UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: http://dx.doi.org/10.32323/ujma.395247

On the paranormed binomial sequence spaces

Hacer Bilgin Ellidokuzoğlu^a, Serkan Demiriz^{b*} and Ali Köseoğlu^a

^aRecep Tayyip Erdoğan University, Science and Art Faculty, Department of Mathematics, Rize-Turkey ^bGaziosmanpaşa University, Science and Art Faculty, Department of Mathematics, Tokat-Turkey ^{*}Corresponding author E-mail: serkandemiriz@gmail.com

Article Info

Abstract

Keywords: Binomial sequence spaces, Paranorm, Matrix domain, Matrix transformations 2010 AMS: 46A45, 40C05, 46B20 Received: 15 February 2018 Accepted: 6 March 2018 Available online: 30 September 2018 In this paper the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ which are the generalization of the classical Maddox's paranormed sequence spaces have been introduced and proved that the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ are linearly isomorphic to spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ and $\ell(p)$, respectively. Besides this, the $\alpha - , \beta -$ and $\gamma -$ duals of the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, and $b^{r,s}(p)$ have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices $(b_0^{r,s}(p) : \mu)$, $(b_c^{r,s}(p) : \mu)$ and $(b^{r,s}(p) : \mu)$ have been characterized, where μ is one of the sequence spaces ℓ_{∞} , c and c_0 and derives the other characterizations for the special cases of μ .

1. Introduction

We shall denote the space of all real-valued sequences by w as a classical notation. Any vector subspace of w is called a sequence space. The spaces ℓ_{∞}, c and c_0 are the most common and frequently used spaces which are all bounded, convergent and null sequences, respectively. Also bs, cs, ℓ_1 and ℓ_p notations are used for the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, where 1 .

First, we point out the concept of a paranorm. A linear topological space *X* over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \to \mathbb{R}$ such that $g(\theta) = 0, g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in \mathbb{R} and all *x*'s in *X*, where θ is the zero vector in the linear space *X*.

Assume here and after that (p_k) be a bounded sequences of strictly positive real numbers with $\sup p_k = H$ and $L = \max\{1, H\}$. Then, the linear spaces $\ell_{\infty}(p), c(p), c_0(p)$ and $\ell(p)$ were defined by Maddox [19] (see also Simons [21] and Nakano [20]) as follows:

$$\begin{split} \ell_{\infty}(p) &= \{ x = (x_k) \in w : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty \}, \\ c(p) &= \{ x = (x_k) \in w : \lim_{k \to \infty} |x_k - l|^{p_k} = 0 \text{ for some } l \in \mathbb{R} \}, \\ c_0(p) &= \{ x = (x_k) \in w : \lim_{k \to \infty} |x_k|^{p_k} = 0 \} \\ \ell(p) &= \left\{ x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty \right\}, \end{split}$$

which are the complete spaces paranormed by

$$g_1(x) = \sup_{k \in \mathbb{N}} |x_k|^{p_k/L} \iff \inf p_k > 0 \text{ and } g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{1/L},$$

respectively. For convenience in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By \mathscr{F} and \mathbb{N}_k , we shall denote the collection of all finite subsets of \mathbb{N} and the set of all $n \in \mathbb{N}$ such that $n \ge k$, respectively. We shall assume throughout that $p_k^{-1} + (p'_k)^{-1} = 1$ provided $1 < \inf p_k \le H < \infty$.

Let λ, μ be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$, the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ , where

$$(Ax)_n = \sum_k a_{nk} x_k, \ (n \in \mathbb{N}).$$

$$(1.1)$$

By $(\lambda : \mu)$, we denote the class of all matrices *A* such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right-hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \mu$. A sequence *x* is said to be *A*-summable to α if *Ax* converges to α which is called the *A*-limit of *x*.

2. The sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$

In this section, we define the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$, and prove that $b_0^{r,s}(p)$, $b_{\infty}^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ are the complete paranormed linear spaces.

For a sequence space λ , the matrix domain λ_A of an infinite matrix A is defined by

$$\lambda_A = \{ x = (x_k) \in w : Ax \in \lambda \}.$$

$$(2.1)$$

In [7], Choudhary and Mishra have defined the sequence space $\overline{\ell(p)}$ which consists of all sequences such that *S*-transforms are in $\ell_{(p)}$, where $S = (s_{nk})$ is defined by

$$s_{nk} = \begin{cases} 1 & , & 0 \le k \le n, \\ 0 & , & k > n. \end{cases}$$

Başar and Altay [3] have studied the space bs(p) which is formerly defined by Başar in [4] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$. More recently, Altay and Başar have studied the sequence spaces $r^{t}(p), r_{\infty}^{t}(p)$ in [1] and $r_{c}^{t}(p), r_{0}^{t}(p)$ in [2] which are derived by the Riesz means from the sequence spaces $\ell(p), \ell_{\infty}(p), c(p)$ and $c_{0}(p)$ of Maddox, respectively. With the notation of (2.1), the spaces $\overline{\ell(p)}, s(p), r_{0}^{t}(p), r_{c}^{t}(p)$ and $r_{0}^{t}(p)$ may be redefined by

$$\overline{\ell(p)} = [\ell(p)]_S, bs(p) = [\ell_{\infty}(p)]_S, r^t(p) = [\ell(p)]_R^t$$
$$r_{\infty}^t(p) = [\ell_{\infty}(p)]_R^t, r_c^t(p) = [c(p)]_R^t, r_0^t(p) = [c_0(p)]_R^t$$

In [8], Demiriz and Çakan have defined the sequence spaces $e_0^r(u, p)$ and $e_c^r(u, p)$ which consists of all sequences such that $E^{r,u}$ -transforms are in $c_0(p)$ and c(p), respectively $E^{r,u} = \{e_{nk}^r(u)\}$ is defined by

$$e_{nk}^r(u) = \begin{cases} \binom{n}{k}(1-r)^{n-k}r^k u_k & , \quad (0 \le k \le n) \\ 0 & , \quad (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$ and 0 < r < 1.

