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Abstract

Let X and Y be Banach spaces. Let Ω be an open subset of X . Suppose that f : X → Y is
Fréchet differentiable in Ω and F : X ⇒ 2Y is a set-valued mapping with closed graph. In
the present paper, a modified superquadratic method (MSQM) is introduced for solving
the generalized equations 0 ∈ f (x)+F (x), and studied its convergence analysis under the
assumption that the second Fréchet derivative of f is Hölder continuous. Indeed, we show
that the sequence, generated by MSQM, converges super-quadratically in both semi-locally
and locally to the solution of the above generalized equation whenever the second Fréchet
derivative of f satisfies a Hölder-type condition.

1. Introduction

Throughout this paper we assume that X and Y are two real or complex Banach spaces and Ω 6= /0 is an open subset of X . Let f : X → Y
be a Fréchet differentiable function on Ω. Further, assume that the first and second Fréchet derivatives of f are denoted by ∇ f and ∇2 f
respectively. Let F be a set-valued mapping with closed graph acting between Banach space X and the subsets of Y . In this communication,
we are interested to approximate the solution of the following generalized equation problem

0 ∈ f (x)+F (x). (1.1)

The inclusions type (1.1), introduced by Robinson [24, 26] as a general tool for describing, analyzing, and solving different problems in a
unified manner, have been studied extensively. The inclusion problem (1.1) is an abstract model for variety of problems. When F = {0},
(1.1) is an equation. When F is the positive orthant in Rn, (1.1) is a system of inequalities. When F is the normal cone to a convex and
closed set in X , (1.1) reduces to variational inequalities. When F = ∂ψC is the subdifferential of the function

ψC(x) =
{

0, if x ∈C;
+∞, otherwise,

(1.1) is reduced to some minimization problems which has been studied by Robinson [25].
To solve (1.1), Dontchev [1] introduced the following classical Newton-type method, for each k = 0,1, . . .,

0 ∈ f (xk)+∇ f (xk)(xk+1− xk)+F (xk+1),

under the assumptions the set-valued mapping F is pseudo-Lipschitz and the Fréchet derivative of f is Lipschitz on a neighborhood of the
solution of (1.1) and established a quadratic convergence of the method. In his subsequent paper [2], he proved the uniform convergence of
the method. By following Dontchev’s method, Piétrus [5] obtained a super-linear convergence when the Fréchet derivative of f is Hölder
continuous on a neighborhood of the solution of (1.1) and later he [6] established the uniform convergence of this method in this mild
differentiability context.
Let x ∈ X . By D(x), we symbolize the subset of X which is defined by

D(x) :=
{

d ∈ X : 0 ∈ f (x)+∇ f (x)d +
1
2

∇
2 f (x)d2 +F (x+d)

}
.
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For finding an approximate solution of (1.1), the extension of Dontchev’s indigenous work [3] was done by Geoffroy et al. [14]. Geoffroy
and Pietrus [13] introduced the following superquadratic method (see Algorithm 1) for solving the generalized equation (1.1) and showed
that it is locally superquadratic convergent:

Algorithm 1 (The Superquadratic Method)
Step 0. Pick x0 ∈ X and put k := 0.
Step 1. If 0 ∈D(xk), then stop; otherwise, go to Step 2.
Step 2. If 0 /∈D(xk), choose dk such that dk ∈D(xk).
Step 3. Set xk+1 := xk +dk.
Step 4. Replace k by k+1 and go to Step 1.

Note that under some suitable conditions around a solution x∗ of the generalized equation (1.1), the authors [13, Theorem 3.1] showed that
there exists a neighborhood Ω of x∗ such that, for any point in Ω, there exists a sequence generated by Algorithm 1 which is superquadratically
convergent to the solution x∗. This implies that the convergence result, established in [13], guarantees the existence of a convergent sequence.
Therefore, for any initial point near to a solution, the sequences generated by Algorithm 1 are not uniquely defined and not every generated
sequence is convergent. Hence, in view of numerical computation, this kind of methods is not convenient in practical application. This
drawback motivates us to propose a method ’so-called’ modified superquadratic method (MSQM) as follows:

Algorithm 2 (The Modified Superquadratic Method (MSQM))
Step 0. Pick η ∈ [1,∞), x0 ∈ X and put k := 0.
Step 1. If 0 ∈D(xk), then stop; otherwise, go to Step 2.
Step 2. If 0 /∈D(xk), choose dk such that dk ∈D(xk) and

‖dk‖ ≤ η dist (0,D(xk)).

Step 3. Set xk+1 := xk +dk.
Step 4. Replace k by k+1 and go to Step 1.

The difference between Algorithms 1 and 2 is that Algorithm 2 generates at least one sequence and every generated sequence is convergent
but this does not appear in Algorithm 1. Since the sequences generated by Algorithm 1 are not uniquely defined, in contrast with Algorithm
1, we can guess that Algorithm 2 is more suitable than Algorithm 1 in numerical computation.
It is remark that if we replace the set D(x) by

S (x) :=
{

d ∈ X : 0 ∈ f (x)+∇ f (x)d +F (x+d)
}
,

the Algorithm 2 introduced in the present paper will be the same with the Algorithm given in [16, 23].
To solving (1.1), there have a large number of works on semilocal analysis ; see for example [7, 8, 11, 12, 19, 20, 27, 28]. Rashid et
al. [16, 23] established semilocal convergence analysis for solving the generalized equation problem (1.1), which was the extension of
Dontchev’s work in [1]. Rashid [17] introduced a variant of Newton-type Method for solving (1.1) and obtained its semilocal and local
convergence results. The same author [18] associated extended Newton-type method for solving a variational inclusion of the form

0 ∈ f (x)+g(x)+F (x),

where g : X → Y admits first order divided difference and established its semilocal and local convergence results for solving (1.1). As far as
we know, there doesn’t have any other study on semilocal analysis for the Algorithm 1.
The purpose of this study is to analyze the semilocal convergence for the modified superquadratic method defined by Algorithm 2. The
main tool is the Lipschitz-like property of set-valued mappings. The main results are the convergence criteria, established in Sect.3, which,
based on the information around the initial point, provides some sufficient conditions ensuring the convergence to a solution of any sequence
generated by Algorithm 2. As a consequence, local convergence result for the modified superquadratic method is obtained.
This paper is organized as follows: In Section 2, we recall a few necessary preliminary results. In Section 3, we consider the modified
superquadratic method for solving the generalized equation as well as using the concept of Lipchitz-like mappings, we prove the existence of
a sequence {xk} generated by Algorithm 2 and show that it is semilocally and locally superquadratic convergent. In the last section, we give
a summary of the major results presented in this paper.

