On the paranormed binomial sequence spaces

Hacer Bilgin Ellidokuzog̃lu ${ }^{\text {a }}$, Serkan Demiriz ${ }^{\text {b }}$ and Ali Köseog̃lu ${ }^{\text {a }}$
${ }^{\text {a }}$ Recep Tayyip Erdog̃an University, Science and Art Faculty, Department of Mathematics, Rize-Turkey
${ }^{\mathrm{b}}$ Gaziosmanpaşa University, Science and Art Faculty, Department of Mathematics, Tokat-Turkey
*Corresponding author E-mail: serkandemiriz@gmail.com

Article Info
 Keywords: Binomial sequence spaces, Paranorm, Matrix domain, Matrix transformations
 2010 AMS: 46A45, 40C05, 46B20
 Received: 15 February 2018
 Accepted: 6 March 2018
 Available online: 30 September 2018

Abstract

In this paper the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ which are the generalization of the classical Maddox's paranormed sequence spaces have been introduced and proved that the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ are linearly isomorphic to spaces $c_{0}(p), c(p), \ell_{\infty}(p)$ and $\ell(p)$, respectively. Besides this, the $\alpha-, \beta-$ and $\gamma-$ duals of the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$, and $b^{r, s}(p)$ have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices $\left(b_{0}^{r, s}(p): \mu\right),\left(b_{c}^{r, s}(p): \mu\right)$ and $\left(b^{r, s}(p): \mu\right)$ have been characterized, where μ is one of the sequence spaces ℓ_{∞}, c and c_{0} and derives the other characterizations for the special cases of μ.

1. Introduction

We shall denote the space of all real-valued sequences by w as a classical notation. Any vector subspace of w is called a sequence space. The spaces ℓ_{∞}, c and c_{0} are the most common and frequently used spaces which are all bounded, convergent and null sequences, respectively. Also $b s, c s, \ell_{1}$ and ℓ_{p} notations are used for the spaces of all bounded, convergent, absolutely and $p-$ absolutely convergent series, respectively, where $1<p<\infty$.
First, we point out the concept of a paranorm. A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all α 's in \mathbb{R} and all x 's in X, where θ is the zero vector in the linear space X.
Assume here and after that $\left(p_{k}\right)$ be a bounded sequences of strictly positive real numbers with $\sup p_{k}=H$ and $L=\max \{1, H\}$. Then, the linear spaces $\ell_{\infty}(p), c(p), c_{0}(p)$ and $\ell(p)$ were defined by Maddox [19] (see also Simons [21] and Nakano [20]) as follows:

$$
\begin{aligned}
& \ell_{\infty}(p)=\left\{x=\left(x_{k}\right) \in w: \sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k}}<\infty\right\} \\
& c(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in \mathbb{R}\right\}, \\
& c_{0}(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\} \\
& \ell(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\},
\end{aligned}
$$

which are the complete spaces paranormed by

$$
g_{1}(x)=\sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k} / L} \Longleftrightarrow \inf p_{k}>0 \text { and } g_{2}(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{1 / L}
$$

respectively. For convenience in notation, here and in what follows, the summation without limits runs from 0 to ∞. By \mathscr{F} and \mathbb{N}_{k}, we shall denote the collection of all finite subsets of \mathbb{N} and the set of all $n \in \mathbb{N}$ such that $n \geq k$, respectively. We shall assume throughout that $p_{k}^{-1}+\left(p_{k}^{\prime}\right)^{-1}=1$ provided $1<\inf p_{k} \leq H<\infty$.

Let λ, μ be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k},(n \in \mathbb{N}) . \tag{1.1}
\end{equation*}
$$

By $(\lambda: \mu)$, we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right-hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \mu$. A sequence x is said to be A-summable to α if $A x$ converges to α which is called the A-limit of x.

2. The sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$

In this section, we define the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$, and prove that $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ are the complete paranormed linear spaces.
For a sequence space λ, the matrix domain λ_{A} of an infinite matrix A is defined by

$$
\begin{equation*}
\lambda_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in \lambda\right\} . \tag{2.1}
\end{equation*}
$$

In [7], Choudhary and Mishra have defined the sequence space $\overline{\ell(p)}$ which consists of all sequences such that S-transforms are in $\ell_{(p)}$, where $S=\left(s_{n k}\right)$ is defined by

$$
s_{n k}=\left\{\begin{array}{ccc}
1, & 0 \leq k \leq n, \\
0 & , & k>n .
\end{array}\right.
$$

Başar and Altay [3] have studied the space $b s(p)$ which is formerly defined by Başar in [4] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$. More recently, Altay and Başar have studied the sequence spaces $r^{t}(p), r_{\infty}^{t}(p)$ in [1] and $r_{c}^{t}(p), r_{0}^{t}(p)$ in [2] which are derived by the Riesz means from the sequence spaces $\ell(p), \ell_{\infty}(p), c(p)$ and $c_{0}(p)$ of Maddox, respectively.
With the notation of (2.1), the spaces $\overline{\ell(p)}, b s(p), r^{t}(p), r_{\infty}^{t}(p), r_{c}^{t}(p)$ and $r_{0}^{t}(p)$ may be redefined by

$$
\begin{aligned}
& \overline{\ell(p)}=[\ell(p)]_{S}, b s(p)=\left[\ell_{\infty}(p)\right]_{S}, r^{t}(p)=[\ell(p)]_{R}^{t} \\
& r_{\infty}^{t}(p)=\left[\ell_{\infty}(p)\right]_{R}^{t}, r_{c}^{t}(p)=[c(p)]_{R}^{t}, r_{0}^{t}(p)=\left[c_{0}(p)\right]_{R}^{t} .
\end{aligned}
$$

In [8], Demiriz and Çakan have defined the sequence spaces $e_{0}^{r}(u, p)$ and $e_{c}^{r}(u, p)$ which consists of all sequences such that $E^{r, u_{-}}$- transforms are in $c_{0}(p)$ and $c(p)$, respectively $E^{r, u}=\left\{e_{n k}^{r}(u)\right\}$ is defined by

$$
e_{n k}^{r}(u)=\left\{\begin{array}{ccc}
\binom{n}{k}(1-r)^{n-k} r^{k} u_{k} & , \quad(0 \leq k \leq n), \\
0 & , & (k>n)
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$ and $0<r<1$.
In [5] and [6], the Binomial sequence spaces $b_{0}^{r, s}, b_{c}^{r, s}, b_{\infty}^{r, s}$ and $b_{p}^{r, s}$, which are the matrix domains of Binomial mean $B^{r, s}$ in the sequence spaces c_{0}, c, ℓ_{∞} and ℓ_{p}, respectively, are introduced, some inclusion relations and Schauder basis for the spaces $b_{0}^{r, s}, b_{c}^{r, s}, b_{\infty}^{r, s}$ and $b_{p}^{r, s}$ are given, and the $\alpha-, \beta$ - and γ - duals of those spaces are determined. For more papers related to sequence spaces and matrix domains of different infinite matrices one can see $[13,12]$ and references therein. The main purpose of this paper is to introduce the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ which are the set of all sequences whose $B^{r, s}-$ transforms are in the spaces $c_{0}(p), c(p), \ell_{\infty}(p)$ and $\ell(p)$, respectively; where $B^{r, s}$ denotes the matrix $B^{r, s}=\left\{b_{n k}^{r, s}\right\}$ defined by