In [5] and [6], the Binomial sequence spaces $b_0^{r,s}$, $b_c^{r,s}$, $b_{\infty}^{r,s}$ and $b_p^{r,s}$, which are the matrix domains of Binomial mean $B^{r,s}$ in the sequence spaces c_0 , c, ℓ_{∞} and ℓ_p , respectively, are introduced, some inclusion relations and Schauder basis for the spaces $b_0^{r,s}$, $b_c^{r,s}$ and $b_p^{r,s}$ are given, and the $\alpha -, \beta -$ and $\gamma -$ duals of those spaces are determined. For more papers related to sequence spaces and matrix domains of different infinite matrices one can see [13, 12] and references therein. The main purpose of this paper is to introduce the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ which are the set of all sequences whose $B^{r,s}$ -transforms are in the spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ and $\ell(p)$, respectively; where $B^{r,s}$ denotes the matrix $B^{r,s} = \{b_{nk}^{r,s}\}$ defined by

$$b_{nk}^{r,s} = \begin{cases} \frac{1}{(s+r)^n} \binom{k}{n} s^{n-k} r^k & , & 0 \le k \le n, \\ 0 & , & k > n, \end{cases}$$

where sr > 0. Also, we have constructed the basis and computed the $\alpha - \beta - \alpha \gamma$ -duals and investigated some topological properties of the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$.

Following Choudhary and Mishra [7], Başar and Altay [3], Altay and Başar [1, 2], Demiriz [8], Kirişçi [14, 15], Candan and Güneş [16] and Ellidokuzoğlu and Demiriz [9], we define the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$, as the sets of all sequences such that $B^{r,s}$ -transforms of them are in the spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ and $\ell(p)$, respectively, that is,

$$\begin{split} b_0^{r,s}(p) &= \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \right|^{p_n} = 0 \right\}, \\ b_c^{r,s}(p) &= \left\{ x = (x_k) \in w : \exists l \in \mathbb{C} \ni \lim_{n \to \infty} \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k - l \right|^{p_n} = 0 \right\} \\ b_\infty^{r,s}(p) &= \left\{ x = (x_k) \in w : \sup_{n \in \mathbb{N}} \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \right|^{p_n} < \infty \right\}, \\ b^{r,s}(p) &= \left\{ x = (x_k) \in w : \sum_n \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \right|^{p_n} < \infty \right\}. \end{split}$$

In the case $(p_n) = e = (1, 1, 1, ...)$, the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ are, respectively, reduced to the sequence spaces $b_0^{r,s}$, $b_c^{r,s}$, $b_c^{r,s}$, $b_{\infty}^{r,s}$ and $b_p^{r,s}$ which are introduced by Bisgin [5, 6]. With the notation of (2.1), we may redefine the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ as follows:

$$b_0^{r,s}(p) = [c_0(p)]_{B^{r,s}}, \ b_c^{r,s}(p) = [c(p)]_{B^{r,s}}, \ b_{\infty}^{r,s}(p) = [\ell_{\infty}(p)]_{B^{r,s}} \text{ and } b^{r,s}(p) = [\ell(p)]_{B^{r,s}}$$

Define the sequence $y = \{y_n(r,s)\}$, which will be frequently used, as the $B^{r,s}$ -transform of a sequence $x = (x_k)$, i.e.,

$$y_n(r,s) := \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k; \text{ for all } k \in \mathbb{N}.$$
(2.2)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b_{\infty}^{r,s}(p)$ are the complete linear metric space paranormed by g, defined by

$$g(x) = \sup_{n \in \mathbb{N}} \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \right|^{p_n/L}.$$
(2.3)

In addition, $b^{r,s}(p)$ is the complete linear metric space paranormed by h, defined by

$$h(x) = \left(\sum_{n=0}^{\infty} \left| \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \right|^{p_n} \right)^{1/M}.$$
(2.4)

Proof. First, we give the proof for $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b_{\infty}^{r,s}(p)$. Since the proof is similar for $b_c^{r,s}(p)$ and $b_{\infty}^{r,s}(p)$, we give the proof only for the space $b_0^{r,s}(p)$. The linearity of $b_0^{r,s}(p)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the following inequalities which are satisfied for $x, z \in b_0^{r,s}(p)$ (see Maddox [18, p.30])

$$\left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k (x_k+z_k)\right|^{p_n/L} \le \left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k\right|^{p_n/L} + \left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k z_k\right|^{p_n/L}$$
(2.5)

and for any $\alpha \in \mathbb{R}$ (see [21])

$$|\alpha|^{p_n} \le \max\{1, |\alpha|^L\} = K.$$

$$(2.6)$$

Using (2.6) inequality, we get

$$\left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k(\alpha x_k)\right|^{p_n/L} = |\alpha|^{p_n/L} \left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k\right|^{p_n/L}$$
$$\leq K^{1/L} \left|\frac{1}{(s+r)^n}\sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k\right|^{p_n/L}$$

for $x \in b_0^{r,s}(p)$. This shows the space $b_0^{r,s}(p)$ is a linear space. Now we will see that g is a paranorm on $b_0^{r,s}(p)$. It is clear that $g(\theta) = 0$ and g(x) = g(-x) for all $x \in b_0^{r,s}(p)$. Let $\{x^n\}$ be any sequence of the points $x^n \in b_0^{r,s}(p)$ such that $g(x^n - x) \to 0$ and (α_n) also be any sequence of scalars such that $\alpha_n \to \alpha$. Then, since the inequality

$$g(x^n) \le g(x) + g(x^n - x)$$

holds by the subadditivity of g, $\{g(x^n)\}$ is bounded and we thus have

$$g(\alpha_n x^n - \alpha x) = \sup_{k \in \mathbb{N}} \left| \frac{1}{(s+r)^k} \sum_{j=0}^k \binom{k}{j} s^{k-j} r^j (\alpha_n x_j^n - \alpha x_j) \right|^{p_k/L}$$

$$\leq |\alpha_n - \alpha| g(x^n) + |\alpha| g(x^n - x)$$
(2.7)

which tends to zero as $n \to \infty$. This means that the scalar multiplication is continuous. Hence, g is a paranorm on the space $b_{1}^{r,s}(p)$.

