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Closure operators associated with networks

Josef �lapal ∗† and John L. Pfaltz‡

Abstract

We study network (i.e., undirected simple graph) structures by investi-
gating associated closure operators and the corresponding closed sets.
To describe the dynamic behavior of networks, we employ continu-
ous transformations and neighborhood homomorphisms between them.
These transformations and homomorphisms are then studied. In par-
ticular, the problem of preserving generators by continuous transforma-
tions and that of preserving minimal dominating sets by neighborhood
homomorphisms are dealt with.
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1. Introduction

Networks are ubiquitous in science and engineering, cf. [12] for a bibliography of
more than 400 network applications. Network structures are invariably described
in combinatorial terms, that is, numerically. Scientists typically count and mea-
sure. This paper, instead, uses the closed sets of an associated closure operator to
de�ne the structure of a network. Like open sets in continuous manifolds, closed
sets can be a powerful tool for analyzing the structure of discrete systems.

In economics, closure is associated with rational choice operators [8, 11, 10]. The
Galois closure can be used to extract rules from data sets for subsequent usage in
arti�cial intelligence reasoning systems [16, 17]. If a system can be partially (or
totally) ordered, then the closed sets are usually intervals, ideals or �lters [7, 9]. In
this paper, we apply closed sets to the structure of undirected graphs representing
networks.
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Since networks change over time [2, 18], this paper also seeks a mechanism for
describing such changes. We examine the properties of smooth, or continuous,
transformations of networks [14]. The question is, what changes to the structure
of the network, as revealed by its closure properties, must ensue. We show, among
others, that continuous transformations preserve generating sets. Another kind
of network transformations discussed are neighborhood homomorphisms, which
are shown to preserve dominating sets. Their special cases, the strong homomor-
phisms, even preserve the minimal dominating sets under certain conditions.

Throughout the paper, we will use the su�x denotation for mappings to avoid
multiple parentheses and emphasize the importance of the domain elements. Thus,
given a mapping f : X → Y (X,Y sets) and a point x ∈ X, we write x.f to
denote the f -image of x. Similarly, if g : Y → Z is another mapping, we write
f.g to denote the composition of f and g. Hence, x.f.g denotes the f.g-image of
x. We will also often simplify the denotation of sets given by enumerating their
elements - we will omit the commas between the elements and, in many cases,
also the curly brackets. Thus, for example, {abcd} or abcd will be used for short
rather than {a, b, c, d} (we will delimit a set with the curly brackets only if we
want to emphasize its set nature). In particular, we will usually not distinguish
notationally between elements and singleton subsets of a set.

2. Networks and neighborhood closure operators

Let N = (S, ρ) be a set S of points, elements or nodes together with an ad-
jacency relation, i.e., a re�exive and symmetric binary relation ρ on S. (Note
that, although in the literature, adjacency relations are usually de�ned to be
irre�exive and symmetric, our de�nition of adjacency relations causes no con-
fusion because there is a bijection between the re�exive and irre�exive binary
relations on a set.) We then call N a network. For any subset Y ⊆ S, we put
Y.ρ = {x| ∃y ∈ Y : (x, y) ∈ ρ}. The set Y.ρ is called the neighborhood of Y .
Clearly, ∅.ρ = ∅ and x ∈ y.ρ ⇔ y ∈ x.ρ whenever x, y ∈ S. Next, we have
X ⊆ X.ρ =

⋃
x∈X x.ρ for every X ⊆ S. It follows that X ⊆ Y ⇒ X.ρ ⊆ Y.ρ and

(X ∪ Y ).ρ = X.ρ ∪ Y.ρ for all X,Y ⊆ S. Clearly, we also have S.ρ = S.
Given a network N = (S, ρ) and subsets X,Y ⊆ S, X is said to dominate Y in

N if Y ⊆ X.ρ.
We can represent a network (S, ρ) as an undirected simple graph with the vertex

set S and each edge being a two-element subsets {x, y} ⊆ S with (x, y) ∈ ρ (or,
equivalently, (y, x) ∈ ρ). The neighborhood of any point is then the set of those
vertices that are adjacent to the point in the graph. For example, in the network
(S, ρ) with S = {abcdefgh} representd by the undirected graph in Figure 1, we
have {a}.ρ = {a, b, c} or, more simply, a.ρ = abc. Clearly, {a} dominates {abc}
and {ch} dominates S. There is a large literature on dominating sets in undirected
networks, c.f. [5, 6].