$$
b_{n k}^{r, s}=\left\{\begin{array}{cc}
\frac{1}{(s+r)^{n}}\left(\begin{array}{c}
k \\
n \\
n
\end{array}\right) s^{n-k} r^{k} & , \quad 0 \leq k \leq n, \\
0, & k>n,
\end{array}\right.
$$

where $s r>0$. Also, we have constructed the basis and computed the $\alpha-, \beta$ - and γ-duals and investigated some topological properties of the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$.
Following Choudhary and Mishra [7], Başar and Altay [3], Altay and Başar [1, 2], Demiriz [8], Kiriş̧̧i [14, 15], Candan and Güneş [16] and Ellidokuzoğlu and Demiriz [9], we define the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$, as the sets of all sequences such that $B^{r, s}$-transforms of them are in the spaces $c_{0}(p), c(p), \ell_{\infty}(p)$ and $\ell(p)$, respectively, that is,

$$
\begin{aligned}
& b_{0}^{r, s}(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n}}=0\right\}, \\
& b_{c}^{r, s}(p)=\left\{x=\left(x_{k}\right) \in w: \exists l \in \mathbb{C} \ni \lim _{n \rightarrow \infty}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}-l\right|^{p_{n}}=0\right\}, \\
& b_{\infty}^{r, s}(p)=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n}}<\infty\right\}, \\
& b^{r, s}(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{n}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n}}<\infty\right\} .
\end{aligned}
$$

In the case $\left(p_{n}\right)=e=(1,1,1, \ldots)$, the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ are, respectively, reduced to the sequence spaces $b_{0}^{r, s}, b_{c}^{r, s}, b_{\infty}^{r, s}$ and $b_{p}^{r, s}$ which are introduced by Bişgin [5, 6]. With the notation of (2.1), we may redefine the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ as follows:

$$
b_{0}^{r, s}(p)=\left[c_{0}(p)\right]_{B^{r, s}}, b_{c}^{r, s}(p)=[c(p)]_{B^{r s}}, b_{\infty}^{r, s}(p)=\left[\ell_{\infty}(p)\right]_{B^{r s}} \text { and } b^{r, s}(p)=[\ell(p)]_{B^{r, s}} .
$$

Define the sequence $y=\left\{y_{n}(r, s)\right\}$, which will be frequently used, as the $B^{r, s}-$ transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{n}(r, s):=\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k} ; \text { for all } k \in \mathbb{N} \text {. } \tag{2.2}
\end{equation*}
$$

Now, we may begin with the following theorem which is essential in the text.
Theorem 2.1. $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b_{\infty}^{r, s}(p)$ are the complete linear metric space paranormed by g, defined by

$$
\begin{equation*}
g(x)=\sup _{n \in \mathbb{N}}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n} / L} . \tag{2.3}
\end{equation*}
$$

In addition, $b^{r, s}(p)$ is the complete linear metric space paranormed by h, defined by

$$
\begin{equation*}
h(x)=\left(\sum_{n=0}^{\infty}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n}}\right)^{1 / M} \tag{2.4}
\end{equation*}
$$

Proof. First, we give the proof for $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b_{\infty}^{r, s}(p)$. Since the proof is similar for $b_{c}^{r, s}(p)$ and $b_{\infty}^{r, s}(p)$, we give the proof only for the space $b_{0}^{r, s}(p)$. The linearity of $b_{0}^{r, S}(p)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the following inequalities which are satisfied for $x, z \in b_{0}^{r, s}(p)$ (see Maddox [18, p.30])

$$
\begin{equation*}
\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k_{r} k}\left(x_{k}+z_{k}\right)\right|^{p_{n} / L} \leq\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k_{r} x_{k}}\right|^{p_{n} / L}+\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k_{r} k_{z_{k}}}\right|^{p_{n} / L} \tag{2.5}
\end{equation*}
$$

and for any $\alpha \in \mathbb{R}$ (see [21])

$$
\begin{equation*}
|\alpha|^{p_{n}} \leq \max \left\{1,|\alpha|^{L}\right\}=K \tag{2.6}
\end{equation*}
$$

Using (2.6) inequality, we get

$$
\begin{aligned}
\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(\alpha x_{k}\right)\right|^{p_{n} / L} & =|\alpha|^{p_{n} / L}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n} / L} \\
& \leq K^{1 / L}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p_{n} / L}
\end{aligned}
$$

for $x \in b_{0}^{r, s}(p)$. This shows the space $b_{0}^{r, s}(p)$ is a linear space.
Now we will see that g is a paranorm on $b_{0}^{r, s}(p)$. It is clear that $g(\theta)=0$ and $g(x)=g(-x)$ for all $x \in b_{0}^{r, s}(p)$.
Let $\left\{x^{n}\right\}$ be any sequence of the points $x^{n} \in b_{0}^{r, s}(p)$ such that $g\left(x^{n}-x\right) \rightarrow 0$ and $\left(\alpha_{n}\right)$ also be any sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Then, since the inequality

$$
g\left(x^{n}\right) \leq g(x)+g\left(x^{n}-x\right)
$$

holds by the subadditivity of $g,\left\{g\left(x^{n}\right)\right\}$ is bounded and we thus have

$$
\begin{align*}
g\left(\alpha_{n} x^{n}-\alpha x\right) & =\sup _{k \in \mathbb{N}}\left|\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j_{r} j}\left(\alpha_{n} x_{j}^{n}-\alpha x_{j}\right)\right|^{p_{k} / L} \\
& \leq\left|\alpha_{n}-\alpha\right| g\left(x^{n}\right)+|\alpha| g\left(x^{n}-x\right) \tag{2.7}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$. This means that the scalar multiplication is continuous. Hence, g is a paranorm on the space $b_{0}^{r, s}(p)$.
It remains to prove the completeness of the space $b_{0}^{r, s}(p)$. Let $\left\{x^{i}\right\}$ be any Cauchy sequence in the space $b_{0}^{r, s}(p)$, where $x^{i}=\left\{x_{0}^{(i)}, x_{1}^{(i)}, x_{2}^{(i)}, \ldots\right\}$. Then, for a given $\varepsilon>0$ there exists a positive integer $n_{0}(\varepsilon)$ such that

$$
g\left(x^{i}-x^{j}\right)<\frac{\varepsilon}{2}
$$

for all $i, j>n_{0}(\varepsilon)$. Using the definition of g we obtain for each fixed $k \in \mathbb{N}$ that

