) = sup
n∈N

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn/L

. (2.3)

In addition, br,s(p) is the complete linear metric space paranormed by h, defined by

h(x) =

(
∞

∑
n=0

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn
)1/M

. (2.4)

Proof. First, we give the proof for br,s
0 (p), br,s

c (p) and br,s
∞ (p). Since the proof is similar for br,s

c (p) and br,s
∞ (p), we give the proof only for

the space br,s
0 (p). The linearity of br,s

0 (p) with respect to the co-ordinatewise addition and scalar multiplication follows from the following
inequalities which are satisfied for x,z ∈ br,s

0 (p) (see Maddox [18, p.30])∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krk(xk + zk)

∣∣∣∣∣
pn/L

≤

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn/L

+

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkzk

∣∣∣∣∣
pn/L

(2.5)

and for any α ∈ R (see [21])

|α|pn ≤max{1, |α|L}= K. (2.6)

Using (2.6) inequality, we get∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krk(αxk)

∣∣∣∣∣
pn/L

= |α|pn/L

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn/L

≤ K1/L

∣∣∣∣∣ 1
(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
pn/L

for x ∈ br,s
0 (p). This shows the space br,s

0 (p) is a linear space.
Now we will see that g is a paranorm on br,s

0 (p). It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ br,s
0 (p).

Let {xn} be any sequence of the points xn ∈ br,s
0 (p) such that g(xn− x)→ 0 and (αn) also be any sequence of scalars such that αn→ α .

Then, since the inequality

g(xn)≤ g(x)+g(xn− x)

holds by the subadditivity of g,{g(xn)} is bounded and we thus have

g(αnxn−αx) = sup
k∈N

∣∣∣∣∣ 1
(s+ r)k

k

∑
j=0

(
k
j

)
sk− jr j(αnxn

j −αx j)

∣∣∣∣∣
pk/L

≤ |αn−α|g(xn)+ |α|g(xn− x) (2.7)

which tends to zero as n→ ∞. This means that the scalar multiplication is continuous. Hence, g is a paranorm on the space br,s
0 (p).

It remains to prove the completeness of the space br,s
0 (p). Let {xi} be any Cauchy sequence in the space br,s

0 (p), where xi = {x(i)0 ,x(i)1 ,x(i)2 , . . .}.
Then, for a given ε > 0 there exists a positive integer n0(ε) such that

g(xi− x j)<
ε

2

for all i, j > n0(ε). Using the definition of g we obtain for each fixed k ∈ N that

|(Br,sxi)k− (Br,sx j)k|pk/L ≤ sup
k∈N
|(Br,sxi)k− (Br,sx j)k|pk/L <

ε

2
(2.8)
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for every i, j > n0(ε) which leads to the fact that {(Br,sx0)k,(Br,sx1)k,(Br,sx2)k, . . .} is a Cauchy sequence of real numbers for every fixed
k ∈ N. Since R is complete, it converges, say (Br,sxi)k → (Br,sx)k as i→ ∞. Using these infinitely many limits (Br,sx)0,(Br,sx)1, . . ., we
define the sequence {(Br,sx)0,(Br,sx)1, . . .}. From (2.8) with j→ ∞, we have

|(Br,sxi)k− (Br,sx)k|pk/L ≤ ε

2
(i, j > n0(ε)) (2.9)

for every fixed k ∈ N. Since xi = {x(i)k } ∈ br,s
0 (p) for each i ∈ N, there exists k0(ε) ∈ N such that

|(Br,sxi)k|pk/L <
ε

2
(2.10)

for every k ≥ k0(ε) and for each fixed i ∈ N. Therefore, taking a fixed i > n0(ε) we obtain by (2.9) and (2.10) that

|(Br,sx)k|pk/L ≤ |(Br,sx)k− (Br,sxi)k|pk/L + |(Br,sxi)k|pk/L <
ε

2

for every k > k0(ε). This shows that x ∈ br,s
0 (p). Since {xi} was an arbitrary Cauchy sequence, the space br,s

0 (p) is complete and this
concludes the proof.
Now lets show that, br,s(p) is the complete linear metric space paranormed by h defined by (2.4). It is easy to see that the space br,s(p) is
linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the
paranorm h defined by (2.4).