It remains to prove the completeness of the space $b_0^{r,s}(p)$. Let $\{x^i\}$ be any Cauchy sequence in the space $b_0^{r,s}(p)$, where $x^i = \{x_0^{(i)}, x_1^{(i)}, x_2^{(i)}, \dots\}$. Then, for a given $\varepsilon > 0$ there exists a positive integer $n_0(\varepsilon)$ such that

$$g(x^i - x^j) < \frac{\varepsilon}{2}$$

for all $i, j > n_0(\varepsilon)$. Using the definition of g we obtain for each fixed $k \in \mathbb{N}$ that

$$|(B^{r,s}x^{i})_{k} - (B^{r,s}x^{j})_{k}|^{p_{k}/L} \leq \sup_{k \in \mathbb{N}} |(B^{r,s}x^{i})_{k} - (B^{r,s}x^{j})_{k}|^{p_{k}/L} < \frac{\varepsilon}{2}$$
(2.8)

for every $i, j > n_0(\varepsilon)$ which leads to the fact that $\{(B^{r,s}x^0)_k, (B^{r,s}x^1)_k, (B^{r,s}x^2)_k, \ldots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(B^{r,s}x^i)_k \to (B^{r,s}x)_k$ as $i \to \infty$. Using these infinitely many limits $(B^{r,s}x)_0, (B^{r,s}x)_1, \ldots$, we define the sequence $\{(B^{r,s}x)_0, (B^{r,s}x)_1, \ldots\}$. From (2.8) with $j \to \infty$, we have

$$|(B^{r,s}x^{i})_{k} - (B^{r,s}x)_{k}|^{p_{k}/L} \le \frac{\varepsilon}{2} \ (i,j > n_{0}(\varepsilon))$$
(2.9)

for every fixed $k \in \mathbb{N}$. Since $x^i = \{x_k^{(i)}\} \in b_0^{r,s}(p)$ for each $i \in \mathbb{N}$, there exists $k_0(\varepsilon) \in \mathbb{N}$ such that

$$|(B^{r,s}x^i)_k|^{p_k/L} < \frac{\varepsilon}{2} \tag{2.10}$$

for every $k \ge k_0(\varepsilon)$ and for each fixed $i \in \mathbb{N}$. Therefore, taking a fixed $i > n_0(\varepsilon)$ we obtain by (2.9) and (2.10) that

$$|(B^{r,s}x)_k|^{p_k/L} \le |(B^{r,s}x)_k - (B^{r,s}x^i)_k|^{p_k/L} + |(B^{r,s}x^i)_k|^{p_k/L} < \frac{\varepsilon}{2}$$

for every $k > k_0(\varepsilon)$. This shows that $x \in b_0^{r,s}(p)$. Since $\{x^i\}$ was an arbitrary Cauchy sequence, the space $b_0^{r,s}(p)$ is complete and this concludes the proof.

Now lets show that, $b^{r,s}(p)$ is the complete linear metric space paranormed by *h* defined by (2.4). It is easy to see that the space $b^{r,s}(p)$ is linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the paranorm *h* defined by (2.4).

It is clear that $h(\theta) = 0$ where $\theta = (0, 0, 0, ...)$ and h(x) = h(-x) for all $x \in b^{r,s}(p)$.

Let $x, y \in b^{r,s}(p)$; then by Minkowski's inequality we have

$$h(x+y) = \left(\sum_{k=0}^{\infty} \left| \frac{1}{(s+r)^{k}} \sum_{j=0}^{k} {k \choose j} s^{k-j} r^{j}(x_{j}+y_{j}) \right|^{p_{k}} \right)^{1/M}$$

$$= \left(\sum_{k=0}^{\infty} \left[\left| \frac{1}{(s+r)^{k}} \sum_{j=0}^{k} {k \choose j} s^{k-j} r^{j}(x_{j}+y_{j}) \right|^{p_{k}/M} \right]^{M} \right)^{1/M}$$

$$\leq \left(\sum_{k=0}^{\infty} \left| \frac{1}{(s+r)^{k}} \sum_{j=0}^{k} {k \choose j} s^{k-j} r^{j}x_{j} \right|^{p_{k}} \right)^{1/M} + \left(\sum_{k=0}^{\infty} \left[\frac{1}{(s+r)^{k}} \sum_{j=0}^{k} {k \choose j} s^{k-j} r^{j}y_{j} \right]^{p_{k}} \right)^{1/M}$$

$$= h(x) + h(y)$$
(2.11)

and for any $\alpha \in \mathbb{R}$ we immediately see that

$$\alpha|^{p_k} \le \max\{1, |\alpha|^M\}. \tag{2.12}$$

Let $\{x^n\}$ be any sequence of the points $x^n \in b^{r,s}(p)$ such that $h(x^n - x) \to 0$ and (λ_n) also be any sequence of scalars such that $\lambda_n \to \lambda$. We observe that

$$h(\lambda_n x^n - \lambda x) \le h[(\lambda_n - \lambda)(x^n - x)] + h[\lambda(x^n - x)] + h[(\lambda_n - \lambda)x].$$
(2.13)

It follows from $\lambda_n \to \lambda(n \to \infty)$ that $|\lambda_n - \lambda| < 1$ for all sufficiently large *n*; hence

$$\lim_{n \to \infty} h[(\lambda_n - \lambda)(x^n - x)] \le \lim_{n \to \infty} h(x^n - x) = 0.$$
(2.14)

Furthermore, we have

$$\lim_{n \to \infty} h[\lambda(x^n - x)] \le \max\{1, |\lambda|^M\} \lim_{n \to \infty} h(x^n - x) = 0.$$
(2.15)

Also, we have

$$\lim_{n \to \infty} h[(\lambda_n - \lambda)x)] \le \lim_{n \to \infty} |\lambda_n - \lambda| h(x) = 0.$$
(2.16)

Then, we obtain from (2.13), (2.14), (2.15) and (2.16) that $h(\lambda_n x^n - \lambda x) \to 0$, as $n \to \infty$. This shows that *h* is a paranorm on $b^{r,s}(p)$. Now, we show that $b^{r,s}(p)$ is complete. Let $\{x^n\}$ be any Cauchy sequence in the space $b^{r,s}(p)$, where $x^n = \{x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, ...\}$. Then, for a given $\varepsilon > 0$, there exists a positive integer $n_0(\varepsilon)$ such that $h(x^n - x^m) < \varepsilon$ for all $n, m > n_0(\varepsilon)$. Since for each fixed $k \in \mathbb{N}$ that

$$|(B^{r,s}x^n)_k - (B^{r,s}x^m)_k| \le \left[\sum_k |(B^{r,s}x^n)_k - (B^{r,s}x^m)_k|^{p_k}\right]^{\frac{1}{M}} = h(x^n - x^m) < \varepsilon$$
(2.17)

for every $n, m > n_0(\varepsilon)$, $\{(B^{r,s}x^0)_k, (B^{r,s}x^1)_k, (B^{r,s}x^2)_k, ...\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(B^{r,s}x^n)_k \to (B^{r,s}x)_k$ as $n \to \infty$. Using these infinitely many limits $(B^{r,s}x)_0, (B^{r,s}x)_1, ...,$ we define the sequence $\{(B^{r,s}x)_0, (B^{r,s}x)_1, ...\}$. For each $K \in \mathbb{N}$ and $n, m > n_0(\varepsilon)$

$$\left[\sum_{k=0}^{K} |(B^{r,s}x^n)_k - (B^{r,s}x^m)_k|^{p_k}\right]^{\frac{1}{M}} \le h(x^n - x^m) < \varepsilon.$$
(2.18)

By letting $m, K \to \infty$, we have for $n > n_0(\varepsilon)$ that

$$h(x^{n} - x) = \left[\sum_{k} |(B^{r,s}x^{n})_{k} - (B^{r,s}x)_{k}|^{p_{k}}\right]^{\frac{1}{M}} < \varepsilon.$$
(2.19)

This shows that $x^n - x \in b^{r,s}(p)$. Since $b^{r,s}(p)$ is a linear space, we conclude that $x \in b^{r,s}(p)$; it follows that $x^n \to x$, as $n \to \infty$ in $b^{r,s}(p)$, thus we have shown that $b^{r,s}(p)$ is complete.