$$
\begin{equation*}
\left|\left(B^{r, s} x^{i}\right)_{k}-\left(B^{r, s} x^{j}\right)_{k}\right|^{p_{k} / L} \leq \sup _{k \in \mathbb{N}}\left|\left(B^{r, s} x^{i}\right)_{k}-\left(B^{r, s} x^{j}\right)_{k}\right|^{p_{k} / L}<\frac{\varepsilon}{2} \tag{2.8}
\end{equation*}
$$

for every $i, j>n_{0}(\varepsilon)$ which leads to the fact that $\left\{\left(B^{r, s} x^{0}\right)_{k},\left(B^{r, s} x^{1}\right)_{k},\left(B^{r, s} x^{2}\right)_{k}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $\left(B^{r, s} x^{i}\right)_{k} \rightarrow\left(B^{r, s} x\right)_{k}$ as $i \rightarrow \infty$. Using these infinitely many limits $\left(B^{r, s} x\right)_{0},\left(B^{r, s} x\right)_{1}, \ldots$, we define the sequence $\left\{\left(B^{r, s} x\right)_{0},\left(B^{r, s} x\right)_{1}, \ldots\right\}$. From (2.8) with $j \rightarrow \infty$, we have

$$
\begin{equation*}
\left|\left(B^{r, s} x^{i}\right)_{k}-\left(B^{r, s} x\right)_{k}\right|^{p_{k} / L} \leq \frac{\varepsilon}{2}\left(i, j>n_{0}(\varepsilon)\right) \tag{2.9}
\end{equation*}
$$

for every fixed $k \in \mathbb{N}$. Since $x^{i}=\left\{x_{k}^{(i)}\right\} \in b_{0}^{r, s}(p)$ for each $i \in \mathbb{N}$, there exists $k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\left(B^{r, s} x^{i}\right)_{k}\right|^{p_{k} / L}<\frac{\varepsilon}{2} \tag{2.10}
\end{equation*}
$$

for every $k \geq k_{0}(\varepsilon)$ and for each fixed $i \in \mathbb{N}$. Therefore, taking a fixed $i>n_{0}(\varepsilon)$ we obtain by (2.9) and (2.10) that

$$
\left|\left(B^{r, s} x\right)_{k}\right|^{p_{k} / L} \leq\left|\left(B^{r, s} x\right)_{k}-\left(B^{r, s} x^{i}\right)_{k}\right|^{p_{k} / L}+\left|\left(B^{r, s} x^{i}\right)_{k}\right|^{p_{k} / L}<\frac{\varepsilon}{2}
$$

for every $k>k_{0}(\varepsilon)$. This shows that $x \in b_{0}^{r, s}(p)$. Since $\left\{x^{i}\right\}$ was an arbitrary Cauchy sequence, the space $b_{0}^{r, s}(p)$ is complete and this concludes the proof.
Now lets show that, $b^{r, s}(p)$ is the complete linear metric space paranormed by h defined by (2.4). It is easy to see that the space $b^{r, s}(p)$ is linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the paranorm h defined by (2.4).

It is clear that $h(\theta)=0$ where $\theta=(0,0,0, \ldots)$ and $h(x)=h(-x)$ for all $x \in b^{r, s}(p)$.
Let $x, y \in b^{r, s}(p)$; then by Minkowski's inequality we have

$$
\begin{align*}
h(x+y) & =\left(\sum_{k=0}^{\infty}\left|\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j_{r} j}\left(x_{j}+y_{j}\right)\right|^{p_{k}}\right)^{1 / M} \\
& =\left(\sum_{k=0}^{\infty}\left[\left|\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j_{r} j}\left(x_{j}+y_{j}\right)\right|^{p_{k} / M}\right]^{M}\right)^{1 / M} \\
& \leq\left(\sum_{k=0}^{\infty}\left|\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j_{r} r^{j} x_{j}}\right|^{p_{k}}\right)^{1 / M}+\left(\sum_{k=0}^{\infty}\left[\left.\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j_{r} j_{j}}\right|_{j} ^{p_{k}}\right)^{1 / M}\right. \\
& =h(x)+h(y) \tag{2.11}
\end{align*}
$$

and for any $\alpha \in \mathbb{R}$ we immediately see that

$$
\begin{equation*}
|\alpha|^{p_{k}} \leq \max \left\{1,|\alpha|^{M}\right\} \tag{2.12}
\end{equation*}
$$

Let $\left\{x^{n}\right\}$ be any sequence of the points $x^{n} \in b^{r, s}(p)$ such that $h\left(x^{n}-x\right) \rightarrow 0$ and $\left(\lambda_{n}\right)$ also be any sequence of scalars such that $\lambda_{n} \rightarrow \lambda$. We observe that

$$
\begin{equation*}
h\left(\lambda_{n} x^{n}-\lambda x\right) \leq h\left[\left(\lambda_{n}-\lambda\right)\left(x^{n}-x\right)\right]+h\left[\lambda\left(x^{n}-x\right)\right]+h\left[\left(\lambda_{n}-\lambda\right) x\right] . \tag{2.13}
\end{equation*}
$$

It follows from $\lambda_{n} \rightarrow \lambda(n \rightarrow \infty)$ that $\left|\lambda_{n}-\lambda\right|<1$ for all sufficiently large n; hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h\left[\left(\lambda_{n}-\lambda\right)\left(x^{n}-x\right)\right] \leq \lim _{n \rightarrow \infty} h\left(x^{n}-x\right)=0 \tag{2.14}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h\left[\lambda\left(x^{n}-x\right)\right] \leq \max \left\{1,|\lambda|^{M}\right\} \lim _{n \rightarrow \infty} h\left(x^{n}-x\right)=0 . \tag{2.15}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} h\left[\left(\lambda_{n}-\lambda\right) x\right)\right] \leq \lim _{n \rightarrow \infty}\left|\lambda_{n}-\lambda\right| h(x)=0 . \tag{2.16}
\end{equation*}
$$

Then, we obtain from (2.13), (2.14), (2.15) and (2.16) that $h\left(\lambda_{n} x^{n}-\lambda x\right) \rightarrow 0$, as $n \rightarrow \infty$. This shows that h is a paranorm on $b^{r, s}(p)$. Now, we show that $b^{r, s}(p)$ is complete. Let $\left\{x^{n}\right\}$ be any Cauchy sequence in the space $b^{r, s}(p)$, where $x^{n}=\left\{x_{0}^{(n)}, x_{1}^{(n)}, x_{2}^{(n)}, \ldots\right\}$. Then, for a given $\varepsilon>0$, there exists a positive integer $n_{0}(\varepsilon)$ such that $h\left(x^{n}-x^{m}\right)<\varepsilon$ for all $n, m>n_{0}(\varepsilon)$. Since for each fixed $k \in \mathbb{N}$ that

$$
\begin{equation*}
\left|\left(B^{r, s} x^{n}\right)_{k}-\left(B^{r, s} x^{m}\right)_{k}\right| \leq\left[\sum_{k}\left|\left(B^{r, s} x^{n}\right)_{k}-\left(B^{r, s} x^{m}\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}=h\left(x^{n}-x^{m}\right)<\varepsilon \tag{2.17}
\end{equation*}
$$