It is clear that h(θ) = 0 where θ = (0,0,0, ...) and h(x) = h(−x) for all x ∈ br,s(p).

Let x,y ∈ br,s(p); then by Minkowski’s inequality we have

h(x+ y) =

(
∞

∑
k=0

∣∣∣∣∣ 1
(s+ r)k

k

∑
j=0

(
k
j

)
sk− jr j(x j + y j)

∣∣∣∣∣
pk
)1/M

=

 ∞

∑
k=0

∣∣∣∣∣ 1
(s+ r)k

k

∑
j=0

(
k
j

)
sk− jr j(x j + y j)

∣∣∣∣∣
pk/M

M


1/M

≤

(
∞

∑
k=0

∣∣∣∣∣ 1
(s+ r)k

k

∑
j=0

(
k
j

)
sk− jr jx j

∣∣∣∣∣
pk
)1/M

+

(
∞

∑
k=0

[
1

(s+ r)k

k

∑
j=0

(
k
j

)
sk− jr jy j

∣∣∣∣∣
pk
)1/M

= h(x)+h(y) (2.11)

and for any α ∈ R we immediately see that

|α|pk ≤max{1, |α|M}. (2.12)

Let {xn} be any sequence of the points xn ∈ br,s(p) such that h(xn− x)→ 0 and (λn) also be any sequence of scalars such that λn→ λ . We
observe that

h(λnxn−λx)≤ h[(λn−λ )(xn− x)]+h[λ (xn− x)]+h[(λn−λ )x]. (2.13)

It follows from λn→ λ (n→ ∞) that |λn−λ |< 1 for all sufficiently large n; hence

lim
n→∞

h[(λn−λ )(xn− x)]≤ lim
n→∞

h(xn− x) = 0. (2.14)

Furthermore, we have

lim
n→∞

h[λ (xn− x)]≤max{1, |λ |M} lim
n→∞

h(xn− x) = 0. (2.15)

Also, we have

lim
n→∞

h[(λn−λ )x)]≤ lim
n→∞
|λn−λ |h(x) = 0. (2.16)

Then, we obtain from (2.13), (2.14), (2.15) and (2.16) that h(λnxn−λx)→ 0, as n→ ∞. This shows that h is a paranorm on br,s(p).
Now, we show that br,s(p) is complete. Let {xn} be any Cauchy sequence in the space br,s(p), where xn = {x(n)0 ,x(n)1 ,x(n)2 , ...}. Then, for a
given ε > 0, there exists a positive integer n0(ε) such that h(xn− xm)< ε for all n,m > n0(ε). Since for each fixed k ∈ N that

|(Br,sxn)k− (Br,sxm)k| ≤

[
∑
k
|(Br,sxn)k− (Br,sxm)k|pk

] 1
M

= h(xn− xm)< ε (2.17)

for every n,m > n0(ε), {(Br,sx0)k,(Br,sx1)k,(Br,sx2)k, ...} is a Cauchy sequence of real numbers for every fixed k ∈ N. Since R is com-
plete, it converges, say (Br,sxn)k → (Br,sx)k as n→ ∞. Using these infinitely many limits (Br,sx)0,(Br,sx)1, ..., we define the sequence
{(Br,sx)0,(Br,sx)1, ...}. For each K ∈ N and n,m > n0(ε)[

K

∑
k=0
|(Br,sxn)k− (Br,sxm)k|pk

] 1
M

≤ h(xn− xm)< ε. (2.18)



Universal Journal of Mathematics and Applications 141

By letting m,K→ ∞, we have for n > n0(ε) that

h(xn− x) =

[
∑
k
|(Br,sxn)k− (Br,sx)k|pk

] 1
M

< ε. (2.19)

This shows that xn−x ∈ br,s(p). Since br,s(p) is a linear space, we conclude that x ∈ br,s(p); it follows that xn→ x, as n→ ∞ in br,s(p), thus
we have shown that br,s(p) is complete.

Note that the absolute property does not hold on the spaces br,s
0 (p), br,s

c (p) and br,s(p), since there exists at least one sequence in the spaces
br,s

0 (p), br,s
c (p) and br,s(p) and such that g(x) 6= g(|x|), where |x|= (|xk|). This says that br,s

0 (p), br,s
c (p) and br,s(p) are the sequence spaces

of non-absolute type.