When studying the structure of a network (S, ρ), we found it to be advantageous
to consider a convenient associated operator on S. In this note, to be able to
apply topological methods in the study of network structure, we employ a closure
operator. Let us recall �rst the de�nition of a closure operator.
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Figure 1. An undirected graph.

Let S be a set. A mapping u : 2S → 2S (where 2S denotes the power set of S)
is said to be a closure operator on S (cf. [15]) if, for all Y,Z ⊆ S,

(C1) Y ⊆ Y.u (extensivity),
(C2) Y ⊆ Z ⇒ Y.u ⊆ Z.u (monotonicity), and,
(C3) Y.u.u = Y.u (idempotency).

A subset Y ⊆ S is closed if Y = Y.u. A subset X of a closed set Y ⊆ S is said to
generate Y if X.u = Y .

It is well known that the intersection of closed sets must be closed so that
a closure operator u on S is uniquely determined by the system of closed sets.
Indeed, for every subset Y ⊆ S, we have Y.u =

⋂
{Z| Z closed and Y ⊆ Z}.

By (C1), the set S must be closed. The empty set may or may not be closed.
If it is, then u is said to be grounded.

By a closure system we mean a pair (S, u) with S a set (of points or elements)
and u a closure operator on S.

Let N = (S, ρ) be a network and Y ⊆ S a subset. Then, we de�ne the neigh-
borhood closure of Y to be the subset Y.uρ ⊆ S given as follows:

Y.uρ = {x ∈ S| x.ρ ⊆ Y.ρ}.
Clearly, for all Y ⊆ S, Y.uρ ⊆ Y.ρ and Y.uρ.ρ = Y.ρ.
Assigning to every subset of S its neighborhood closure, we get a mapping

uρ : 2S → 2S .

2.1. Proposition. uρ is a grounded closure operator on S.

Proof. Clearly, uρ is grounded and extensive by de�nition.
Let X,Y ⊆ S be subsets, X ⊆ Y , and let z ∈ X.uρ. Then, z.ρ ⊆ X.ρ ⊆ Y.ρ,
hence, z ∈ Y.uρ. Therefore, uρ is monotone.
Let X ⊆ S be a subset and let z ∈ Y.uρ.uρ. Then, z.ρ ⊆ Y.uρ.ρ =

⋃
x∈Y.uρ x.ρ ⊆⋃

x∈Y x.ρ = Y.ρ, hence, z ∈ Y.uρ. Thus, uρ is idempotent and the proof is
complete. �

2.2. De�nition. The closure operator uρ and the closure system (S, uρ) are
said to be the neighborhood closure operator and the neighborhood closure system,
respectively, associated with (S, ρ).

2.3. Remark. If, in the de�nition of a grounded closure operator v on a set
S, we replace the axiom (C3) of idempotency by the axiom of additivity, i.e.,
v(X ∪ Y ) = vX ∪ vY whenever X,Y ⊆ S, we get a so-called pretopology v on S
(and a pretopological space (S, v)) - cf. [20]. A neighborhood of a subset X ⊆ S in
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a pretopological space (S, v) is any subset Y ⊆ S such that X ∩ (S − Y ).v = ∅.
There is a natural way of associating a pretopology vρ on a set S with any re�exive
binary relation ρ on S: we put X.vρ = {x ∈ S| ∃y ∈ X : (x, y) ∈ ρ} for every
X ⊆ S - see [21]. Let X ⊆ S. If ρ is a re�exive and symmetric binary relation
on S, then X.vρ = X.ρ. But then, X.ρ is also the smallest neighborhood (with
respect to set inclusion) of X in the closure space (S, vρ). This fact justi�es our
calling X.ρ the neighborhood of X.