for every $n, m>n_{0}(\varepsilon),\left\{\left(B^{r, s} x^{0}\right)_{k},\left(B^{r, s} x^{1}\right)_{k},\left(B^{r, s} x^{2}\right)_{k}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $\left(B^{r, s} x^{n}\right)_{k} \rightarrow\left(B^{r, s} x\right)_{k}$ as $n \rightarrow \infty$. Using these infinitely many limits $\left(B^{r, s} x\right)_{0},\left(B^{r, s} x\right)_{1}, \ldots$, we define the sequence $\left\{\left(B^{r, s} x\right)_{0},\left(B^{r, s} x\right)_{1}, \ldots\right\}$. For each $K \in \mathbb{N}$ and $n, m>n_{0}(\varepsilon)$

$$
\begin{equation*}
\left[\sum_{k=0}^{K}\left|\left(B^{r, s} x^{n}\right)_{k}-\left(B^{r, s} x^{m}\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \leq h\left(x^{n}-x^{m}\right)<\varepsilon . \tag{2.18}
\end{equation*}
$$

By letting $m, K \rightarrow \infty$, we have for $n>n_{0}(\varepsilon)$ that

$$
\begin{equation*}
h\left(x^{n}-x\right)=\left[\sum_{k}\left|\left(B^{r, s} x^{n}\right)_{k}-\left(B^{r, s} x\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon . \tag{2.19}
\end{equation*}
$$

This shows that $x^{n}-x \in b^{r, s}(p)$. Since $b^{r, s}(p)$ is a linear space, we conclude that $x \in b^{r, s}(p)$; it follows that $x^{n} \rightarrow x$, as $n \rightarrow \infty$ in $b^{r, s}(p)$, thus we have shown that $b^{r, s}(p)$ is complete.
Note that the absolute property does not hold on the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$, since there exists at least one sequence in the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$ and such that $g(x) \neq g(|x|)$, where $|x|=\left(\left|x_{k}\right|\right)$. This says that $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$ are the sequence spaces of non-absolute type.
Theorem 2.2. The sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p), b_{\infty}^{r, s}(p)$ and $b^{r, s}(p)$ are linearly isomorphic to the spaces $c_{0}(p), c(p), \ell_{\infty}(p)$ and $\ell(p)$, respectively, where $0<p_{k} \leq H<\infty$.

Proof. To avoid repetition of similar statements, we give the proof only for $b_{0}^{r, s}(p)$. We should show the existence of a linear bijection between the spaces $b_{0}^{r, s}(p)$ and $c_{0}(p)$. With the notation of (2.2), define the transformation T from $b_{0}^{r, s}(p)$ to $c_{0}(p)$ by $x \mapsto y=T x$. The linearity of T is trivial. Furthermore, it is obvious that $x=\theta$ whenever $T x=\theta$, and hence T is injective.
Let $y \in c_{0}(p)$ and define the sequence

$$
x_{k}=\frac{1}{r^{k}} \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(s+r)^{j} y_{j} ; \quad(k \in \mathbb{N}) .
$$

Then, we have

$$
\begin{aligned}
\left(B^{r, s} x\right)_{n} & =\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k} \\
& =\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(s+r)^{j} y_{j} \\
& =\frac{1}{(s+r)^{n}} \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\binom{n}{k}\binom{k}{j} s^{n-k}(-s)^{k-j}(s+r)^{j}\right) y_{j} \\
& =\frac{1}{(s+r)^{n}} \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k-j} s^{n-j}(s+r)^{j}\right) y_{j} \\
& =\frac{1}{(s+r)^{n}} \sum_{j=0}^{n}\binom{n}{j} s^{n-j}(s+r)^{j}\left(\sum_{k=j}^{n}\binom{n-j}{k-j}(-1)^{k-j}\right) y_{j} \\
& =\frac{1}{(s+r)^{n}} \sum_{j=0}^{n}\binom{n}{j} s^{n-j}(s+r)^{j} \delta_{n k} y_{j} \\
& =\frac{1}{(s+r)^{n}}\binom{n}{n} s^{n-n}(s+r)^{n} 1 y_{n} \\
& =y_{n} .
\end{aligned}
$$

Thus, we have that $x \in b_{0}^{r, s}(p)$ and consequently T is surjective. Hence, T is a linear bijection and this says that the spaces $b_{0}^{r, s}(p)$ and $c_{0}(p)$ are linearly isomorphic, as was desired.

3. The basis for the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$

Let (λ, g) be a paranormed space. Recall that a sequence $\left(\beta_{k}\right)$ of the elements of λ is called a basis for λ if and only if, for each $x \in \lambda$, there exists a unique sequence $\left(\alpha_{k}\right)$ of scalars such that

$$
g\left(x-\sum_{k=0}^{n} \alpha_{k} \beta_{k}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

The series $\sum \alpha_{k} \beta_{k}$ which has the sum x is then called the expansion of x with respect to $\left(\beta_{n}\right)$, and written as $x=\sum \alpha_{k} \beta_{k}$. Since it is known that the matrix domain λ_{A} of a sequence space λ has a basis if and only if λ has a basis whenever $A=\left(a_{n k}\right)$ is a triangle (cf. [11, Remark 2.4]), we have the following. Because of the isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of those spaces $c_{0}(p), c(p)$ and $\ell(p)$ are the basis of the new spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$, respectively. Therefore, we have the following:
Theorem 3.1. Let $\lambda_{k}=\left(B^{r, s} x\right)_{k}$ for all $k \in \mathbb{N}$ and $0<p_{k} \leq H<\infty$. Define the sequence $b^{(k)}=\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ of the elements of the space $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$ by

$$
b_{n}^{(k)}=\left\{\begin{array}{cll}
\frac{1}{r^{n}(}\binom{n}{k}(-s)^{n-k}(s+r)^{k} & , \quad n \geq k \\
0 & , \quad 0 \leq k<n
\end{array}\right.
$$

(a) The sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is a basis for the space $b_{0}^{r, s}(p)$, and any $x \in b_{0}^{r, s}(p)$ has a unique representation of the form

$$
x=\sum_{k} \lambda_{k} b^{(k)}
$$

(b) The set $\left\{e, b^{(1)}(r), b^{(2)}(r), \ldots\right\}$ is a basis for the space $b_{c}^{r, s}(p)$, and any $x \in b_{c}^{r, s}(p)$ has a unique representation of the form

$$
x=l e+\sum_{k}\left[\lambda_{k}-l\right] b^{(k)}
$$

where $l=\lim _{k \rightarrow \infty}\left(B^{r, s} x\right)_{k}$.
(c) The sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is a basis for the space $b^{r, s}(p)$, and any $x \in b^{r, s}(p)$ has a unique representation of the form

$$
x=\sum_{k} \lambda_{k} b^{(k)} .
$$

4. The $\alpha-, \beta$ - and γ-duals of the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$

In this section, we state and prove the theorems determining the $\alpha-, \beta$ - and γ-duals of the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$ of non-absolute type.