Theorem 2.2. The sequence spaces br,s
0 (p), br,s

c (p), br,s
∞ (p) and br,s(p) are linearly isomorphic to the spaces c0(p), c(p), `∞(p) and `(p),

respectively, where 0 < pk ≤ H < ∞.

Proof. To avoid repetition of similar statements, we give the proof only for br,s
0 (p). We should show the existence of a linear bijection

between the spaces br,s
0 (p) and c0(p). With the notation of (2.2), define the transformation T from br,s

0 (p) to c0(p) by x 7→ y = T x. The
linearity of T is trivial. Furthermore, it is obvious that x = θ whenever T x = θ , and hence T is injective.
Let y ∈ c0(p) and define the sequence

xk =
1
rk

k

∑
j=0

(
k
j

)
(−s)k− j(s+ r) jy j; (k ∈ N).

Then, we have

(Br,sx)n =
1

(s+ r)n

n

∑
k=0

(
n
k

)
sn−krkxk

=
1

(s+ r)n

n

∑
k=0

(
n
k

)
sn−k

k

∑
j=0

(
k
j

)
(−s)k− j(s+ r) jy j

=
1

(s+ r)n

n

∑
j=0

(
n

∑
k= j

(
n
k

)(
k
j

)
sn−k(−s)k− j(s+ r) j

)
y j

=
1

(s+ r)n

n

∑
j=0

(
n

∑
k= j

(
n
j

)(
n− j
k− j

)
(−1)k− jsn− j(s+ r) j

)
y j

=
1

(s+ r)n

n

∑
j=0

(
n
j

)
sn− j(s+ r) j

(
n

∑
k= j

(
n− j
k− j

)
(−1)k− j

)
y j

=
1

(s+ r)n

n

∑
j=0

(
n
j

)
sn− j(s+ r) j

δnky j

=
1

(s+ r)n

(
n
n

)
sn−n(s+ r)n1yn

= yn.

Thus, we have that x ∈ br,s
0 (p) and consequently T is surjective. Hence, T is a linear bijection and this says that the spaces br,s

0 (p) and c0(p)
are linearly isomorphic, as was desired.

3. The basis for the spaces br,s
0 (p), br,s

c (p) and br,s(p)

Let (λ ,g) be a paranormed space. Recall that a sequence (βk) of the elements of λ is called a basis for λ if and only if, for each x ∈ λ , there
exists a unique sequence (αk) of scalars such that

g

(
x−

n

∑
k=0

αkβk

)
→ 0 as n→ ∞.

The series ∑αkβk which has the sum x is then called the expansion of x with respect to (βn), and written as x = ∑αkβk. Since it is known
that the matrix domain λA of a sequence space λ has a basis if and only if λ has a basis whenever A = (ank) is a triangle (cf. [11, Remark
2.4]), we have the following. Because of the isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of
those spaces c0(p), c(p) and `(p) are the basis of the new spaces br,s

0 (p), br,s
c (p) and br,s(p), respectively. Therefore, we have the following:

Theorem 3.1. Let λk = (Br,sx)k for all k ∈ N and 0 < pk ≤ H < ∞. Define the sequence b(k) = {b(k)}k∈N of the elements of the space
br,s

0 (p), br,s
c (p) and br,s(p) by

b(k)n =

{ 1
rn

(n
k
)
(−s)n−k(s+ r)k , n≥ k

0 , 0≤ k < n

for every fixed k ∈ N. Then
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(a) The sequence {b(k)}k∈N is a basis for the space br,s
0 (p), and any x ∈ br,s

0 (p) has a unique representation of the form

x = ∑
k

λkb(k).

(b) The set {e,b(1)(r),b(2)(r), ...} is a basis for the space br,s
c (p), and any x ∈ br,s

c (p) has a unique representation of the form

x = le+∑
k
[λk− l]b(k),

where l = limk→∞(Br,sx)k.
(c) The sequence {b(k)}k∈N is a basis for the space br,s(p), and any x ∈ br,s(p) has a unique representation of the form

x = ∑
k

λkb(k).