Note that the absolute property does not hold on the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$, since there exists at least one sequence in the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$ and $b^{r,s}(p)$ and such that $g(x) \neq g(|x|)$, where $|x| = (|x_k|)$. This says that $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$ are the sequence spaces of non-absolute type.

Theorem 2.2. The sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ are linearly isomorphic to the spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ and $\ell(p)$, respectively, where $0 < p_k \le H < \infty$.

Proof. To avoid repetition of similar statements, we give the proof only for $b_0^{r,s}(p)$. We should show the existence of a linear bijection between the spaces $b_0^{r,s}(p)$ and $c_0(p)$. With the notation of (2.2), define the transformation T from $b_0^{r,s}(p)$ to $c_0(p)$ by $x \mapsto y = Tx$. The linearity of T is trivial. Furthermore, it is obvious that $x = \theta$ whenever $Tx = \theta$, and hence T is injective. Let $y \in c_0(p)$ and define the sequence

$$x_{k} = \frac{1}{r^{k}} \sum_{j=0}^{k} \binom{k}{j} (-s)^{k-j} (s+r)^{j} y_{j}; \ (k \in \mathbb{N}).$$

Then, we have

$$\begin{split} (B^{r,s}x)_n &= \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} r^k x_k \\ &= \frac{1}{(s+r)^n} \sum_{k=0}^n \binom{n}{k} s^{n-k} \sum_{j=0}^k \binom{k}{j} (-s)^{k-j} (s+r)^j y_j \\ &= \frac{1}{(s+r)^n} \sum_{j=0}^n \left(\sum_{k=j}^n \binom{n}{k} \binom{k}{j} s^{n-k} (-s)^{k-j} (s+r)^j \right) y_j \\ &= \frac{1}{(s+r)^n} \sum_{j=0}^n \left(\sum_{k=j}^n \binom{n}{j} \binom{n-j}{k-j} (-1)^{k-j} s^{n-j} (s+r)^j \right) y_j \\ &= \frac{1}{(s+r)^n} \sum_{j=0}^n \binom{n}{j} s^{n-j} (s+r)^j \left(\sum_{k=j}^n \binom{n-j}{k-j} (-1)^{k-j} \right) y_j \\ &= \frac{1}{(s+r)^n} \sum_{j=0}^n \binom{n}{j} s^{n-j} (s+r)^j \delta_{nk} y_j \\ &= \frac{1}{(s+r)^n} \binom{n}{n} s^{n-n} (s+r)^n 1 y_n \\ &= y_n. \end{split}$$

Thus, we have that $x \in b_0^{r,s}(p)$ and consequently *T* is surjective. Hence, *T* is a linear bijection and this says that the spaces $b_0^{r,s}(p)$ and $c_0(p)$ are linearly isomorphic, as was desired.

3. The basis for the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$

Let (λ, g) be a paranormed space. Recall that a sequence (β_k) of the elements of λ is called a basis for λ if and only if, for each $x \in \lambda$, there exists a unique sequence (α_k) of scalars such that

$$g\left(x-\sum_{k=0}^n \alpha_k \beta_k\right) \to 0 \text{ as } n \to \infty.$$

The series $\sum \alpha_k \beta_k$ which has the sum *x* is then called the expansion of *x* with respect to (β_n) , and written as $x = \sum \alpha_k \beta_k$. Since it is known that the matrix domain λ_A of a sequence space λ has a basis if and only if λ has a basis whenever $A = (a_{nk})$ is a triangle (cf. [11, Remark 2.4]), we have the following. Because of the isomorphism *T* is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of those spaces $c_0(p)$, c(p) and $\ell(p)$ are the basis of the new spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$, respectively. Therefore, we have the following:

Theorem 3.1. Let $\lambda_k = (B^{r,s}x)_k$ for all $k \in \mathbb{N}$ and $0 < p_k \le H < \infty$. Define the sequence $b^{(k)} = \{b^{(k)}\}_{k \in \mathbb{N}}$ of the elements of the space $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$ by

$$b_n^{(k)} = \begin{cases} \frac{1}{r^n} \binom{n}{k} (-s)^{n-k} (s+r)^k & , \quad n \ge k \\ 0 & , \quad 0 \le k < n \end{cases}$$

for every fixed $k \in \mathbb{N}$. Then

(a) The sequence $\{b^{(k)}\}_{k\in\mathbb{N}}$ is a basis for the space $b_0^{r,s}(p)$, and any $x \in b_0^{r,s}(p)$ has a unique representation of the form

$$x = \sum_{k} \lambda_k b^{(k)}.$$

(b) The set $\{e, b^{(1)}(r), b^{(2)}(r), ...\}$ is a basis for the space $b_c^{r,s}(p)$, and any $x \in b_c^{r,s}(p)$ has a unique representation of the form

$$x = le + \sum_{k} [\lambda_k - l] b^{(k)},$$

where $l = \lim_{k \to \infty} (B^{r,s}x)_k$.

(c) The sequence $\{b^{(k)}\}_{k\in\mathbb{N}}$ is a basis for the space $b^{r,s}(p)$, and any $x \in b^{r,s}(p)$ has a unique representation of the form

$$x = \sum_k \lambda_k b^{(k)}$$

4. The $\alpha - \beta - \beta$ and γ -duals of the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$

In this section, we state and prove the theorems determining the α -, β - and γ -duals of the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$ of non-absolute type.

We shall firstly give the definition of $\alpha - \beta - \beta$ and γ -duals of sequence spaces and after quoting the lemmas which are needed in proving the theorems given in Section 4.