We shall firstly give the definition of $\alpha-, \beta$ - and γ-duals of sequence spaces and after quoting the lemmas which are needed in proving the theorems given in Section 4.
The set $S(\lambda, \mu)$ defined by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x=\left(x_{k}\right) \in \lambda\right\} \tag{4.1}
\end{equation*}
$$

is called the multiplier space of the sequence spaces λ and μ. One can eaisly observe for a sequence space v with $\lambda \supset v \supset \mu$ that the inclusions

$$
S(\lambda, \mu) \subset S(v, \mu) \text { and } S(\lambda, \mu) \subset S(\lambda, v)
$$

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space λ, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} are defined by

$$
\lambda^{\alpha}=S\left(\lambda, \ell_{1}\right), \lambda^{\beta}=S(\lambda, c s) \text { and } \lambda^{\gamma}=S(\lambda, b s)
$$

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe- Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space, respectively.

For to give the alpha-, beta- and gamma-duals of the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$ of non-absolute type, we need the following lemma:
Lemma 4.1. [10, $\left.q_{n}=1\right]$ Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, the following statements hold
(i) $A \in\left(c_{o}(p): \ell(q)\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathscr{F}} \sum_{n}\left|\sum_{k \in K} a_{n k} M^{-1 / p_{k}}\right|<\infty, \exists M \in \mathbb{N}_{2} \tag{4.2}
\end{equation*}
$$

(ii) $A \in(c(p): \ell(q))$ if and only if (4.2) holds and

$$
\begin{equation*}
\sum_{n}\left|\sum_{k} a_{n k}\right|<\infty \tag{4.3}
\end{equation*}
$$

(iii) $A \in\left(c_{0}(p): c(q)\right)$ if and only if

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}<\infty, \exists M \in \mathbb{N}_{2}, \tag{4.4}\\
& \exists\left(\alpha_{k}\right) \subset \mathbb{R} \ni \lim _{n \rightarrow \infty}\left|a_{n k}-\alpha_{k}\right|=0 \text { for all } k \in \mathbb{N}, \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
\exists\left(\alpha_{k}\right) \subset \mathbb{R} \ni \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}-\alpha_{k}\right| M^{-1 / p_{k}}<\infty, \exists M \in \mathbb{N}_{2} . \tag{4.6}
\end{equation*}
$$

(iv) $A \in(c(p): c(q))$ if and only if (4.4), (4.5), (4.6) hold and

$$
\begin{equation*}
\exists \alpha \in \mathbb{R} \ni \lim _{n \rightarrow \infty}\left|\sum_{k} a_{n k}-\alpha\right|=0 \tag{4.7}
\end{equation*}
$$

(v) $A \in\left(c_{o}(p): \ell_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}<\infty, \exists M \in \mathbb{N}_{2} \tag{4.8}
\end{equation*}
$$

(vi) $A \in\left(c(p): \ell_{\infty}(q)\right)$ if and only if (4.8) holds and

$$
\begin{equation*}
\sup _{n}\left|\sum_{k} a_{n k}\right|<\infty, \exists M \in \mathbb{N}_{2} \tag{4.9}
\end{equation*}
$$

(vii) $A \in\left(\ell(p): \ell_{1}\right)$ if and only if
(a) Let $0<p_{k} \leq 1$ for all $k \in \mathbb{N}$. Then

$$
\begin{equation*}
\sup _{N \in \mathscr{F}} \sup _{k \in \mathbb{N}}\left|\sum_{n \in N} a_{n k}\right|^{p_{k}}<\infty . \tag{4.10}
\end{equation*}
$$

(b) Let $1<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$. Then, there exists an integer $M>1$ such that

$$
\begin{equation*}
\sup _{N \in \mathscr{F}} \sum_{k}\left|\sum_{n \in N} a_{n k} M^{-1}\right|^{p_{k}^{\prime}}<\infty . \tag{4.11}
\end{equation*}
$$

Lemma 4.2. [17] Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, the following statements hold
(i) $A \in\left(\ell(p): \ell_{\infty}\right)$ if and only if
(a) Let $0<p_{k} \leq 1$ for all $k \in \mathbb{N}$. Then,

$$
\begin{equation*}
\sup _{n, k \in \mathbb{N}}\left|a_{n k}\right|^{p_{k}}<\infty . \tag{4.12}
\end{equation*}
$$

(b) Let $1<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$. Then, there exists an integer $M>1$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k} M^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{4.13}
\end{equation*}
$$

(ii) Let $0<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$. Then, $A=\left(a_{n k}\right) \in(\ell(p): c)$ if and only if (4.12) and (4.13) hold, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=\beta_{k}, \forall k \in \mathbb{N} . \tag{4.14}
\end{equation*}
$$

Theorem 4.3. Let $K \in \mathscr{F}$ and $K^{*}=\{k \in \mathbb{N}: n \geq k\} \cap K$ for $K \in \mathscr{F}$. Define the sets $T_{1}^{r}(p), T_{2}^{r}, T_{3}(p)$ and $T_{4}(p)$ as follows:

$$
\begin{aligned}
& T_{1}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{K \in \mathscr{F}} \sum_{n}\left|\sum_{k \in K^{*}} c_{n k} M^{-1 / p_{k}}\right|<\infty\right\}, \\
& T_{2}=\left\{a=\left(a_{k}\right) \in w: \sum_{n}\left|\sum_{k=0}^{n} c_{n k}\right| \text { exists for each } n \in \mathbb{N}\right\}, \\
& T_{3}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathscr{F}} \sum_{k}\left|\sum_{n \in N} c_{n k} M^{-1}\right|^{p_{k}^{\prime}}<\infty,\right\}, \\
& T_{4}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathscr{F}} \sup _{k \in \mathbb{N}}\left|\sum_{n \in N} c_{n k}\right|^{p_{k}}<\infty\right\},
\end{aligned}
$$

where the matrix $C=\left(c_{n k}\right)$ defined by

$$
c_{n k}=\left\{\begin{array}{cll}
\frac{1}{r^{n}} \sum_{k=0}^{n}\binom{n}{k}(-s)^{n-k}(s+r)^{k} a_{n} & , & 0 \leq k \leq n, \tag{4.15}\\
0 & , & k \geq n .
\end{array}\right.
$$

Then, $\left[b_{0}^{r, s}(p)\right]^{\alpha}=T_{1}(p),\left[b_{c}^{r, s}(p)\right]^{\alpha}=T_{1}(p) \cap T_{2}$ and

$$
\left[b^{r, s}(p)\right]^{\alpha}= \begin{cases}T_{3}(p) & 1<p_{k} \leq H<\infty, \forall k \in \mathbb{N} \tag{4.16}\\ T_{4}(p) & 0<p_{k} \leq 1, \forall k \in \mathbb{N}\end{cases}
$$