2. Preliminary results

Let x ∈ X and B(x,r) = {y : ‖y− x‖ ≤ r} be denote the closed ball centered at x with radius r > 0. Let Γ : X ⇒ 2Y be a set-valued mapping.
The domain of Γ, denoted by domΓ, is defined by

domΓ := {x ∈ X : Γ(x) 6= /0}.

The inverse and the graph of Γ, denoted by Γ−1 and gphΓ respectively, are defined by

Γ
−1(y) := {x ∈ X : y ∈ Γ(x)} for each y ∈ Y

and gphΓ := {(x,y) ∈ X×Y : y ∈ Γ(x)}.
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Let B⊆ X . The distance from a point x ∈ X to a set B is defined by

dist(x,B) := inf
b∈B
‖x−b‖,

and the excess from the set A to the set B is defined by

e(B,A) = sup
x∈B
{dist(x,A)}.

The notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings are due to [23]. Aubin [9, 10] introduced these notions and studied
extensively.

Definition 2.1. Let G : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphG. Let rx̄ > 0, rȳ > 0 and M > 0. Then the mapping G is said
to be

(a) Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M if the following inequality holds:

e(G(y1)∩B(x̄,rx̄),G(y2))≤M‖y1− y2‖ for any y1,y2 ∈ B(ȳ,rȳ).

(b) pseudo-Lipschitz around (ȳ, x̄) if there exist constants a > 0, b > 0 and M′ > 0 such that G is Lipschitz-like on B(ȳ,b) relative to
B(x̄,a) with constant M′.

The following notion of (L, p)-Hölder continuity property is due to [21].

Definition 2.2. Let f : X→Y be a Fréchet differentiable function on some neighborhood U of x̄ and let ∇2 f be the second Fréchet derivative
of f on U. Let p ∈ [0,1] and L > 0. Then ∇2 f is called (L, p)-Höder continuous on U with constant L if the following condition holds:

‖∇2 f (x1)−∇
2 f (x2)‖ ≤ L‖x1− x2‖p, for any x1,x2 ∈U.

The following lemma has taken from [23]. This lemma employs a vital role for proving the convergence analysis.

Lemma 2.3. Let G : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphG. Assume that G is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄)
with constant M. Then

dist(x,G(y))≤Mdist(y,G−1(x))

holds for every x ∈ B(x̄,rx̄) and y ∈ B(ȳ, rȳ
3 ) satisfying dist(y,G−1(x))≤

rȳ

3
.

We would like to finish this section with the following lemma that is known in [4].

Lemma 2.4. Let Φ : X ⇒ 2X be a set-valued mapping. Let x̄ ∈ X, c > 0 and 0 < r < 1 be such that

dist(x̄,Φ(x̄))< c(1− r); (2.1)

and

e(Φ(x1)∩B(x̄,c),Φ(x2))≤ r‖x1− x2‖ for any x1,x2 ∈ B(x̄,c). (2.2)

Then Φ has a fixed point in B(x̄,c), that is, there exists x ∈ B(x̄,c) such that x ∈Φ(x). Moreover, if Φ is single-valued, then the fixed point of
Φ in B(x̄,c) is unique.

3. Convergence analysis of MSQM

This section is devoted to prove the existence and convergence of the sequences generated by the modified superquadratic method defined by
Algorithm 2. To this end, let x ∈ X and let us define the mapping Tx by

Tx(·) := f (x)+∇ f (x)(·− x)+
1
2

∇
2 f (x)(·− x)2 +F (·).

Then for the construction of D(x), we have that

D(x) =
{

d ∈ X : 0 ∈ Tx(x+d)
}

=
{

d ∈ X : x+d ∈ Tx
−1(0)

}
. (3.1)

Moreover, for any v ∈ X and y ∈ Y , the inclusions

v ∈ T−1
x (y) and y ∈ f (x)+∇ f (x)(v− x)+

1
2

∇
2 f (x)(v− x)2 +F (v). (3.2)

are equivalent. In particular,

x̄ ∈ T−1
x̄ (ȳ) for each (x̄, ȳ) ∈ gph ( f +F ).

The following result is due to [15]. This result establishes the equivalence relation between ( f +F )−1 and T−1
x̄ .

Lemma 3.1. Let f : X → Y be a function and let (x̄, ȳ) ∈ gph ( f +F ). Assume that f is twice differentiable in an open neighborhood Ω of
x̄ and that its second-order derivative is continuous at x̄. Then the following are equivalent:
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(i) The mapping ( f +F )−1 is pseudo-Lipschitz at (ȳ, x̄);
(ii) The mapping T−1

x̄ (·) is pseudo-Lipschitz at (ȳ, x̄).

Let rx̄ > 0, rȳ > 0 and (x̄, ȳ) ∈ gph ( f +F ). Then, the closed graph property of the set-valued mapping f +F implies that f +F is
continuous at x̄ for ȳ, that is,

lim
x→x̄

dist(ȳ, f (x)+F (x)) = 0. (3.3)

Assume that B(x̄,rx̄) ⊆ Ω∩domF . Moreover, by Lemma 3.1 we assume that the mapping T−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to

B(x̄,rx̄) with constant M, that is,

e(T−1
x̄ (y1)∩B(x̄,rx̄),T−1

x̄ (y2))≤M‖y1− y2‖ ∀ y1, y2 ∈ B(ȳ,rȳ). (3.4)

Let p ∈ (0,1], L > 0 and setting

α := min
{

rȳ−
L(3p+2 +2p+2)rp+2

x̄
(p+1)(p+2)2p+2 ,

rx̄(2p+1−5MLrp
x̄ )

5M2p+2

}
. (3.5)

Then

α > 0 if and only if L < min
{2p+2(p+1)(p+2)rȳ

(3p+2 +2p+2)rp+2
x̄

,
2p+1

5Mrp
x̄

}
. (3.6)

The following lemma plays a vital role for convergence analysis of the modified superquadratic method. The proof is a refinement of the one
for [23, Lemma 3.1].