2.4. Proposition. For every pair of sets X,Y ⊆ S, X.uρ ⊆ Y.uρ if and only if
X.ρ ⊆ Y.ρ.

Proof. Let X,Y ⊆ S be subsets with X.uρ ⊆ Y.uρ. Let x ∈ X.uρ implying
x ∈ y.uρ for some y ∈ X ⊆ X.uρ ⊆ Y.uρ. Then, y.ρ ⊆ Y.ρ so that x ∈ Y.ρ.
Consequently, X.ρ ⊆ Y.ρ.
To prove the converse inclusion, suppose that X.ρ ⊆ Y.ρ. Let z ∈ X.uρ, implying
z.ρ ⊆ X.ρ ⊆ Y.ρ. Then, z ∈ Y.uρ and, therefore, X.uρ ⊆ Y.uρ.

�

As an immediate consequence of Proposition 2.4 we get

2.5. Corollary. For every pair of sets X,Y ⊆ S, X.uρ = Y.uρ if and only if
X.ρ = Y.ρ.

One might expect that every point in a discrete space must be closed with
respect to the neighborhood closure. But this need not be true, as shown in
Figure 1, where c.ρ = abcdef , a.ρ = abc ⊆ c.ρ and b.ρ = abcd ⊆ c.ρ, while
d.ρ = bcdg 6⊆ c.ρ, e.ρ = cefg 6⊆ c.ρ, and f.ρ = cefh 6⊆ c.ρ, so that {c}.uρ = {abc}.

2.6. Proposition. Let X,Y ⊆ S be subsets, X ⊆ Y and Y closed in (S, uρ).
Then, X generates Y in (S, uρ) if and only if X.ρ = Y.ρ.

Proof. Let X generate Y , i.e., let X.uρ = Y . Since X.uρ.ρ = X.ρ, we have
Y.ρ = X.ρ.
Conversely, letX.ρ = Y.ρ and let y ∈ Y . Then, y.ρ ⊆ Y.ρ = X.ρ, so that y ∈ X.uρ.
Therefore, we have Y ⊆ X.uρ. As the converse inclusion is obvious, the proof is
complete. �

Let (S, u) be a closure system. Then, it is useful to deal with the structure of
closed sets because closed sets uniquely determine the closure operator u. In the
case of a neighborhood closure operator associated with a network, the structure
of closed sets may be regarded as the structure of the network. The closed sets
may be partially ordered by inclusion so that they create a complete lattice, Lu,
in which in�ma coincide with intersections - see [15] for more details.

The neighborhood closure lattice Lu corresponding to the neighborhood closure
operator associated with the network of Figure 1 is shown in Figure 2. This
lattice has none of the regular structures one usually sees in textbook examples.
Nevertheless, it carries considerable information.

3. Network transformations

Let S and S′ be sets. By a transformation S
f−→ S′ (between S and S′) we

mean a mapping f : 2S → 2S
′
. Given a mapping f : S → S′, its extension is the
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Figure 2. Neighborhood closure lattice of Figure 1.

transformation S
f+

−→ S′ de�ned by Y.f+ = {f(y)|y ∈ Y } for every Y ⊆ S (in the
literature, f+ is often said to be lifted from f). As usual, we will write f instead
of f+ so that a mapping and its extension will be denoted by the same symbol -
it will always be clear from the context whether f means a mapping f : S → S′

or its extension S
f−→ S′. Of course, there can be many transformations S

f−→ S′

other than those extended from mappings f : S → S′.

A transformation S
f−→ S′ is said to be monotone if, whenever X,Y ⊆ S,

X ⊆ Y implies X.f ⊆ Y.f . Note that a transformation that has been extended
from a mapping must be monotone.