Proof. We chose the sequence $a=\left(a_{k}\right) \in w$. We can easily derive that with the (2.2) that

$$
\begin{equation*}
a_{n} x_{n}=\frac{1}{r^{n}} \sum_{k=0}^{n}\binom{n}{k}(-s)^{n-k}(s+r)^{k} a_{n} y_{k}=(C y)_{n}, \quad(n \in \mathbb{N}) \tag{4.17}
\end{equation*}
$$

for all $k, n \in \mathbb{N}$, where $C=\left(c_{n k}\right)$ defined by (4.15). It follows from (4.17) that $a x=\left(a_{n} x_{n}\right) \in \ell_{1}$ whenever $x \in b_{0}^{r, s}(p)$ if and only if $C y \in \ell_{1}$ whenever $y \in c_{0}(p)$. This means that $a=\left(a_{n}\right) \in\left[b_{0}^{r, s}(p)\right]^{\alpha}$ if and only if $C \in\left(c_{0}(p): \ell_{1}\right)$. Then, we derive by (4.2) with $q_{n}=1$ for all $n \in \mathbb{N}$ that $\left[b_{0}^{r, s}(p)\right]^{\alpha}=T_{1}^{r}(p)$.
Using the (4.3) with $q_{n}=1$ for all $n \in \mathbb{N}$ and (4.17), the proof of the $\left[b_{c}^{r, s}(p)\right]^{\alpha}=T_{1}^{r}(p) \cap T_{2}$ can also be obtained in a similar way. Also, using the (4.10),(4.11) and (4.17), the proof of the

$$
\left[b^{r, s}(p)\right]^{\alpha}= \begin{cases}T_{3}(p) & 1<p_{k} \leq H<\infty, \forall k \in \mathbb{N} \\ T_{4}(p) & 0<p_{k} \leq 1, \forall k \in \mathbb{N}\end{cases}
$$

can also be obtained in a similar way.

Theorem 4.4. The matrix $D=\left(d_{n k}\right)$ is defined by

$$
d_{n k}=\left\{\begin{array}{cl}
\sum_{j=k}^{n}\binom{j}{k}(-s)^{j-k} r^{-j}(r+s)^{k} a_{j} & , \quad(0 \leq k \leq n) \tag{4.18}\\
0, & (k>n)
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. Define the sets $T_{5}(p), T_{6}, T_{7}(p), T_{8}, T_{9}(p), T_{10}$ and $T_{11}(p)$ as follows:

$$
\begin{aligned}
& T_{5}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|d_{n k}\right| M^{-1 / p_{k}}<\infty\right\} \\
& T_{6}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty}\left|d_{n k}\right| \text { exists for each } k \in \mathbb{N}\right\} \\
& T_{7}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \exists\left(\alpha_{k}\right) \subset \mathbb{R} \ni \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|d_{n k}-\alpha_{k}\right| M^{-1 / p_{k}}<\infty\right\}, \\
& T_{8}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left|d_{n k}\right| \text { exists }\right\}, \\
& T_{9}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k} M^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}, \\
& T_{10}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} d_{n k} \text { exists for each } k \in \mathbb{N}\right\}, \\
& T_{11}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{n, k \in \mathbb{N}}\left|d_{n k}\right|^{p_{k}}<\infty\right\} .
\end{aligned}
$$

Then, $\left[b_{0}^{r, s}(p)\right]^{\beta}=T_{5}(p) \cap T_{6} \cap T_{7}(p),\left[b_{c}^{r, s}(p)\right]^{\beta}=\left[b_{0}^{r, s}(p)\right]^{\beta} \cap T_{8}$ and

$$
\left[b^{r, s}(p)\right]^{\beta}= \begin{cases}T_{9}(p) \cap T_{10} & , \quad 1<p_{k} \leq H<\infty, \forall k \in \mathbb{N} \tag{4.19}\\ T_{10} \cap T_{11}(p) & , \quad 0<p_{k} \leq 1, \forall k \in \mathbb{N}\end{cases}
$$

Proof. We give the proof again only for the space $b_{0}^{r, s}(p)$. Consider the equation

$$
\begin{align*}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\frac{1}{r^{k}} \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(s+r)^{j} y_{j}\right] a_{k} \\
& =\sum_{k=0}^{n}\left[\sum_{j=k}^{n}\binom{j}{k}(-s)^{j-k} r^{-j}(r+s)^{k} a_{j}\right] y_{k}=(D y)_{n} \tag{4.20}
\end{align*}
$$

where $D=\left(d_{n k}\right)$ defined by (4.18). Thus, we deduce from (4.20) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in b_{0}^{r, s}(p)$ if and only if $D y \in c$ whenever $y=\left(y_{k}\right) \in c_{0}(p)$. That is to say that $a=\left(a_{k}\right) \in\left[b_{0}^{r, s}(p)\right]^{\beta}$ if and only if $D \in\left(c_{0}(p): c\right)$. Therefore, we derive from (4.4),(4.5) and (4.6) with $q_{n}=1$ for all $n \in \mathbb{N}$ that $\left[b_{0}^{r, s}(p)\right]^{\beta}=T_{5}(p) \cap T_{6} \cap T_{7}(p)$.

Using the (4.4),(4.5), (4.6) and (4.7) with $q_{n}=1$ for all $n \in \mathbb{N}$ and (4.20), the proofs of the $\left[b_{c}^{r, s}(p)\right]^{\beta}=\left[b_{0}^{r, s}(p)\right]^{\beta} \cap T_{8}$ can also be obtained in a similar way. Also, using the (4.12),(4.13), (4.14) and (4.20), the proofs of the

$$
\left[b^{r, s}(p)\right]^{\beta}= \begin{cases}T_{9}(p) \cap T_{10} & , \\ T_{10} \cap T_{11}(p) & , \quad 0<p_{k} \leq H<\infty, \forall k \in \mathbb{N} \\ p_{k} \leq 1, \forall k \in \mathbb{N}\end{cases}
$$

can also be obtained in a similar way.
Theorem 4.5. Define the set T_{12} by

$$
T_{12}=\left\{a=\left(a_{k}\right) \in w: \sup _{n}\left|\sum_{k} a_{n k}\right|<\infty\right\}
$$

Then, $\left[b_{0}^{r, s}(p)\right]^{\gamma}=T_{5}(p),\left[b_{c}^{r, s}(p)\right]^{\gamma}=\left[b_{0}^{r, s}(p)\right]^{\gamma} \cap T_{12}$ and

$$
\left[b^{r, s}(p)\right]^{\gamma}=\left\{\begin{array}{lll}
T_{8}(p) & , & 1<p_{k} \leq H<\infty, \forall k \in \mathbb{N} \\
T_{10}(p) & , & 0<p_{k} \leq 1, \forall k \in \mathbb{N}
\end{array}\right.
$$

Proof. This is obtained in the similar way used in the proof of Theorem 4.4.