The set $S(\lambda, \mu)$ defined by

$$S(\lambda,\mu) = \{z = (z_k) \in \omega : xz = (x_k z_k) \in \mu \text{ for all } x = (x_k) \in \lambda\}$$

$$(4.1)$$

is called the multiplier space of the sequence spaces λ and μ . One can easily observe for a sequence space v with $\lambda \supset v \supset \mu$ that the inclusions

$$S(\lambda,\mu) \subset S(\nu,\mu)$$
 and $S(\lambda,\mu) \subset S(\lambda,\nu)$

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} are defined by

$$\lambda^{\alpha} = S(\lambda, \ell_1), \lambda^{\beta} = S(\lambda, cs) \text{ and } \lambda^{\gamma} = S(\lambda, bs).$$

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe- Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space, respectively.

For to give the alpha-, beta- and gamma-duals of the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$ of non-absolute type, we need the following lemma: Lemma 4.1. [10, $q_n = 1$] Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(i) $A \in (c_o(p) : \ell(q))$ if and only if

$$\sup_{K \in \mathscr{F}} \sum_{n} \left| \sum_{k \in K} a_{nk} M^{-1/p_k} \right| < \infty, \quad \exists M \in \mathbb{N}_2.$$

$$(4.2)$$

(ii) $A \in (c(p) : \ell(q))$ if and only if (4.2) holds and

$$\sum_{n} \left| \sum_{k} a_{nk} \right| < \infty.$$
(4.3)

(iii) $A \in (c_0(p) : c(q))$ if and only if

$$\sup_{n\in\mathbb{N}}\sum_{k}|a_{nk}|M^{-1/p_{k}}<\infty,\ \exists M\in\mathbb{N}_{2},$$
(4.4)

$$\exists (\alpha_k) \subset \mathbb{R} \ni \lim_{n \to \infty} |a_{nk} - \alpha_k| = 0 \text{ for all } k \in \mathbb{N},$$

$$(4.5)$$

$$\exists (\alpha_k) \subset \mathbb{R} \ni \sup_{n \in \mathbb{N}} \sum_k |a_{nk} - \alpha_k| M^{-1/p_k} < \infty, \ \exists M \in \mathbb{N}_2.$$

$$(4.6)$$

(iv) $A \in (c(p) : c(q))$ if and only if (4.4), (4.5), (4.6) hold and

$$\exists \alpha \in \mathbb{R} \ni \lim_{n \to \infty} \left| \sum_{k} a_{nk} - \alpha \right| = 0.$$
(4.7)

(v) $A \in (c_o(p) : \ell_{\infty}(q))$ if and only if

 $\sup_{n\in\mathbb{N}}\sum_{k}|a_{nk}|M^{-1/p_{k}}<\infty,\ \exists M\in\mathbb{N}_{2}.$ (4.8)

(vi) $A \in (c(p) : \ell_{\infty}(q))$ if and only if (4.8) holds and

$$\sup_{n} \left| \sum_{k} a_{nk} \right| < \infty, \ \exists M \in \mathbb{N}_{2}.$$

$$(4.9)$$

(vii) $A \in (\ell(p) : \ell_1)$ if and only if

(a) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then

$$\sup_{N\in\mathscr{F}}\sup_{k\in\mathbb{N}}\left|\sum_{n\in N}a_{nk}\right|^{p_{k}}<\infty.$$
(4.10)

(b) Let $1 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, there exists an integer M > 1 such that

$$\sup_{N\in\mathscr{F}}\sum_{k}\left|\sum_{n\in\mathbb{N}}a_{nk}M^{-1}\right|^{p_{k}}<\infty.$$
(4.11)

Lemma 4.2. [17] Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(i) $A \in (\ell(p) : \ell_{\infty})$ if and only if

(a) Let
$$0 < p_k \leq 1$$
 for all $k \in \mathbb{N}$. Then,

$$\sup_{n,k\in\mathbb{N}}|a_{nk}|^{p_k}<\infty.$$
(4.12)

(b) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, there exists an integer M > 1 such that

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|a_{nk}M^{-1}\right|^{p_{k}^{\prime}}<\infty.$$
(4.13)

(ii) Let $0 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(p) : c)$ if and only if (4.12) and (4.13) hold, and

$$\lim_{n \to \infty} a_{nk} = \beta_k, \, \forall k \in \mathbb{N}.$$

$$(4.14)$$

Theorem 4.3. Let $K \in \mathscr{F}$ and $K^* = \{k \in \mathbb{N} : n \ge k\} \cap K$ for $K \in \mathscr{F}$. Define the sets $T_1^r(p)$, T_2^r , $T_3(p)$ and $T_4(p)$ as follows:

$$T_{1}(p) = \bigcup_{M>1} \left\{ a = (a_{k}) \in w : \sup_{K \in \mathscr{F}} \sum_{n} \left| \sum_{k \in K^{*}} c_{nk} M^{-1/p_{k}} \right| < \infty \right\},$$

$$T_{2} = \left\{ a = (a_{k}) \in w : \sum_{n} \left| \sum_{k=0}^{n} c_{nk} \right| \text{ exists for each } n \in \mathbb{N} \right\},$$

$$T_{3}(p) = \bigcup_{M>1} \left\{ a = (a_{k}) \in w : \sup_{N \in \mathscr{F}} \sum_{k} \left| \sum_{n \in N} c_{nk} M^{-1} \right|^{p_{k}'} < \infty, \right\},$$

$$T_{4}(p) = \left\{ a = (a_{k}) \in w : \sup_{N \in \mathscr{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} c_{nk} \right|^{p_{k}} < \infty \right\},$$
we the matrix $C = (c, v)$ defined by

where the matrix $C = (c_{nk})$ defined by

$$c_{nk} = \begin{cases} \frac{1}{r^n} \sum_{k=0}^n {n \choose k} (-s)^{n-k} (s+r)^k a_n &, & 0 \le k \le n, \\ 0 &, & k \ge n. \end{cases}$$
(4.15)

Then, $[b_0^{r,s}(p)]^{\alpha} = T_1(p)$, $[b_c^{r,s}(p)]^{\alpha} = T_1(p) \cap T_2$ and

$$[b^{r,s}(p)]^{\alpha} = \begin{cases} T_3(p) & 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_4(p) & 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$

$$(4.16)$$

Proof. We chose the sequence $a = (a_k) \in w$. We can easily derive that with the (2.2) that

$$a_n x_n = \frac{1}{r^n} \sum_{k=0}^n \binom{n}{k} (-s)^{n-k} (s+r)^k a_n y_k = (Cy)_n, \ (n \in \mathbb{N})$$
(4.17)

for all $k, n \in \mathbb{N}$, where $C = (c_{nk})$ defined by (4.15). It follows from (4.17) that $ax = (a_n x_n) \in \ell_1$ whenever $x \in b_0^{r,s}(p)$ if and only if $Cy \in \ell_1$ whenever $y \in c_0(p)$. This means that $a = (a_n) \in [b_0^{r,s}(p)]^{\alpha}$ if and only if $C \in (c_0(p) : \ell_1)$. Then, we derive by (4.2) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[b_0^{r,s}(p)]^{\alpha} = T_1^r(p)$.