Lemma 3.2. Let T−1
x̄ be a Lipschitz-like mapping on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M. Let p ∈ (0,1] and x ∈ B(x̄, rx̄

2 ). Assume
that ∇ f and ∇2 f are (L, p)-Höder continuous at x̄ on B(x̄, rx̄

2 ) with the same constant L defined by (3.6). Let α be defined in (3.5) so that

(3.6) is satisfied. Then the mapping T−1
x is Lipschitz-like on B(ȳ,α) relative to B(x̄, rx̄

2 ) with constant
5M2p

2p+1−5MLrp
x̄

i.e.

e(T−1
x (t1)∩B(x̄,

rx̄

2
),T−1

x (t2))≤
5M2p

2p+1−5MLrp
x̄
‖t1− t2‖ for every t1, t2 ∈ B(ȳ,α).

Proof. Since α is defined in (3.5) so that (3.6) is satisfied, then it is clear that α > 0. Now let

t1, t2 ∈ B(ȳ,α) and u′ ∈ T−1
x (t1)∩B(x̄,

rx̄

2
). (3.7)

To complete the proof, it is sufficient to show that there exists u′′ ∈ T−1
x (t2) such that

‖u′−u′′‖ ≤ 5M2p

2p+1−5MLrp
x̄
‖t1− t2‖.

To finish this, we need to verify that there exists a sequence {xk} ⊆ B(x̄,rx̄) such that

t2 ∈ f (x)+∇ f (x)(xk−1− x)+∇ f (x̄)(xk− xk−1) (3.8)

+
1
2

∇
2 f (x)(xk−1− x)2 +

1
2

∇
2 f (x̄)

(
(xk− x̄)2−

(xk−1− x̄)2
)
+F (xk)

and

‖xk− xk−1‖ ≤
5M
2
‖t1− t2‖

(5MLrp
x̄

2p+1

)k−2
(3.9)

hold for each k = 2,3,4, . . .. We proceed by induction on k. Write

ai := ti− f (x)−∇ f (x)(u′− x)− 1
2

∇
2 f (x)(u′− x)2 + f (x̄) (3.10)

+∇ f (x̄)(u′− x̄)+
1
2

∇
2 f (x̄)(u′− x̄)2 for each i = 1,2.

Note by (3.7) that

‖x−u′‖ ≤ ‖x− x̄‖+‖x̄−u′‖ ≤ rx̄. (3.11)

Furthermore, we have, for (3.10), that

‖ai− ȳ‖ ≤ ‖ti− ȳ‖+‖ f (u′)− f (x)−∇ f (x)(u′− x)

− 1
2

∇
2 f (x)(u′− x)2‖+‖ f (u′)− f (x̄)

−∇ f (x̄)(u′− x̄)− 1
2

∇
2 f (x̄)(u′− x̄)2‖. (3.12)
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If ∇ f is (L, p)-Hölder continuous at x̄ with constant L, then we have that

‖ f (x)− f (x̄)−∇ f (x̄)(x− x̄)‖= ‖
∫ 1

0
[∇ f (x̄+ t(x− x̄))−∇ f (x̄)](x− x̄)dt‖

≤
∫ 1

0
‖∇ f (x̄+ t(x− x̄))−∇ f (x̄)‖‖x− x̄‖dt

≤ L‖x− x̄‖p+1
∫ 1

0
t pdt

=
L

p+1
‖x− x̄‖p+1. (3.13)

Analogously, if ∇2 f is (L, p)-Hölder continuous at x̄ with constant L, then we have that

‖ f (x)− f (x̄)−∇ f (x̄)(x− x̄)− 1
2

∇
2 f (x̄)(x− x̄)2‖= ‖

∫ 1

0
[∇ f (x̄+ t(x− x̄))−∇ f (x̄)−∇

2 f (x̄)(x̄+ t(x− x̄)− x̄)](x− x̄)dt‖

≤
∫ 1

0
‖∇ f (x̄+ t(x− x̄))−∇ f (x̄)−∇

2 f (x̄)(x̄+ t(x− x̄)− x̄)‖‖x− x̄‖dt

=
∫ x

x̄
‖∇ f (u)−∇ f (x̄)−∇

2 f (x̄)(u− x̄)‖du

=
∫ x

x̄

∫ 1

0

{
‖∇2 f (x̄+ s(u− x̄))−∇

2 f (x̄)‖ds
}
‖u− x̄‖du

≤
∫ x

x̄

{
L‖u− x̄‖p+1

∫ 1

0
spds

}
du

≤ L
p+1

∫ x

x̄
‖u− x̄‖p+1du

=
L

(p+1)(p+2)
‖x− x̄‖p+2.

Then from (3.12), using the relations in (3.7), (3.11) and the relation α ≤ rȳ−
L(3p+2 +2p+2)rp+2

x̄
(p+1)(p+2)2p+2 by (3.5), we have that

‖ai− ȳ‖ ≤ α +
L

(p+1)(p+2)
(‖u′− x‖p+2 +‖u′− x̄‖p+2)

≤ α +
L

(p+1)(p+2)

(
rp+2

x̄ +
rp+2

x̄
2p+2

)
= α +

L(1+2p+2)rp+2
x̄

(p+1)(p+2)2p+2 ≤ rȳ.

That is ai ∈ B(ȳ,rȳ) for each i = 1,2. Define x1 := u′. Then x1 ∈ T−1
x (t1) by (3.7) and it follows from (3.2) that

t1 ∈ f (x)+∇ f (x)(x1− x)+
1
2

∇
2 f (x)(x1− x)2 +F (x1).