5. Certain matrix mappings on the sequence spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$

In this section, we characterize some matrix mappings on the spaces $b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ and $b^{r, s}(p)$.
We known that, if $b_{0}^{r, s}(p) \cong c_{0}(p), b_{c}^{r, s}(p) \cong c(p)$ and $b^{r, s}(p) \cong \ell(p)$, we can say: The equivalence " $x \in b_{0}^{r, s}(p), b_{c}^{r, s}(p)$ or $b^{r, s}(p)$ if and only if $y \in c_{0}(p), c(p)$ or $\ell(p)$ " holds.
In what follows, for brevity, we write,

$$
\tilde{a}_{n k}:=\sum_{j=k}^{n}\binom{j}{k}(-s)^{j-k} r^{-j}(r+s)^{k} a_{n j}
$$

for all $k, n \in \mathbb{N}$.
Theorem 5.1. Suppose that the entries of the infinite matrices $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are connected with the relation

$$
\begin{equation*}
e_{n k}:=\tilde{a}_{n k} \tag{5.1}
\end{equation*}
$$

for all $k, n \in \mathbb{N}$ and μ be any given sequence space. Then,
(i) $A \in\left(b_{0}^{r, s}(p): \mu\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{0}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in\left(c_{0}(p): \mu\right)$.
(ii) $A \in\left(b_{c}^{r, s}(p): \mu\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in(c(p): \mu)$.
(iii) $A \in\left(b^{r, s}(p): \mu\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in(\ell(p): \mu)$.

Proof. We prove only part of (i). Let μ be any given sequence space. Suppose that (5.1) holds between $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$, and take into account that the spaces $b_{0}^{r, s}(p)$ and $c_{0}(p)$ are linearly isomorphic.
Let $A \in\left(b_{0}^{r, s}(p): \mu\right)$ and take any $y=\left(y_{k}\right) \in c_{0}(p)$. Then $E B^{r, s}$ exists and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in T_{5}(p) \cap T_{6}$ which yields that $\left\{e_{n k}\right\}_{k \in \mathbb{N}} \in c_{0}(p)$ for each $n \in \mathbb{N}$. Hence, $E y$ exists and thus

$$
\sum_{k} e_{n k} y_{k}=\sum_{k} a_{n k} x_{k}
$$

for all $n \in \mathbb{N}$.
We have that $E y=A x$ which leads us to the consequence $E \in\left(c_{0}(p): \mu\right)$.
Conversely, let $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{0}^{r, s}(p)\right\}^{\beta}$ for each $n \in \mathbb{N}$ and $E \in\left(c_{0}(p): \mu\right)$ hold, and take any $x=\left(x_{k}\right) \in b_{0}^{r, s}(p)$. Then, $A x$ exists. Therefore, we obtain from the equality

$$
\sum_{k=0}^{\infty} a_{n k} x_{k}=\sum_{k=0}^{\infty}\left[\sum_{j=0}^{k}\binom{j}{k}(-r)^{j-k}(1-r)^{-(j+1)} a_{n j}\right] y_{k}
$$

for all $n \in \mathbb{N}$, that $E y=A x$ and this shows that $A \in\left(b_{0}^{r, s}(p): \mu\right)$. This completes the proof of part of (i).
Theorem 5.2. Suppose that the elements of the infinite matrices $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$ are connected with the relation

$$
\begin{equation*}
b_{n k}:=\frac{1}{(s+r)^{n}} \sum_{j=0}^{n}\binom{n}{j} s^{n-j_{r}{ }^{j}} a_{j k} \text { for all } k, n \in \mathbb{N} \tag{5.2}
\end{equation*}
$$

Let μ be any given sequence space. Then,
(i) $A \in\left(\mu: b_{0}^{r, s}(p)\right)$ if and only if $B \in\left(\mu: c_{0}(p)\right)$.
(ii) $A \in\left(\mu: b_{c}^{r, s}(p)\right)$ if and only if $B \in(\mu: c(p))$.
(iii) $A \in\left(\mu: b^{r, s}(p)\right)$ if and only if $B \in(\mu: \ell(p))$.

Proof. We prove only part of (i). Let $z=\left(z_{k}\right) \in \mu$ and consider the following equality.

$$
\sum_{k=0}^{m} b_{n k} z_{k}=\sum_{j=n}^{\infty}\binom{j}{n}(1-r)^{n+1} r^{j-n}\left(\sum_{k=0}^{m} a_{j k} z_{k}\right) \text { for all } m, n \in \mathbb{N}
$$

which yields as $m \rightarrow \infty$ that $(B z)_{n}=\left\{B^{r, s}(A z)\right\}_{n}$ for all $n \in \mathbb{N}$. Therefore, one can observe from here that $A z \in b_{0}^{r, s}(p)$ whenever $z \in \mu$ if and only if $B z \in c_{0}(p)$ whenever $z \in \mu$. This completes the proof of part of (i).

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space μ. Whence by Theorem 5.1 and Theorem 5.2, the necessary and sufficient conditions for $\left(b_{0}^{r, s}(p): \mu\right),\left(\mu: b_{0}^{r, s}(p)\right),\left(b_{c}^{r, s}(p): \mu\right),\left(\mu: b_{c}^{r, s}(p)\right)$ and $\left(b^{r, s}(p): \mu\right),\left(\mu: b^{r, s}(p)\right)$ may be derived by replacing the entries of C and A by those of the entries of $E=C\left\{B^{r, s}\right\}^{-1}$ and $B=B^{r, s} A$, respectively; where the necessary and sufficient conditions on the matrices E and B are read from the concerning results in the existing literature.
The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by Grosse-Erdmann [10]. Let N and K denote the finite subset of \mathbb{N}, L and M also denote the natural numbers. Prior to giving the theorems, let us suppose that $\left(q_{n}\right)$ is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

$$
\begin{equation*}
\lim _{n}\left|a_{n k}\right|^{q_{n}}=0, \text { for all } k \tag{5.3}
\end{equation*}
$$

$$
\begin{align*}
& \forall L, \exists M \ni \sup _{n} L^{1 / q_{n}} \sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}<\infty, \tag{5.4}\\
& \lim _{n}\left|\sum_{k} a_{n k}\right|^{q_{n}}=0, \tag{5.5}\\
& \forall L, \sup _{n} \sup _{k \in K_{1}}\left|a_{n k} L^{1 / q_{n}}\right|^{p_{k}}<\infty, \tag{5.6}\\
& \forall L, \exists M \ni \sup _{n} \sum_{k \in K_{2}}\left|a_{n k} L^{1 / q_{n}} M^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{5.7}\\
& \forall M, \lim _{n}\left(\sum_{k}\left|a_{n k}\right| M^{1 / p_{k}}\right)^{q_{n}}=0, \tag{5.8}\\
& \forall M, \sup _{n} \sum_{k}\left|a_{n k}\right| M^{1 / p_{k}}<\infty, \tag{5.9}\\
& \forall M, \sup _{K} \sum_{n}\left|\sum_{k \in K} a_{n k} M^{1 / p_{k}}\right|^{q_{n}}<\infty . \tag{5.10}
\end{align*}
$$