Using the (4.3) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.17), the proof of the $[b_c^{r,s}(p)]^{\alpha} = T_1^r(p) \cap T_2$ can also be obtained in a similar way. Also, using the (4.10),(4.11) and (4.17), the proof of the

$$[b^{r,s}(p)]^{lpha} = \left\{ egin{array}{ll} T_3(p) & 1 < p_k \leq H < \infty, orall k \in \mathbb{N}, \ T_4(p) & 0 < p_k \leq 1, orall k \in \mathbb{N}, \end{array}
ight.$$

can also be obtained in a similar way.

Theorem 4.4. The matrix $D = (d_{nk})$ is defined by

$$d_{nk} = \begin{cases} \sum_{j=k}^{n} {j \choose k} (-s)^{j-k} r^{-j} (r+s)^{k} a_{j} &, \quad (0 \le k \le n) \\ 0 &, \quad (k > n) \end{cases}$$
(4.18)

for all $k, n \in \mathbb{N}$. Define the sets $T_5(p)$, T_6 , $T_7(p)$, T_8 , $T_9(p)$, T_{10} and $T_{11}(p)$ as follows:

$$\begin{split} T_5(p) &= \bigcup_{M>1} \left\{ a = (a_k) \in w : \sup_{n \in \mathbb{N}} \sum_{k=0}^n |d_{nk}| M^{-1/p_k} < \infty \right\}, \\ T_6 &= \left\{ a = (a_k) \in w : \lim_{n \to \infty} |d_{nk}| \text{ exists for each } k \in \mathbb{N} \right\}, \\ T_7(p) &= \bigcup_{M>1} \left\{ a = (a_k) \in w : \exists (\alpha_k) \subset \mathbb{R} \ni \sup_{n \in \mathbb{N}} \sum_{k=0}^n |d_{nk} - \alpha_k| M^{-1/p_k} < \infty \right\}, \\ T_8 &= \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n |d_{nk}| \text{ exists} \right\}, \\ T_9(p) &= \bigcup_{M>1} \left\{ a = (a_k) \in w : \sup_{n \in \mathbb{N}} \sum_k \left| d_{nk} M^{-1} \right|^{p'_k} < \infty \right\}, \\ T_{10} &= \left\{ a = (a_k) \in w : \lim_{n \to \infty} d_{nk} \text{ exists for each } k \in \mathbb{N} \right\}, \\ T_{11}(p) &= \left\{ a = (a_k) \in w : \sup_{n,k \in \mathbb{N}} |d_{nk}|^{p_k} < \infty \right\}. \end{split}$$

Then, $[b_0^{r,s}(p)]^{\beta} = T_5(p) \cap T_6 \cap T_7(p), \ [b_c^{r,s}(p)]^{\beta} = [b_0^{r,s}(p)]^{\beta} \cap T_8$ and

$$[b^{r,s}(p)]^{\beta} = \begin{cases} T_9(p) \cap T_{10} &, & 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_{10} \cap T_{11}(p) &, & 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$
(4.19)

Proof. We give the proof again only for the space $b_0^{r,s}(p)$. Consider the equation

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\frac{1}{r^k} \sum_{j=0}^{k} \binom{k}{j} (-s)^{k-j} (s+r)^j y_j \right] a_k$$
$$= \sum_{k=0}^{n} \left[\sum_{j=k}^{n} \binom{j}{k} (-s)^{j-k} r^{-j} (r+s)^k a_j \right] y_k = (Dy)_n,$$
(4.20)

where $D = (d_{nk})$ defined by (4.18). Thus, we deduce from (4.20) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in b_0^{r,s}(p)$ if and only if $Dy \in c$ whenever $y = (y_k) \in c_0(p)$. That is to say that $a = (a_k) \in [b_0^{r,s}(p)]^\beta$ if and only if $D \in (c_0(p) : c)$. Therefore, we derive from (4.4),(4.5) and (4.6) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[b_0^{r,s}(p)]^\beta = T_5(p) \cap T_6 \cap T_7(p)$.

Using the (4.4),(4.5), (4.6) and (4.7) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.20), the proofs of the $[b_c^{r,s}(p)]^{\beta} = [b_0^{r,s}(p)]^{\beta} \cap T_8$ can also be obtained in a similar way. Also, using the (4.12),(4.13), (4.14) and (4.20), the proofs of the

$$[b^{r,s}(p)]^{\beta} = \begin{cases} T_9(p) \cap T_{10} &, & 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_{10} \cap T_{11}(p) &, & 0 < p_k \le 1, \forall k \in \mathbb{N} \end{cases}$$

can also be obtained in a similar way.

Theorem 4.5. Define the set T_{12} by

$$T_{12} = \left\{ a = (a_k) \in w : \sup_n \left| \sum_k a_{nk} \right| < \infty \right\}.$$

Then, $[b_0^{r,s}(p)]^{\gamma} = T_5(p)$, $[b_c^{r,s}(p)]^{\gamma} = [b_0^{r,s}(p)]^{\gamma} \cap T_{12}$ and

$$[b^{r,s}(p)]^{\gamma} = \begin{cases} T_8(p) &, \quad 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_{10}(p) &, \quad 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$

Proof. This is obtained in the similar way used in the proof of Theorem 4.4.

5. Certain matrix mappings on the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$

In this section, we characterize some matrix mappings on the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$ and $b^{r,s}(p)$. We known that, if $b_0^{r,s}(p) \cong c_0(p)$, $b_c^{r,s}(p) \cong c(p)$ and $b^{r,s}(p) \cong \ell(p)$, we can say: The equivalence " $x \in b_0^{r,s}(p)$, $b_c^{r,s}(p)$ or $b^{r,s}(p)$ if and only if $y \in c_0(p)$, c(p) or $\ell(p)$ " holds.

In what follows, for brevity, we write,

$$\tilde{a}_{nk} := \sum_{j=k}^{n} \binom{j}{k} (-s)^{j-k} r^{-j} (r+s)^k a_{nj}$$

for all $k, n \in \mathbb{N}$.