This can be written in another form as follows:

t1 + f (x̄)+∇ f (x̄)(x1− x̄))+
1
2

∇
2 f (x̄)(x1− x̄)2 ∈ f (x)

+∇ f (x)(x1− x)+
1
2

∇
2 f (x)(x1− x)2 +F (x1)+ f (x̄)

+∇ f (x̄)(x1− x̄)+
1
2

∇
2 f (x̄)(x1− x̄)2.

This, by the definition of a1, implies that

a1 ∈ f (x̄)+∇ f (x̄)(x1− x̄)++
1
2

∇
2 f (x̄)(x1− x̄)2 +F (x1).

Hence x1 ∈ T−1
x̄ (a1) by (3.2). This together with (3.7) implies that

x1 ∈ T−1
x̄ (a1)∩B(x̄,rx̄).

Noting that a1, a2 ∈ B(ȳ,rȳ) and T−1
x̄ is Lipschitz-like by our assumption. Then it follows from (3.4) that there exists x2 ∈ T−1

x̄ (a2) such that

‖x2− x1‖ ≤M‖a1−a2‖= M‖t1− t2‖<
5M
2
‖t1− t2‖.

Moreover, by the construction of t2 and noting x1 = u′, we have

x2 ∈ T−1
x̄ (a2) = T−1

x̄
(
t2− f (x)−∇ f (x)(x1− x)− 1

2
∇

2 f (x)(x1− x)2 + f (x̄)+∇ f (x̄)(x1− x̄)+
1
2

∇
2 f (x̄)(x1− x̄)2),
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which, together with (3.2), implies that

t2 ∈ f (x)+∇ f (x)(x1− x)+∇ f (x̄)(x2− x1)+
1
2

∇
2 f (x)(x1− x)2 +

1
2

∇
2 f (x̄)

(
(x2− x̄)2− (x1− x̄)2

)
+F (x2).

This shows that (3.8) and (3.9) are hold with generated points x1,x2.
Assume that x1,x2, ...,xn are obtained so that (3.8) and (3.9) are hold for k = 2,3, . . . ,n. We need to construct xn+1 such that (3.8) and (3.9)
are also true for k = n+1. For this purpose, set

an
i := t2− f (x)−∇ f (x)(xn+i−1− x)− 1

2
∇

2 f (x)(xn+i−1− x)2 + f (x̄)

+∇ f (x̄)(xn+i−1− x̄)+
1
2

∇
2 f (x̄)(xn+i−1− x̄)2 for each i = 0,1.

Then, for i = 0,1, we obtain that

‖an
0−an

1‖= ‖(∇ f (x)−∇ f (x̄))(xn− xn−1)+
1
2

∇
2 f (x)

(
(xn− x)2− (xn−1− x)2)

− 1
2

∇
2 f (x̄)

(
(xn− x̄)2− (xn−1− x̄)2)‖

= ‖(∇ f (x)−∇ f (x̄))(xn− xn−1)+
1
2

∇
2 f (x)

(
(xn− xn−1 + xn−1− x)2

− (xn−1− x)2)− 1
2

∇
2 f (x̄)

(
(xn− xn−1 + xn−1− x̄)2− (xn−1− x̄)2)‖

≤ ‖∇ f (x)−∇ f (x̄)‖‖xn− xn−1‖+
1
2
‖∇2 f (x)−∇

2 f (x̄)‖‖xn− xn−1‖2

+‖∇2 f (x)(xn−1− x)−∇
2 f (x̄)(xn−1− x̄)‖‖xn− xn−1‖.

For all z ∈ B(x̄, rx̄
2 ), x 7→ ∇ f (x), x 7→ ∇2 f (x) and x 7→ ∇2 f (x)(z− x) are (L, p)-Hölder continuous at x̄, thus we have that

‖an
0−an

1‖ ≤ L‖x− x̄‖p{‖xn− xn−1‖+
1
2
‖xn− xn−1‖2 +‖xn− xn−1‖}

≤ Lrp
x̄

2p

(
2‖xn− xn−1‖+

1
2
‖xn− xn−1‖2)

≤ Lrp
x̄

2p

(
2‖xn− xn−1‖+

1
2
‖xn− xn−1‖

)
, if the ball

B(x̄,
rx̄

2
) is sufficiently small

=
5Lrp

x̄
2p+1 ‖xn− xn−1‖. (3.14)

Since ‖x1− x̄‖ ≤ rx̄

2
by (3.7) and ‖t1− t2‖ ≤ 2α by (3.7), it follows from (3.9) that

‖xn− x̄‖ ≤
n

∑
j=2
‖x j− x j−1‖+‖x1− x̄‖

≤ 5Mα

n

∑
j=2

(5MLrp
x̄

2p+1

) j−2
+

rx̄

2

=
5Mα2p+1

2p+1−5MLrp
x̄
+

rx̄

2
.

By (3.5), we have α ≤ rx̄(2p+1−5MLrp
x̄ )

5M2p+2 and so

‖xn− x̄‖ ≤ rx̄. (3.15)

Therefore, we obtain that

‖xn− x‖ ≤ ‖xn− x̄‖+‖x̄− x‖ ≤ 3
2

rx̄. (3.16)

Furthermore, using (3.7) and (3.16), one has that, for each i = 0,1,

‖an
i − ȳ‖ ≤ ‖ti− ȳ‖+‖ f (xn+i−1)− f (x)−∇ f (x)(xn+i−1− x)− 1

2
∇

2 f (x)(xn+i−1− x)2‖

+‖ f (xn+i−1)− f (x̄)−∇ f (x̄)(xn+i−1− x̄)− 1
2

∇
2 f (x̄)(xn+i−1− x̄)2‖

≤ α +
L

(p+1)(p+2)
(
‖xn+i−1− x‖p+2 +‖xn+i−1− x̄‖p+2)

≤ α +
L

(p+1)(p+2)