4. The α−,β− and γ−duals of the spaces br,s
0 (p), br,s

c (p) and br,s(p)

In this section, we state and prove the theorems determining the α−,β− and γ−duals of the sequence spaces br,s
0 (p), br,s

c (p) and br,s(p) of
non-absolute type.

We shall firstly give the definition of α−,β− and γ−duals of sequence spaces and after quoting the lemmas which are needed in proving the
theorems given in Section 4.
The set S(λ ,µ) defined by

S(λ ,µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (4.1)

is called the multiplier space of the sequence spaces λ and µ . One can eaisly observe for a sequence space ν with λ ⊃ ν ⊃ µ that the
inclusions

S(λ ,µ)⊂ S(ν ,µ) and S(λ ,µ)⊂ S(λ ,ν)

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space λ , which are respectively denoted by λ α , λ β and λ γ

are defined by

λ
α = S(λ , `1),λ

β = S(λ ,cs) and λ
γ = S(λ ,bs).

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe- Toeplitz dual, generalized Köthe-Toeplitz dual and
Garling dual of a sequence space, respectively.

For to give the alpha-, beta- and gamma-duals of the spaces br,s
0 (p), br,s

c (p) and br,s(p) of non-absolute type, we need the following lemma:

Lemma 4.1. [10, qn = 1] Let A = (ank) be an infinite matrix. Then, the following statements hold

(i) A ∈ (co(p) : `(q)) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K
ankM−1/pk

∣∣∣∣∣< ∞, ∃M ∈ N2. (4.2)

(ii) A ∈ (c(p) : `(q)) if and only if (4.2) holds and

∑
n

∣∣∣∣∣∑k
ank

∣∣∣∣∣< ∞. (4.3)

(iii) A ∈ (c0(p) : c(q)) if and only if

sup
n∈N

∑
k
|ank|M−1/pk < ∞, ∃M ∈ N2, (4.4)

∃(αk)⊂ R 3 lim
n→∞
|ank−αk|= 0 for all k ∈ N, (4.5)

∃(αk)⊂ R 3 sup
n∈N

∑
k
|ank−αk|M−1/pk < ∞, ∃M ∈ N2. (4.6)

(iv) A ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) hold and

∃α ∈ R 3 lim
n→∞

∣∣∣∣∣∑k
ank−α

∣∣∣∣∣= 0. (4.7)
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(v) A ∈ (co(p) : `∞(q)) if and only if

sup
n∈N

∑
k
|ank|M−1/pk < ∞, ∃M ∈ N2. (4.8)

(vi) A ∈ (c(p) : `∞(q)) if and only if (4.8) holds and

sup
n

∣∣∣∣∣∑k
ank

∣∣∣∣∣< ∞, ∃M ∈ N2. (4.9)

(vii) A ∈ (`(p) : `1) if and only if

(a) Let 0 < pk ≤ 1 for all k ∈ N. Then

sup
N∈F

sup
k∈N

∣∣∣∣∣∑n∈N
ank

∣∣∣∣∣
pk

< ∞. (4.10)

(b) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer M > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑n∈N
ankM−1

∣∣∣∣∣
p
′
k

< ∞. (4.11)

Lemma 4.2. [17] Let A = (ank) be an infinite matrix. Then, the following statements hold

(i) A ∈ (`(p) : `∞) if and only if

(a) Let 0 < pk ≤ 1 for all k ∈ N. Then,

sup
n,k∈N

|ank|pk < ∞. (4.12)

(b) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer M > 1 such that

sup
n∈N

∑
k

∣∣∣ankM−1
∣∣∣p′k < ∞. (4.13)

(ii) Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (`(p) : c) if and only if (4.12) and (4.13) hold, and

lim
n→∞

ank = βk, ∀k ∈ N. (4.14)

Theorem 4.3. Let K ∈F and K∗ = {k ∈ N : n≥ k}∩K for K ∈F . Define the sets T r
1 (p), T r

2 , T3(p) and T4(p) as follows:

T1(p) =
⋃

M>1

{
a = (ak) ∈ w : sup

K∈F
∑
n

∣∣∣∣∣ ∑
k∈K∗

cnkM−1/pk

∣∣∣∣∣< ∞

}
,

T2 =

{
a = (ak) ∈ w : ∑

n

∣∣∣∣∣ n

∑
k=0

cnk

∣∣∣∣∣ exists for each n ∈ N

}
,

T3(p) =
⋃

M>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∑n∈N
cnkM−1

∣∣∣∣∣
p
′
k

< ∞,

 ,

T4(p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣∑n∈N
cnk

∣∣∣∣∣
pk

< ∞

}
,

where the matrix C = (cnk) defined by

cnk =

{ 1
rn ∑

n
k=0
(n

k
)
(−s)n−k(s+ r)kan , 0≤ k ≤ n,

0 , k ≥ n.
(4.15)

Then, [br,s
0 (p)]α = T1(p), [br,s

c (p)]α = T1(p)∩T2 and

[br,s(p)]α =

{
T3(p) 1 < pk ≤ H < ∞,∀k ∈ N,
T4(p) 0 < pk ≤ 1,∀k ∈ N. (4.16)

Proof. We chose the sequence a = (ak) ∈ w. We can easily derive that with the (2.2) that

anxn =
1
rn

n

∑
k=0

(
n
k

)
(−s)n−k(s+ r)kanyk = (Cy)n, (n ∈ N) (4.17)

for all k,n ∈ N, where C = (cnk) defined by (4.15). It follows from (4.17) that ax = (anxn) ∈ `1 whenever x ∈ br,s
0 (p) if and only if Cy ∈ `1

whenever y ∈ c0(p). This means that a = (an) ∈ [br,s
0 (p)]α if and only if C ∈ (c0(p) : `1). Then, we derive by (4.2) with qn = 1 for all n ∈ N

that [br,s
0 (p)]α = T r

1 (p).
Using the (4.3) with qn = 1 for all n ∈ N and (4.17), the proof of the [br,s

c (p)]α = T r
1 (p)∩T2 can also be obtained in a similar way. Also,

using the (4.10),(4.11) and (4.17), the proof of the

[br,s(p)]α =

{
T3(p) 1 < pk ≤ H < ∞,∀k ∈ N,
T4(p) 0 < pk ≤ 1,∀k ∈ N,

can also be obtained in a similar way.
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Theorem 4.4. The matrix D = (dnk) is defined by

dnk =

{
∑

n
j=k
( j

k

)
(−s) j−kr− j(r+ s)ka j , (0≤ k ≤ n)

0 , (k > n)
(4.18)

for all k,n ∈ N. Define the sets T5(p), T6, T7(p), T8, T9(p), T10 and T11(p) as follows:

T5(p) =
⋃

M>1

{
a = (ak) ∈ w : sup

n∈N

n

∑
k=0
|dnk|M−1/pk < ∞

}
,

T6 =
{

a = (ak) ∈ w : lim
n→∞
|dnk| exists for each k ∈ N

}
,

T7(p) =
⋃

M>1

{
a = (ak) ∈ w : ∃(αk)⊂ R 3 sup

n∈N

n

∑
k=0
|dnk−αk|M−1/pk < ∞

}
,

T8 =

{
a = (ak) ∈ w : lim

n→∞

n

∑
k=0
|dnk| exists

}
,

T9(p) =
⋃

M>1

{
a = (ak) ∈ w : sup

n∈N
∑
k

∣∣∣dnkM−1
∣∣∣p′k < ∞

}
,

T10 =
{

a = (ak) ∈ w : lim
n→∞

dnk exists for each k ∈ N
}
,

T11(p) =

{
a = (ak) ∈ w : sup

n,k∈N
|dnk|pk < ∞

}
.

Then, [br,s
0 (p)]β = T5(p)∩T6∩T7(p), [br,s

c (p)]β = [br,s
0 (p)]β ∩T8 and

[br,s(p)]β =

{
T9(p)∩T10 , 1 < pk ≤ H < ∞,∀k ∈ N,
T10∩T11(p) , 0 < pk ≤ 1,∀k ∈ N. (4.19)

Proof. We give the proof again only for the space br,s
0 (p). Consider the equation

n

∑
k=0

akxk =
n

∑
k=0

[
1
rk

k

∑
j=0

(
k
j

)
(−s)k− j(s+ r) jy j

]
ak

=
n

∑
k=0

[
n

∑
j=k

(
j
k

)
(−s) j−kr− j(r+ s)ka j

]
yk = (Dy)n, (4.20)

where D = (dnk) defined by (4.18). Thus, we deduce from (4.20) that ax = (akxk) ∈ cs whenever x = (xk) ∈ br,s
0 (p) if and only if Dy ∈ c

whenever y = (yk) ∈ c0(p). That is to say that a = (ak) ∈ [br,s
0 (p)]β if and only if D ∈ (c0(p) : c). Therefore, we derive from (4.4),(4.5) and

(4.6) with qn = 1 for all n ∈ N that [br,s
0 (p)]β = T5(p)∩T6∩T7(p).