Theorem 5.1. Suppose that the entries of the infinite matrices $A = (a_{nk})$ and $E = (e_{nk})$ are connected with the relation

 $e_{nk} := \tilde{a}_{nk}$

for all $k, n \in \mathbb{N}$ and μ be any given sequence space. Then,

(i) $A \in (b_0^{r,s}(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_0^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$. (ii) $A \in (b_c^{r,s}(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_c^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (c(p) : \mu)$. (iii) $A \in (b^{r,s}(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (\ell(p) : \mu)$.

Proof. We prove only part of (i). Let μ be any given sequence space. Suppose that (5.1) holds between $A = (a_{nk})$ and $E = (e_{nk})$, and take into account that the spaces $b_0^{r,s}(p)$ and $c_0(p)$ are linearly isomorphic.

Let $A \in (b_0^{r,s}(p) : \mu)$ and take any $y = (y_k) \in c_0(p)$. Then $EB^{r,s}$ exists and $\{a_{nk}\}_{k \in \mathbb{N}} \in T_5(p) \cap T_6$ which yields that $\{e_{nk}\}_{k \in \mathbb{N}} \in c_0(p)$ for each $n \in \mathbb{N}$. Hence, Ey exists and thus

$$\sum_{k} e_{nk} y_k = \sum_{k} a_{nk} x_k$$

for all $n \in \mathbb{N}$.

We have that Ey = Ax which leads us to the consequence $E \in (c_0(p) : \mu)$.

Conversely, let $\{a_{nk}\}_{k\in\mathbb{N}} \in \{b_0^{r,s}(p)\}^{\beta}$ for each $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$ hold, and take any $x = (x_k) \in b_0^{r,s}(p)$. Then, Ax exists. Therefore, we obtain from the equality

$$\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \left[\sum_{j=0}^k \binom{j}{k} (-r)^{j-k} (1-r)^{-(j+1)} a_{nj} \right] y_k$$

for all $n \in \mathbb{N}$, that Ey = Ax and this shows that $A \in (b_0^{r,s}(p) : \mu)$. This completes the proof of part of (i).

Theorem 5.2. Suppose that the elements of the infinite matrices $A = (a_{nk})$ and $B = (b_{nk})$ are connected with the relation

$$b_{nk} := \frac{1}{(s+r)^n} \sum_{j=0}^n \binom{n}{j} s^{n-j} r^j a_{jk} \text{ for all } k, n \in \mathbb{N}.$$
(5.2)

Let μ be any given sequence space. Then,

(i) A ∈ (µ : b₀^{r,s}(p)) if and only if B ∈ (µ : c₀(p)).
 (ii) A ∈ (µ : b_c^{r,s}(p)) if and only if B ∈ (µ : c(p)).
 (iii) A ∈ (µ : b^{r,s}(p)) if and only if B ∈ (µ : ℓ(p)).

Proof. We prove only part of (i). Let $z = (z_k) \in \mu$ and consider the following equality.

$$\sum_{k=0}^{m} b_{nk} z_k = \sum_{j=n}^{\infty} {j \choose n} (1-r)^{n+1} r^{j-n} \left(\sum_{k=0}^{m} a_{jk} z_k\right) \text{ for all } m, n \in \mathbb{N}$$

which yields as $m \to \infty$ that $(Bz)_n = \{B^{r,s}(Az)\}_n$ for all $n \in \mathbb{N}$. Therefore, one can observe from here that $Az \in b_0^{r,s}(p)$ whenever $z \in \mu$ if and only if $Bz \in c_0(p)$ whenever $z \in \mu$. This completes the proof of part of (i).

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space μ . Whence by Theorem 5.1 and Theorem 5.2, the necessary and sufficient conditions for $(b_0^{r,s}(p):\mu)$, $(\mu:b_0^{r,s}(p))$, $(b_c^{r,s}(p):\mu)$, $(\mu:b_c^{r,s}(p))$ and $(b^{r,s}(p):\mu)$, $(\mu:b^{r,s}(p))$ may be derived by replacing the entries of *C* and *A* by those of the entries of $E = C\{B^{r,s}\}^{-1}$ and $B = B^{r,s}A$, respectively; where the necessary and sufficient conditions on the matrices *E* and *B* are read from the concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by Grosse-Erdmann [10]. Let N and K denote the finite subset of \mathbb{N} , L and M also denote the natural numbers. Prior to giving the theorems, let us suppose that (q_n) is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

(5.1)

$$\forall L, \exists M \ni \sup_{n} L^{1/q_n} \sum_{k} |a_{nk}| M^{-1/p_k} < \infty, \tag{5.4}$$

$$\lim_{n} |\sum_{l} a_{nk}|^{q_n} = 0, \tag{5.5}$$

$$\forall L, \sup_{n} \sup_{k \in K_1} \left| a_{nk} L^{1/q_n} \right|^{p_k} < \infty, \tag{5.6}$$

$$\forall L, \exists M \ni \sup_{n} \sum_{k \in K_2} |a_{nk} L^{1/q_n} M^{-1}|^{p'_k} < \infty, \tag{5.7}$$

$$\forall M, \lim_{n} \left(\sum_{k} |a_{nk}| M^{1/p_k} \right)^{q_n} = 0, \tag{5.8}$$

$$\sum_{k=1}^{n} |\mathbf{x}_{k}|^{n}$$

$$\forall M, \sup_{n} \sum_{k} |a_{nk}| M^{1/p_k} < \infty, \tag{5.9}$$

$$\forall M, \sup_{K} \sum_{n} \left| \sum_{k \in K} a_{nk} M^{1/p_k} \right|^{q_n} < \infty.$$
(5.10)