(3p+2rp+2
x̄

2p+2 + rp+2
x̄

)
= α +

L(3p+2 +2p+2)rp+2
x̄

(p+1)(p+2)2p+2 .
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It follows, from the definition of α in (3.5), that an
i ∈ B(ȳ,rȳ) for each i = 0,1. Since assumption (3.8) holds for k = n, we have

t2 ∈ f (x)+∇ f (x)(xn−1− x)+∇ f (x̄)(xn− xn−1)+
1
2

∇
2 f (x)(xn−1− x)2 +

1
2

∇
2 f (x̄)[(xn− x̄)2− (xn−1− x̄)2]+F (xn),

which can be rewritten as

t2 + f (x̄)+∇ f (x̄)(xn−1− x̄))+
1
2

∇
2 f (x̄)(xn−1− x̄)2 ∈ f (x)+∇ f (x)(xn−1− x)+∇ f (x̄)(xn− xn−1)+

1
2

∇
2 f (x)(xn−1− x)2

+
1
2

∇
2 f (x̄)[(xn− x̄)2− (xn−1− x̄)2]+F (xn)+ f (x̄)+∇ f (x̄)(xn−1− x̄)+

1
2

∇
2 f (x̄)(xn−1− x̄)2.

Then by the definition of an
0, we have that an

0 ∈ f (x̄)+∇ f (x̄)(xn− x̄)+
1
2

∇2 f (x̄)(xn− x̄)2 +F (xn). This, together with (3.2) and (3.15),
yields that

xn ∈ T−1
x̄ (an

0)∩B(x̄,rx̄).

Using (3.4) again, there exists an element xn+1 ∈ T−1
x̄ (an

1) such that

‖xn+1− xn‖ ≤M‖an
0−an

1‖ ≤
5M
2
‖t1− t2‖

(5MLrp
x̄

2p+1

)n−1
, (3.17)

where the last inequality holds by (3.14). By the definition of an
1, we have

xn+1 ∈ T−1
x̄ (an

1) = T−1
x̄

(
t2− f (x)−∇ f (x)(xn− x)− 1

2
∇

2 f (x)(xn− x)2 + f (x̄)+∇ f (x̄)(xn− x̄)+
1
2

∇
2 f (x̄)(xn− x̄)2

)
,

which, together with (3.2), implies that

t2 ∈ f (x)+∇ f (x)(xn− x)+∇ f (x̄)(xn+1− xn)+
1
2

∇
2 f (x)(xn− x)2 +

1
2

∇
2 f (x̄)

(
(xn+1− x̄)2− (xn− x̄)2

)
+F (xn+1).

This, together with (3.17), completes the induction step and ensure the existence of a sequence {xn} satisfying (3.8) and (3.9).

Since
5MLrp

x̄
2p+1 < 1, we see from (3.9) that {xk} is a Cauchy sequence and hence it is convergent, say to u′′, that is u′′ := limk→∞ xk. Note

that F has closed graph. Then, taking limit in (3.8), we get t2 ∈ f (x)+∇ f (x)(u′′− x)+
1
2

∇2 f (x)(u′′− x)2 +F (u′′) and so u′′ ∈ T−1
x (t2).

Moreover,

‖u′−u′′‖ ≤ limsup
n→∞

n

∑
k=2
‖xk− xk−1‖ ≤ lim

n→∞

n

∑
k=2

5M
2
‖t1− t2‖

(5MLrp
x̄

2p+1

)k−2
=

5M2p

2p+1−5MLrp
x̄
‖t1− t2‖.

This completes the proof of the Lemma 3.2.

Before going to demonstrate our main results, we define, for each x ∈ X , the mapping Jx : X → Y by

Jx(·) := f (x̄)+∇ f (x̄)(·− x̄)+
1
2

∇
2 f (x̄)(·− x̄)2− f (x)−∇ f (x)(·− x)− 1

2
∇

2 f (x)(·− x)2,

and the set-valued mapping Φx : X ⇒ 2X by

Φx(·) = T−1
x̄ [Jx(·)].

Then, for any x′, x′′ ∈ X , we have that

‖Jx(x′)− Jx(x′′)‖= ‖(∇ f (x̄)−∇ f (x))(x′− x′′)+
1
2

∇
2 f (x̄)

(
(x′− x̄)2− (x′′− x̄)2

)
− 1

2
∇

2 f (x)
(
(x′− x)2− (x′′− x)2)‖

= ‖(∇ f (x̄)−∇ f (x))(x′− x′′)+
1
2

∇
2 f (x̄)

(
(x′− x′′+ x′′− x̄)2− (x′′− x̄)2

)
− 1

2
∇

2 f (x)
(
(x′− x′′+ x′′− x)2− (x′′− x)2

)
‖

≤ ‖∇ f (x̄)−∇ f (x)‖‖x′− x′′‖+ 1
2
‖∇2 f (x̄)−∇

2 f (x)‖‖x′− x′′‖2 +‖∇2 f (x̄)(x′′− x̄)−∇
2 f (x)(x′′− x)‖‖x′− x′′‖.

(3.18)

3.1. Superquadratic convergence

This subsection is devoted to study that if ∇2 f is (L, p)-Hölder continuous, the sequence generated by Algorithm 2 converges superquadrati-
cally to the solution of (1.1). Thus, the main theorem of this study, which gives some sufficient conditions confirming the convergence of the
modified superquadratic method with starting point x0, read as follows:

Theorem 3.3. Let p ∈ (0,1] and η ∈ (1,∞). Suppose that T−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M and that

∇2 f is (L, p)-Höder continuous on B(x̄, rx̄
2 ) with constant L. Let α be defined by (3.5) such that (3.6) is hold. Let δ > 0 be such that

(a) δ ≤min
{ rx̄

4
,

2(p+1)(p+2)rȳ

L(2p+3 +2 ·4p+2 +1)
,

1285α

3 ·2p , 1
}

;

(b) 5(M+1)L
(
η2pδ p+1 +44−p(p+1)(p+2)rp

x̄
)
≤ 2p+1(p+1)(p+2);
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(c) ‖ȳ‖< Lδ p+2

2(p+1)(p+2)
.