Using the (4.4),(4.5), (4.6) and (4.7) with qn = 1 for all n ∈ N and (4.20), the proofs of the [br,s
c (p)]β = [br,s

0 (p)]β ∩T8 can also be obtained
in a similar way. Also, using the (4.12),(4.13), (4.14) and (4.20), the proofs of the

[br,s(p)]β =

{
T9(p)∩T10 , 1 < pk ≤ H < ∞,∀k ∈ N,
T10∩T11(p) , 0 < pk ≤ 1,∀k ∈ N

can also be obtained in a similar way.

Theorem 4.5. Define the set T12 by

T12 =

{
a = (ak) ∈ w : sup

n

∣∣∣∣∣∑k
ank

∣∣∣∣∣< ∞

}
.

Then, [br,s
0 (p)]γ = T5(p), [br,s

c (p)]γ = [br,s
0 (p)]γ ∩T12 and

[br,s(p)]γ =
{

T8(p) , 1 < pk ≤ H < ∞,∀k ∈ N,
T10(p) , 0 < pk ≤ 1,∀k ∈ N.

Proof. This is obtained in the similar way used in the proof of Theorem 4.4.
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5. Certain matrix mappings on the sequence spaces br,s
0 (p), br,s

c (p) and br,s(p)

In this section, we characterize some matrix mappings on the spaces br,s
0 (p), br,s

c (p) and br,s(p).
We known that, if br,s

0 (p)∼= c0(p), br,s
c (p)∼= c(p) and br,s(p)∼= `(p), we can say: The equivalence “x ∈ br,s

0 (p),br,s
c (p) or br,s(p) if and only

if y ∈ c0(p),c(p) or `(p)” holds.
In what follows, for brevity, we write,

ãnk :=
n

∑
j=k

(
j
k

)
(−s) j−kr− j(r+ s)kan j

for all k,n ∈ N.

Theorem 5.1. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are connected with the relation

enk := ãnk (5.1)

for all k,n ∈ N and µ be any given sequence space. Then,

(i) A ∈ (br,s
0 (p) : µ) if and only if {ank}k∈N ∈ {b

r,s
0 (p)}β for all n ∈ N and E ∈ (c0(p) : µ).

(ii) A ∈ (br,s
c (p) : µ) if and only if {ank}k∈N ∈ {b

r,s
c (p)}β for all n ∈ N and E ∈ (c(p) : µ).

(iii) A ∈ (br,s(p) : µ) if and only if {ank}k∈N ∈ {br,s(p)}β for all n ∈ N and E ∈ (`(p) : µ).

Proof. We prove only part of (i). Let µ be any given sequence space. Suppose that (5.1) holds between A = (ank) and E = (enk), and take
into account that the spaces br,s

0 (p) and c0(p) are linearly isomorphic.
Let A ∈ (br,s

0 (p) : µ) and take any y = (yk) ∈ c0(p). Then EBr,s exists and {ank}k∈N ∈ T5(p)∩T6 which yields that {enk}k∈N ∈ c0(p) for
each n ∈ N. Hence, Ey exists and thus

∑
k

enkyk = ∑
k

ankxk

for all n ∈ N.
We have that Ey = Ax which leads us to the consequence E ∈ (c0(p) : µ).
Conversely, let {ank}k∈N ∈ {b

r,s
0 (p)}β for each n ∈ N and E ∈ (c0(p) : µ) hold, and take any x = (xk) ∈ br,s

0 (p). Then, Ax exists. Therefore,
we obtain from the equality

∞

∑
k=0

ankxk =
∞

∑
k=0

[
k

∑
j=0

(
j
k

)
(−r) j−k(1− r)−( j+1)an j

]
yk

for all n ∈ N, that Ey = Ax and this shows that A ∈ (br,s
0 (p) : µ). This completes the proof of part of (i).