Lemma 5.3. Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then
(i) $A=\left(a_{n k}\right) \in\left(c_{0}(p): \ell_{\infty}(q)\right)$ if and only if (4.8) holds.
(ii) $A=\left(a_{n k}\right) \in\left(c(p): \ell_{\infty}(q)\right)$ if and only if (4.8) and (4.9) hold.
(iii) $A=\left(a_{n k}\right) \in\left(\ell(p): \ell_{\infty}\right)$ if and only if (4.12) and (4.13) hold.
(iv) $A=\left(a_{n k}\right) \in\left(c_{0}(p): c(q)\right)$ if and only if (4.4), (4.5) and (4.6) hold.
(v) $A=\left(a_{n k}\right) \in(c(p): c(q))$ if and only if (4.4), (4.5), (4.6) and (4.7) hold.
(vi) $A=\left(a_{n k}\right) \in(\ell(p): c)$ if and only if (4.12), (4.13) and (4.14) hold.
(vii) $A=\left(a_{n k}\right) \in\left(c_{0}(p): c_{0}(q)\right)$ if and only if (5.3) and (5.4) hold.
(viii) $A=\left(a_{n k}\right) \in\left(c(p): c_{0}(q)\right)$ if and only if (5.3), (5.4) and (5.5) hold.
(ix) $A=\left(a_{n k}\right) \in\left(\ell(p): c_{0}(q)\right)$ if and only if (5.3), (5.6) and (5.7) hold.
(x) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}(p): c_{0}(q)\right)$ if and only if (5.8) holds.
(xi) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}(p): c(q)\right)$ if and only if (5.9) holds.
(xii) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}(p): \ell(q)\right)$ if and only if (5.10) holds.
(xiii) $A=\left(a_{n k}\right) \in\left(c_{0}(p): \ell(q)\right)$ if and only if (4.2) holds.
(xiv) $A=\left(a_{n k}\right) \in(c(p): \ell(q))$ if and only if (4.2) and (4.4) hold.

Corollary 5.4. Let $A=\left(a_{n k}\right)$ be an infinite matrix. The following statements hold:
(i) $A \in\left(b_{0}^{r, s}(p): \ell_{\infty}(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{0}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) holds with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
(ii) $A \in\left(b_{0}^{r, s}(p): c_{0}(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{0}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3) and (5.4) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(b_{0}^{r, s}(p): c(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{0}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.4), (4.5) and (4.6) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.

Corollary 5.5. Let $A=\left(a_{n k}\right)$ be an infinite matrix. The following statements hold:
(i) $A \in\left(b_{c}^{r, s}(p): \ell_{\infty}(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) and (4.9) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
(ii) $A \in\left(b_{c}^{r, s}(p): c_{0}(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3), (5.4) and (5.5) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(b_{c}^{r, s}(p): c(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{c}^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.4), (4.5), (4.6) and (4.7) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
Corollary 5.6. Let $A=\left(a_{n k}\right)$ be an infinite matrix. The following statements hold:
(i) $A \in\left(b^{r, s}(p): \ell_{\infty}\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.12) and (4.13) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$.
(ii) $A \in\left(b^{r, s}(p): c_{0}(q)\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3), (5.6) and (5.7) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(b^{r, s}(p): c\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b^{r, s}(p)\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.12), (4.13) and (4.14) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$.

Corollary 5.7. Let $A=\left(a_{n k}\right)$ be an infinite matrix and $b_{n k}$ be defined by (5.2). Then, following statements hold:
(i) $A \in\left(\ell_{\infty}(q): b_{0}^{r, s}(p)\right)$ if and only if (5.8) holds with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(ii) $A \in\left(c_{0}(q): b_{0}^{r, s}(p)\right)$ if and only if (5.3) and (5.4) hold with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(c(q): b_{0}^{r, s}(p)\right)$ if and only if (5.3), (5.4) and (5.5) holds with $b_{n k}$ instead of $a_{n k}$ with $q=1$.

Corollary 5.8. Let $A=\left(a_{n k}\right)$ be an infinite matrix and $b_{n k}$ be defined by (5.2). Then, following statements hold:
(i) $A \in\left(\ell_{\infty}(q): b_{c}^{r, s}(p)\right)$ if and only if (5.9) holds with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(ii) $A \in\left(c_{0}(q): b_{c}^{r, s}(p)\right)$ if and only if (4.4), (4.5) and (4.6) hold with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(c(q): b_{c}^{r, s}(p)\right)$ if and only if (4.4), (4.5), (4.6) and (4.7) hold with $b_{n k}$ instead of $a_{n k}$ with $q=1$.

Corollary 5.9. Let $A=\left(a_{n k}\right)$ be an infinite matrix and $b_{n k}$ be defined by (5.2). Then, following statements hold:
(i) $A \in\left(\ell_{\infty}(q): b^{r, s}(p)\right)$ if and only if (5.10) holds with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(ii) $A \in\left(c_{0}(q): b^{r, s}(p)\right)$ if and only if (4.2) holds with $b_{n k}$ instead of $a_{n k}$ with $q=1$.
(iii) $A \in\left(c(q): b^{r, s}(p)\right)$ if and only if (4.2) and (4.4) hold with $b_{n k}$ instead of $a_{n k}$ with $q=1$.

References

[1] B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
[2] B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
[3] F. Başar, B. Altay, Matrix mappings on the space bs p) and its $\alpha-, \beta$ - and $\gamma-$ duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
[4] F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
[5] M. C. Bişgin, The binomial sequence spaces of nonabsolute type, J. Inequal. Appl. 309 (2016).
[6] M. C. Bişgin, The binomial sequence spaces which include the spaces ℓ_{p} and ℓ_{∞} and geometric properties, J. Inequal. Appl. 304 (2016).
[7] B. Choudhary, S. K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
[8] S. Demiriz, C. Çakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
[9] S. Demiriz, H. B. Ellidokuzog̃lu, On The Paranormed Taylor Sequence Spaces, Konuralp Journal Of Mathematics, 4(2), 132-148 (2016).
[10] K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
[11] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
[12] E.E. Kara and M. İlkhan, On some Banach sequence spaces derived by a new band matrix, Br. J. Math. Comput. Sci., 9(2), 141-159 (2015).
[13] E.E. Kara and M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11), 2208-2223 (2016).
[14] M. Kirişci, On the Taylor sequence spaces of nonabsulate type which include the spaces c_{0} and c, J. Math. Anal., 6(2), 22-35 (2015).
[15] M. Kirişci, The application domain of infinite matrices with algorithms, Univ. J. Math. Appl., 1(1), 1-9 (2018).
[16] M. Candan and A. Günes, Paranormed sequence space of non-absolute type founded using generalized difference matrix, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 85(2), 269-276 (2015).
[17] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
[18] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
[19] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
[20] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
[21] S. Simons, The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$. Proc. London Math. Soc., 15(3), 422-436 (1965).