Suppose that f +F is continuous at x̄ for ȳ, i.e. (3.3) is hold. Then there exists some δ̂ > 0 such that any sequence {xn} generated by
Algorithm 2 with initial point in B(x̄, δ̂ ) converges superquadratically to a solution x∗ of (1.1).

Proof. According to the continuity of f +F at x̄ for ȳ and assumption (c), we can choose 0 < δ̂ ≤ δ be such that

dist(0, f (x0)+F(x0))≤
Lδ p+2

2(p+1)(p+2)
for each x0 ∈ B(x̄, δ̂ ). (3.19)

Setting

t :=
5ηML2pδ p+1

(p+1)(p+2)(2p+1−5MLrp
x̄ )

.

It follows, from assumption (b), that

5ML
(
η2p

δ
p+1 +(p+1)(p+2)rp

x̄
)
≤ 5(M+1)L

(
η2p

δ
p+1 +44−p(p+1)(p+2)rp

x̄
)
≤ 2p+1(p+1)(p+2).

The above inequality implies that

t ≤ 1. (3.20)

Let x0 ∈ B(x̄, δ̂ ). We use mathematical induction on n to show that Algorithm 2 generates at least one sequence and every sequence {xn}
obtained by Algorithm 2 satisfies the following assertions:

‖xn− x̄‖ ≤ 2δ (3.21)

and

‖dn‖ ≤ t

(
1
2

)(p+2)n

δ (3.22)

for each n = 0,1,2, .... Now, define

rx :=
9

(p+1)(p+2)

(
ML‖x− x̄‖p+2 +(p+1)(p+2)M‖ȳ‖

)
for each x ∈ X . (3.23)

Because η > 1, p ∈ (0,1] and δ ≤ rx̄

4
by assumption (a), it follows, from assumption (b), that

257(M+1)Lδ
p+1 = (M+1)L(δ p+1 +44

δ
p+1)≤ (M+1)L(δ p+1 +44

δ
p)

≤ (M+1)L(2p
ηδ

p+1 +44−p(p+1)(p+2)rp
x̄ )

≤ 2p+1(p+1)(p+2)
5

,

which gives

MLδ
p+1 ≤ 2p+1(p+1)(p+2)

1285
and Lδ

p+1 ≤ 2p+1(p+1)(p+2)
1285

. (3.24)

Thus, by 3 ·2pδ ≤ 1285α in assumption (a) and second inequality in (3.24), we obtain that

‖ȳ‖< Lδ p+2

2(p+1)(p+2)
=

Lδ p+1

2(p+1)(p+2)
·δ ≤ α

3
(3.25)

(thanks to assumption (c)). Thus, we obtain from (3.23), together with assumption (c), that

rx <
9

2(p+1)(p+2)

(
2p+3MLδ

p+2 +MLδ
p+2
)

=
9(2p+3 +1)ML
2(p+1)(p+2)

δ
p+2

=
9(2p+3 +1)MLδ p+1

2(p+1)(p+2)
·δ for each x ∈ B(x̄,2δ ). (3.26)

Since p ∈ (0,1], by the first inequality in (3.24) we have from (3.26) that

rx ≤ 2δ .

It is clear that α > 0 by assumption (a). Then we have from (3.5) that

α > 0⇒ 2p+1−5MLrp
x̄ > 0⇒ 5MLrp

x̄ < 2p+1.
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Therefore, with the help of above relation we obtain that

5 ·4pMLδ
p < 5MLrp

x̄ < 2p+1⇒ LMδ
p <

2p+1

5 ·4p . (3.27)

Note that, for n = 0, (3.21) is trivial. To show that the point x1 exists and (3.22) holds for n = 0, it suffices to prove that D(x0) 6= /0. We will
do that by applying Lemma 2.4 to the mapping Φ := Φx0 . To do this, let us check that both assumptions (2.1) and (2.2) of Lemma 2.4 hold

with c := rx0 and r :=
8
9

. Here, we note that x̄ ∈ T−1
x̄ (ȳ)∩B(x̄,δ ). Then by the definition of the excess e, we obtain that

dist(x̄,Φx0(x̄))≤ e(T−1
x̄ (ȳ)∩B(x̄,δ ),Φx0(x̄))

≤ e(T−1
x̄ (ȳ)∩B(x̄,rx̄),T−1

x̄ [Jx0(x̄)]). (3.28)

By the (L, p)-Hölder continuity property of ∇2 f and (3.14), we obtain, for each x ∈ B(x̄,2δ )⊆ B(x̄, rx̄
2 ), that

‖Jx0(x)− ȳ‖= ‖ f (x̄)+∇ f (x̄)(x− x̄)+
1
2

∇
2 f (x̄)(x− x̄)2− f (x0)−∇ f (x0)(x− x0)−

1
2

∇
2 f (x0)(x− x0)

2− ȳ‖

≤ ‖ f (x)− f (x0)−∇ f (x0)(x− x0)−
1
2

∇
2 f (x0)(x− x0)

2‖+‖ f (x)− f (x̄)−∇ f (x̄)(x− x̄)+
1
2

∇
2 f (x̄)(x− x̄)2‖+‖ȳ‖

≤ L
(p+1)(p+2)

(
‖x− x0‖p+2 +‖x− x̄‖p+2)+‖ȳ‖. (3.29)

Because of ‖x0− x̄‖ ≤ δ̂ ≤ δ , L(2p+3 +2 ·4p+2 +1)δ ≤ 2(p+1)(p+2)rȳ, δ ≤ 1 by assumption (a), ‖ȳ‖< Lδ p+2

2(p+1)(p+2)
by assumption

(c) and second relation in (3.24), (3.29) implies that

‖Jx0(x)− ȳ‖ ≤ L
(p+1)(p+2)

(
‖(x− x̄)+(x̄− x0)‖p+2 +‖x− x̄‖p+2

)
+‖ȳ‖

≤ L
(p+1)(p+2)

(
(3δ )p+2 +(2δ )p+2

)
+

Lδ p+2

2(p+1)(p+2)

≤ L
2(p+1)(p+2)

(
2 ·3p+2 +2p+3 +1

)
δ

p+2

≤ L
2(p+1)(p+2)

(
2 ·3p+2 +2p+3 +1

)
δ , since δ

p+1 ≤ 1

≤ rȳ. (3.30)

This means that, for each x ∈ B(x̄,2δ ), Jx0(x) ∈ B(ȳ,rȳ). In particular case, putting x = x̄ in (3.29). Then we have that

‖Jx0(x̄)− ȳ‖ ≤ L
(p+1)(p+2)

‖x̄− x0‖p+2 +‖ȳ‖ (3.31)

≤ 3L
2(p+1)(p+2)

δ
p+2 ≤ 3L

2(p+1)(p+2)
δ

≤ rȳ.