Lemma 5.3. Let $A = (a_{nk})$ be an infinite matrix. Then

(i) $A = (a_{nk}) \in (c_0(p) : \ell_{\infty}(q))$ if and only if (4.8) holds. (ii) $A = (a_{nk}) \in (c(p) : \ell_{\infty}(q))$ if and only if (4.8) and (4.9) hold. (iii) $A = (a_{nk}) \in (\ell(p) : \ell_{\infty})$ if and only if (4.12) and (4.13) hold. (iv) $A = (a_{nk}) \in (c_0(p) : c(q))$ if and only if (4.4), (4.5) and (4.6) hold. (v) $A = (a_{nk}) \in (c(p) : c(q))$ if and only if (4.4), (4.5), (4.6) and (4.7) hold. (vi) $A = (a_{nk}) \in (\ell(p) : c)$ if and only if (4.12), (4.13) and (4.14) hold. (vii) $A = (a_{nk}) \in (c_0(p) : c_0(q))$ if and only if (5.3) and (5.4) hold. (viii) $A = (a_{nk}) \in (c(p) : c_0(q))$ if and only if (5.3), (5.4) and (5.5) hold. (ix) $A = (a_{nk}) \in (\ell(p) : c_0(q))$ if and only if (5.3), (5.6) and (5.7) hold. (**x**) $A = (a_{nk}) \in (\ell_{\infty}(p) : c_0(q))$ if and only if (5.8) holds. (xi) $A = (a_{nk}) \in (\ell_{\infty}(p) : c(q))$ if and only if (5.9) holds. (xii) $A = (a_{nk}) \in (\ell_{\infty}(p) : \ell(q))$ if and only if (5.10) holds. (xiii) $A = (a_{nk}) \in (c_0(p) : \ell(q))$ if and only if (4.2) holds. (**xiv**) $A = (a_{nk}) \in (c(p) : \ell(q))$ if and only if (4.2) and (4.4) hold.

Corollary 5.4. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i) $A \in (b_0^{r,s}(p) : \ell_{\infty}(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_0^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) holds with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(ii) $A \in (b_0^{r,s}(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_0^{r,s}(p)\}^\beta$ for all $n \in \mathbb{N}$ and (5.3) and (5.4) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(iii) $A \in (b_0^{r,s}(p) : c(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_0^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.4), (4.5) and (4.6) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

Corollary 5.5. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i) $A \in (b_c^{r,s}(p) : \ell_{\infty}(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_c^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) and (4.9) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1. (ii) $A \in (b_c^{r,s}(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b_c^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3), (5.4) and (5.5) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1. (iii) $A \in (b_c^{r,s}(p):c(q))$ if and only if $\{a_{nk}\}_{k\in\mathbb{N}} \in \{b_c^{r,s}(p)\}^\beta$ for all $n \in \mathbb{N}$ and (4.4), (4.5), (4.6) and (4.7) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

Corollary 5.6. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i) $A \in (b^{r,s}(p) : \ell_{\infty})$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.12) and (4.13) hold with \tilde{a}_{nk} instead of a_{nk} . (ii) $A \in (b^{r,s}(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{b^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3), (5.6) and (5.7) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1. (iii) $A \in (b^{r,s}(p):c)$ if and only if $\{a_{nk}\}_{k\in\mathbb{N}} \in \{b^{r,s}(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.12), (4.13) and (4.14) hold with \tilde{a}_{nk} instead of a_{nk} .

Corollary 5.7. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

(i) $A \in (\ell_{\infty}(q) : b_0^{r,s}(p))$ if and only if (5.8) holds with b_{nk} instead of a_{nk} with q = 1.

(ii) $A \in (c_0(q) : b_0^{r,s}(p))$ if and only if (5.3) and (5.4) hold with b_{nk} instead of a_{nk} with q = 1. (iii) $A \in (c(q) : b_0^{r,s}(p))$ if and only if (5.3), (5.4) and (5.5) holds with b_{nk} instead of a_{nk} with q = 1.

Corollary 5.8. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

(i) $A \in (\ell_{\infty}(q) : b_c^{r,s}(p))$ if and only if (5.9) holds with b_{nk} instead of a_{nk} with q = 1.

(ii) $A \in (c_0(q) : b_c^{r,s}(p))$ if and only if (4.4), (4.5) and (4.6) hold with b_{nk} instead of a_{nk} with q = 1.

(iii) $A \in (c(q) : b_c^{r,s}(p))$ if and only if (4.4), (4.5), (4.6) and (4.7) hold with b_{nk} instead of a_{nk} with q = 1.

Corollary 5.9. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

(i) $A \in (\ell_{\infty}(q) : b^{r,s}(p))$ if and only if (5.10) holds with b_{nk} instead of a_{nk} with q = 1.

(ii) $A \in (c_0(q) : b^{r,s}(p))$ if and only if (4.2) holds with b_{nk} instead of a_{nk} with q = 1.

(iii) $A \in (c(q) : b^{r,s}(p))$ if and only if (4.2) and (4.4) hold with b_{nk} instead of a_{nk} with q = 1.

References

- [1] B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
- B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
- [3] F. Başar, B. Altay, Matrix mappings on the space bs(p) and its $\alpha \beta and \gamma duals$, Aligarh Bull. Math., 21(1), 79-91 (2002). [4] F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).

- [5] M. C. Bişgin, The binomial sequence spaces of nonabsolute type, J. Inequal. Appl. 309 (2016). [6] M. C. Bişgin, The binomial sequence spaces which include the spaces ℓ_p and ℓ_{∞} and geometric properties, J. Inequal. Appl. 304 (2016).
- [7] B. Choudhary, S. K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5),

- [11] A. Jarrah and E. Malkowsky, *BK spaces, bases and linear operators*, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
- [12] E.E. Kara and M. Ilkhan, On some Banach sequence spaces derived by a new band matrix, Br. J. Math. Comput. Sci., 9(2), 141-159 (2015).
- [13] E.E. Kara and M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11), 2208-2223 (2016).
 [14] M. Kirişci, On the Taylor sequence spaces of nonabsulate type which include the spaces c₀ and c, J. Math. Anal., 6(2), 22-35 (2015).
 [15] M. Kirişci, The application domain of infinite matrices with algorithms, Univ. J. Math. Appl., 1(1), 1-9 (2018).

- [16] M. Candan and A. Güneş, Paranormed sequence space of non-absolute type founded using generalized difference matrix, Proc. Natl. Acad. Sci., India, [10] M. Candan and A. Odney, *Inductor mediastratic space of non-absolute type founded using generatized algerence matrix*, 160: Natl. Acad. Sect. A Phys. Sci. 85(2), 269-276 (2015).
 [17] C. G. Lascarides and I. J. Maddox, *Matrix transformations between some classes of sequences*, Proc. Camb. Phil. Soc., 68, 99-104 (1970).
 [18] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
 [19] I. J. Maddox, *Paranormed sequence spaces generated by infinite matrices*, Proc. Camb. Philos. Soc., 64, 335-340 (1968).
 [20] H. Nakano, *Modulared sequence spaces*, Proc. Jpn. Acad., 27(2), 508-512 (1951).

- [21] S. Simons, *The sequence spaces* $\ell(p_v)$ and $m(p_v)$. Proc. London Math. Soc., 15(3), 422-436 (1965).