Theorem 5.2. Suppose that the elements of the infinite matrices A = (ank) and B = (bnk) are connected with the relation

bnk :=
1

(s+ r)n

n

∑
j=0

(
n
j

)
sn− jr ja jk for all k,n ∈ N. (5.2)

Let µ be any given sequence space. Then,

(i) A ∈ (µ : br,s
0 (p)) if and only if B ∈ (µ : c0(p)).

(ii) A ∈ (µ : br,s
c (p)) if and only if B ∈ (µ : c(p)).

(iii) A ∈ (µ : br,s(p)) if and only if B ∈ (µ : `(p)).

Proof. We prove only part of (i). Let z = (zk) ∈ µ and consider the following equality.

m

∑
k=0

bnkzk =
∞

∑
j=n

(
j
n

)
(1− r)n+1r j−n

(
m

∑
k=0

a jkzk

)
for all m,n ∈ N

which yields as m→ ∞ that (Bz)n = {Br,s(Az)}n for all n ∈ N. Therefore, one can observe from here that Az ∈ br,s
0 (p) whenever z ∈ µ if and

only if Bz ∈ c0(p) whenever z ∈ µ . This completes the proof of part of (i).

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space µ . Whence by Theorem 5.1 and
Theorem 5.2, the necessary and sufficient conditions for (br,s

0 (p) : µ), (µ : br,s
0 (p)), (br,s

c (p) : µ), (µ : br,s
c (p)) and (br,s(p) : µ), (µ : br,s(p))

may be derived by replacing the entries of C and A by those of the entries of E =C{Br,s}−1 and B = Br,sA, respectively; where the necessary
and sufficient conditions on the matrices E and B are read from the concerning results in the existing literature.
The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by
Grosse-Erdmann [10]. Let N and K denote the finite subset of N, L and M also denote the natural numbers. Prior to giving the theorems, let
us suppose that (qn) is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

lim
n
|ank|qn = 0, for all k. (5.3)
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∀L,∃M 3 sup
n

L1/qn ∑
k
|ank|M−1/pk < ∞, (5.4)

lim
n
|∑

k
ank|qn = 0, (5.5)

∀L,sup
n

sup
k∈K1

∣∣∣ankL1/qn

∣∣∣pk
< ∞, (5.6)

∀L,∃M 3 sup
n

∑
k∈K2

|ankL1/qn M−1|p
′
k < ∞, (5.7)

∀M, lim
n

(
∑
k
|ank|M1/pk

)qn

= 0, (5.8)

∀M,sup
n

∑
k
|ank|M1/pk < ∞, (5.9)

∀M,sup
K

∑
n

∣∣∣∣∣∑k∈K
ankM1/pk

∣∣∣∣∣
qn

< ∞. (5.10)

Lemma 5.3. Let A = (ank) be an infinite matrix. Then

(i) A = (ank) ∈ (c0(p) : `∞(q)) if and only if (4.8) holds.
(ii) A = (ank) ∈ (c(p) : `∞(q)) if and only if (4.8) and (4.9) hold.
(iii) A = (ank) ∈ (`(p) : `∞) if and only if (4.12) and (4.13) hold.
(iv) A = (ank) ∈ (c0(p) : c(q)) if and only if (4.4), (4.5) and (4.6) hold.
(v) A = (ank) ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) and (4.7) hold.
(vi) A = (ank) ∈ (`(p) : c) if and only if (4.12), (4.13) and (4.14) hold.
(vii) A = (ank) ∈ (c0(p) : c0(q)) if and only if (5.3) and (5.4) hold.
(viii) A = (ank) ∈ (c(p) : c0(q)) if and only if (5.3), (5.4) and (5.5) hold.
(ix) A = (ank) ∈ (`(p) : c0(q)) if and only if (5.3), (5.6) and (5.7) hold.
(x) A = (ank) ∈ (`∞(p) : c0(q)) if and only if (5.8) holds.
(xi) A = (ank) ∈ (`∞(p) : c(q)) if and only if (5.9) holds.
(xii) A = (ank) ∈ (`∞(p) : `(q)) if and only if (5.10) holds.
(xiii) A = (ank) ∈ (c0(p) : `(q)) if and only if (4.2) holds.
(xiv) A = (ank) ∈ (c(p) : `(q)) if and only if (4.2) and (4.4) hold.