Hence, by (3.31) and the Lipschitz-like property of T−1
x̄ , we have, from (3.28), that

dist(x̄,Φx0(x̄))≤M‖ȳ− Jx0(x̄)‖

≤ 1
(p+1)(p+2)

(
ML‖x̄− x0‖p+2 +(p+1)(p+2)M‖ȳ‖

)
=

(
1− 8

9

)
rx0 = c(1− r),

which shows that the assumption (2.1) of Lemma 2.4 is satisfied.
Next, we show that assumption (2.2) of Lemma 2.4 is satisfied. To do this, let x′,x′′ ∈ B(x̄,rx0). Then we have that x′,x′′ ∈ B(x̄,rx0) ⊆
B(x̄,2δ )⊆ B(x̄,rx̄) by (3.26) and Jx0(x

′),Jx0(x
′′) ∈ B(ȳ,rȳ) by (3.30). This, together with the Lipschitz-like property of T−1

x̄ , implies that

e(Φx0(x
′)∩B(x̄,rx0),Φx0(x

′′))≤ e(Φx0(x
′)∩B(x̄,rx̄),Φx0(x

′′))

= e(T−1
x̄ [Jx0(x

′)]∩B(x̄,rx̄),T−1
x̄ [Jx0(x

′′)])

≤M‖Jx0(x
′)− Jx0(x

′′)‖.

Since ∇2 f and ∇2 f (·)(z− ·) are (L, p)-Hölder continuous on B(x̄, rx̄
2 ) for all z ∈ B(x̄, rx̄

2 ), then ∇ f is also (L, p)-Hölder continuous on
B(x̄, rx̄

2 ) and for simplicity we take the same constant L. Thus, for the choice of x0, (3.18) yields that

‖Jx0(x
′)− Jx0(x

′′)‖ ≤ ‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖+ 1
2
‖∇2 f (x̄)−∇

2 f (x0)‖‖x′− x′′‖2 +‖∇2 f (x̄)(x′′− x̄)−∇
2 f (x0)(x′′− x0)‖‖x′− x′′‖

≤ L‖x̄− x0‖p‖x′− x′′‖+ L
2
‖x̄− x0‖p‖x′− x′′‖2 +L‖x̄− x0‖p‖x′− x′′‖

≤
(

2L+
L
2
‖x′− x′′‖

)
‖x̄− x0‖p‖x′− x′′‖

≤ 2L(δ p +δ
p+1)‖x′− x′′‖.
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Applying the first inequality of (3.24) and (3.27), it follows, from (3.27), that

e(Φx0(x
′)∩B(x̄,rx0),Φx0(x

′′))≤ 2ML(δ p +δ
p+1)‖x′− x′′‖ ≤ 2p+2

( 1
5 ·4p +

(p+1)(p+2)
1285

)
‖x′− x′′‖

<
8
9
‖x′− x′′‖= r‖x′− x′′‖, since p ∈ (0,1].

This means that the assumption (2.2) of Lemma 2.4 is also satisfied. Thus by Lemma 2.4, we can deduce the existence of a fixed point

x̂1 ∈ B(x̄,rx0) such that x̂1 ∈Φx0(x̂1), which translates to 0 ∈ f (x0)+∇ f (x0)(x̂1−x0)+
1
2

∇2 f (x0)(x̂1−x0)
2+F (x̂1) and hence D(x0) 6= /0.

Consequently, we can choose d0 ∈D(x0) such that

‖d0‖ ≤ η dist(0,D(x0)). (3.32)

Therefore, according to the Algorithm 2, we can say that x1 := x0 +d0 is defined.
Now, we will show that the assertion (3.22) is also hold for n = 0. Note by assumption (a) that x0 ∈ B(x̄, δ̂ )⊆ B(x̄,δ )⊆ B(x̄, rx̄

2 ). Since T−1
x̄

is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄), it follows from Lemma 3.2 that T−1
x0

is Lipschitz-like on B(ȳ,α) relative to B(x̄, rx̄
2 ) with

constant
5M2p

2p+1−5MLrp
x̄

. Moreover, (3.19) and (3.25) imply that

dist(0,Tx0(x0) = dist(0, f (x0)+F(x0))≤
Lδ p+2

2(p+1)(p+2)
≤ α

3
. (3.33)

It has been mentioned earlier that x0 ∈ B(x̄, rx̄
2 ) and by (3.25)) we have 0 ∈ B(ȳ, α

3 ). This, together with (3.33), implies that Lemma 2.3 is
applicable and hence by applying it we have that

dist(x0,Tx0
−1(0))≤ 5M2p

2p+1−5MLrp
x̄

dist(0,Tx0(x0)) (3.34)

Applying (3.34), we have from (3.1) that

dist(0,D(x0)) = dist(x0,T−1
x0

(0))

≤ 5M2p

2p+1−5MLrp
x̄

dist(0,Tx0(x0)). (3.35)

Using (3.35), (3.33) and then (3.20) in (3.32), we obtain that

‖x1− x0‖= ‖d0‖ ≤ η dist(0,D(x0))

≤ 5ηM2p

2p+1−5MLrp
x̄

dist(0,Tx0(x0))

≤ 5ηML2pδ p+2

2(p+1)(p+2)(2p+1−5MLrp
x̄ )

= t
(1

2

)
δ .

This shows that (3.22) is hold for n = 0.
We assume that the points x1,x2, ...,xk are generated by Algorithm 2, and (3.21) and (3.22) are true for n = 0,1, . . . ,k−1. We show that
there exists xk+1 such that (3.21) and (3.22) are hold for n = k. Since, for each n≤ k−1, (3.21) and (3.22) are true and t ≤ 1 by (3.20), we
have the following inequality

‖xk− x̄‖ ≤
k−1

∑
i=0
‖xi+1− xi‖+‖x0− x̄‖ ≤ δ

k−1

∑
i=0

t

(
1
2

)(p+2)i

+δ

≤ δ

k−1

∑
i=0

(
1
2

)(p+2)i

+δ ≤ δ +δ = 2δ .

This shows that (3.21) holds for n = k. Finally, we will show that (3.22) holds for n = k. Now if we use the same arguments that we did for
the case when n = 0, we can prove that D(xk) 6= /0 and so by Algorithm 2 we can choose dk ∈D(0,xk) such that

‖dk‖ ≤ η dist(0,D(xk)),

that is, the point xk+1 exists. Moreover, we have that T−1
xk

is Lipschitz-like on B(ȳ,α) relative to B(x̄, rx̄
2 ) with constant

5M2p

2p+1−5MLrp
x̄

.
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Therefore, we have that

‖xk+1− xk‖= ‖dk‖ ≤ η dist(0,D(xk))

≤ 5ηM2p

2p+1−5MLrp
x̄

dist(0,Txk (xk))

=
5ηM2p

2p+1−5MLrp
x̄

dist(0, f (xk)+F(xk))

≤ 5ηM2p

2p+1−5MLrp
x̄
‖ f (xk)− f (xk−1)−∇ f (xk−1)(xk− xk−1)−

1
2

∇
2 f (xk−1)(xk− xk−1)

2‖

≤ 5ηML2p

(p+1)(p+2)(2p+1−5MLrp
x̄ )
‖xk− xk−1‖p+2

≤ 5ηML2pδ p+1

(p+1)(p+2)(2p+1−5MLrp
x̄ )

(
t
(

1
2

)(p+2)k−1)p+2

δ

≤ t
(

1
2

)(p+2)k

δ .

This implies that (3.22) holds for n = k and therefore the proof of the theorem is completed.

In the special case when x̄ is a solution of (1.1) (that is ȳ = 0 in Theorem 3.3), then we have the following corollary which gives the
super-quadratically local convergence result for the modified superquadratic method.

Corollary 3.4. Let p ∈ (0,1] and η > 1. Let x̄ be the solution of (1.1) and T−1
x̄ be pseudo-Lipschitz around (0, x̄). Suppose that ∇2 f is

(L, p)-Hölder continuous around x̄. Suppose that

lim
x→x̄

dist(0, f (x)+F (x)) = 0.

Then there exists some δ̂ > 0 such that any sequence {xn} generated by Algorithm 2 with initial point in B(x̄, δ̂ ) converges superquadratically
to a solution x∗ of (1.1).

Proof. By our assumption, T−1
x̄ is pseudo-Lipschitz around (0, x̄). Then there exist constants r0, β and M such that T−1

x̄ is Lipschitz-like on
B(0,r0) relative to B(x̄,β ) with constant M. Then, for each 0 < r ≤ β , one has that

e(T−1
x̄ (y1)∩B(x̄,r),T−1

x̄ (y2)≤M‖y1− y2‖ for any y1,y2 ∈ B(0,r0)

i.e. T−1
x̄ is Lipschitz-like on B(0,r0) relative to B(x̄,r) with constant M. Let L ∈ (0,1) and rx̄ ∈ (0,β ) be such that

rx̄

2
≤ r, MLrp

x̄ ≤
2p+1

5

and r0−
L(3p+2 +2p+2)rp+2

x̄
(p+1)(p+2)2p+2 > 0. By the (L, p)-Hölder continuous property of ∇2 f , for each x, x′ ∈ B(x̄, rx̄

2 ), we have that

‖∇2 f (x)−∇
2 f (x′)‖ ≤ L‖x− x′‖p.

Choose α so that

α := min
{

r0−
L(3p+2 +2p+2)rp+2

x̄
(p+1)(p+2)2p+2 ,

rx̄(2p+1−5MLrp
x̄ )

5M2p+2

}
> 0,

and

min
{ rx̄

4
,

2(p+1)(p+2)r0

L(2p+3 +2 ·4p+2 +1)
,

1285α

3 ·2p

}
> 0.

Thus we can choose 0 < δ ≤ 1 such that

δ ≤min
{ rx̄

4
,

2(p+1)(p+2)r0

L(2p+3 +2 ·4p+2 +1)
,

1285α

3 ·2p

}
.

and

5(M+1)L
(
η2p

δ
p+1 +44−p(p+1)(p+2)rp

x̄
)
≤ 2p+1(p+1)(p+2).

Now one can easily sees that the assumptions (a)-(c) of Theorem 3.3 are hold. Therefore, to complete the proof of the corollary, we can
apply Theorem 3.3 .
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4. Conclusion

The semilocal and local convergence results for the modified superquadratic method are established with η > 1 under the assumptions that
T−1

x̄ is Lipschitz-like as well as ∇2 f is (L, p)-Hölder continuous. This result extends and improves the corresponding one [13]. This result
seems new for the generalized equation problem (1.1). According to the main result of this study, we have the following conclusions:

• If p = 0, then the Fréchet derivative of f satisfies the continuity condition with constant L and we obtain the quadratic convergence of
the modified superquadratic method. In this case the result established in the present paper coincides with the result presented in [22,
Theorem 3.1, Corollary 3.1].

• If p = 1, then the Fréchet derivative of f satisfies the Lipschitz condition and we obtain the cubic convergence of the modified
superquadratic method. In this case the result established in the present paper coincides with the result presented in [22, Theorem 3.2,
Corrolary 3.2].
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