Corollary 5.4. Let A = (ank) be an infinite matrix. The following statements hold:

(i) A ∈ (br,s
0 (p) : `∞(q)) if and only if {ank}k∈N ∈ {b

r,s
0 (p)}β for all n ∈ N and (4.8) holds with ãnk instead of ank with q = 1.

(ii) A ∈ (br,s
0 (p) : c0(q)) if and only if {ank}k∈N ∈ {b

r,s
0 (p)}β for all n ∈ N and (5.3) and (5.4) hold with ãnk instead of ank with q = 1.

(iii) A ∈ (br,s
0 (p) : c(q)) if and only if {ank}k∈N ∈ {b

r,s
0 (p)}β for all n ∈ N and (4.4), (4.5) and (4.6) hold with ãnk instead of ank with q = 1.

Corollary 5.5. Let A = (ank) be an infinite matrix. The following statements hold:

(i) A ∈ (br,s
c (p) : `∞(q)) if and only if {ank}k∈N ∈ {b

r,s
c (p)}β for all n ∈ N and (4.8) and (4.9) hold with ãnk instead of ank with q = 1.

(ii) A ∈ (br,s
c (p) : c0(q)) if and only if {ank}k∈N ∈ {b

r,s
c (p)}β for all n ∈ N and (5.3), (5.4) and (5.5) hold with ãnk instead of ank with q = 1.

(iii) A ∈ (br,s
c (p) : c(q)) if and only if {ank}k∈N ∈ {b

r,s
c (p)}β for all n ∈ N and (4.4), (4.5), (4.6) and (4.7) hold with ãnk instead of ank with

q = 1.

Corollary 5.6. Let A = (ank) be an infinite matrix. The following statements hold:

(i) A ∈ (br,s(p) : `∞) if and only if {ank}k∈N ∈ {br,s(p)}β for all n ∈ N and (4.12) and (4.13) hold with ãnk instead of ank.
(ii) A ∈ (br,s(p) : c0(q)) if and only if {ank}k∈N ∈ {br,s(p)}β for all n ∈ N and (5.3), (5.6) and (5.7) hold with ãnk instead of ank with q = 1.
(iii) A ∈ (br,s(p) : c) if and only if {ank}k∈N ∈ {br,s(p)}β for all n ∈ N and (4.12), (4.13) and (4.14) hold with ãnk instead of ank.

Corollary 5.7. Let A = (ank) be an infinite matrix and bnk be defined by (5.2). Then, following statements hold:

(i) A ∈ (`∞(q) : br,s
0 (p)) if and only if (5.8) holds with bnk instead of ank with q = 1.

(ii) A ∈ (c0(q) : br,s
0 (p)) if and only if (5.3) and (5.4) hold with bnk instead of ank with q = 1.

(iii) A ∈ (c(q) : br,s
0 (p)) if and only if (5.3), (5.4) and (5.5) holds with bnk instead of ank with q = 1.

Corollary 5.8. Let A = (ank) be an infinite matrix and bnk be defined by (5.2). Then, following statements hold:

(i) A ∈ (`∞(q) : br,s
c (p)) if and only if (5.9) holds with bnk instead of ank with q = 1.

(ii) A ∈ (c0(q) : br,s
c (p)) if and only if (4.4), (4.5) and (4.6) hold with bnk instead of ank with q = 1.

(iii) A ∈ (c(q) : br,s
c (p)) if and only if (4.4), (4.5), (4.6) and (4.7) hold with bnk instead of ank with q = 1.

Corollary 5.9. Let A = (ank) be an infinite matrix and bnk be defined by (5.2). Then, following statements hold:

(i) A ∈ (`∞(q) : br,s(p)) if and only if (5.10) holds with bnk instead of ank with q = 1.
(ii) A ∈ (c0(q) : br,s(p)) if and only if (4.2) holds with bnk instead of ank with q = 1.
(iii) A ∈ (c(q) : br,s(p)) if and only if (4.2) and (4.4) hold with bnk instead of ank with q = 1.
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