Let S
f−→ S′ be a transformation and Z ⊆ S′ a subset. If the set of all subsets

Y ⊆ S with Y.f = Z is nonempty and has a greatest element (with respect to set
inclusion), then the greatest element is said to be the inverse image of Z under
f . Thus, if every subset of S′ has an inverse image, we get a transformation
between S′ and S assigning to every subset of S′ its inverse image under f . This

transformation will be denoted by S′
f−1

−→ S. Clearly, if S
f−→ S′ is an extension

of a mapping, then every subset of S′ has an inversion.
Let (S, ρ) and (S′, ρ′) ((S, u) and (S′, u′)) be networks (closure systems) and let

S
f−→ S′ be a transformation. We then write (S, ρ)

f−→ (S′, ρ′) ((S, u)
f−→ (S′, u′))

and say that f is a transformation between (S, ρ) and (S′, ρ′) ((S, u) and (S′, u′)).

3.1. De�nition. A transformation (S, ρ)
f−→ (S′, ρ′) between networks is said to

be neighborhood monotone if, whenever X,Y ⊆ S,
X.ρ ⊆ Y.ρ⇒ X.f.ρ′ ⊆ Y.f.ρ′.

Note that a transformation that is monotone need not be neighborhood mono-
tone, and vice versa.

3.2. De�nition. ([13, 14, 21]) A transformation (S, u)
f−→ (S′, u′)) between clo-

sure systems is said to be continuous if, whenever Y ⊆ S,
Y.u.f ⊆ Y.f.u′.
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A transformation (S, ρ)
f−→ (S′, ρ′) between networks is called continuous if the

transformation (S, uρ)
f−→ (S′, uρ′) between neighborhood closure systems is con-

tinuous.

3.3. Proposition. Let (S, u)
f−→ (S′, u′) be a monotone transformation between

closure systems. If f is continuous, then Y.u.f = Y.f for every subset Y ⊆ S with
Y.f closed in (S′, u′). The converse is true provided that every subset of S′ has an

inverse image under f and the transformation S′
f−1

−→ S is monotone.

Proof. Let f be continuous and let Y ⊆ S be a subset with Y.f closed in (S′, u′).
Then, Y.u.f ⊆ Y.f.u′ = Y.f . The converse inclusion follows from the extensiveness
of u and monotonicity of f .
Conversely, let Y.u.f = Y.f for every subset Y ⊆ S with Y.f closed in (S′, u′) and
let every subset of S′ have an inverse image under f . Let X ⊆ S be an arbitrary
subset. Then, X.f.u′ is closed in (S′, u′) and X.f.u′ = X.f.u′.f−1.f . Therefore,
X.f.u′.f−1.u.f = X.f.u′. Next, since X.f ⊆ X.f.u′, we have X ⊆ X.f.f−1 ⊆
X.f.u′.f−1. Hence, X.u ⊆ X.f.u′.f−1.u, which yields X.u.f ⊆ X.f.u′.f−1.u.f .
Consequently, X.u.f ⊆ X.f.u′ and the continuity of f is proved. �

3.4. Corollary. Let (S, u)
f−→ (S′, u′) be a monotone transformation between clo-

sure systems. If f is continuous, then, for every closed subset Z of (S′, u′), the
inverse image of Z under f (if it exists) is closed in (S, u). The converse is true
provided that every subset of S′ has an inverse image under f and the transfor-

mation S′
f−1

−→ S is monotone.

Proof. Let f be continuous and let Z be a closed subset of (S′, u′) having an in-
verse Y image under f . Since Y.u.f = Y.f by Proposition 3.3, we have Y.u ⊆ Y .
Therefore, Y is closed in (S, u).
Conversely, suppose that every subset of S′ has an inverse image under f and the

transformation S′
f−1

−→ S is monotone. Let, for every closed subset Z of (S′, u′),
the inverse image of Z under f (if it exists) is closed in (S, u) and let Y ⊆ S be an
arbitrary subset with Y.f closed in (S′, u′). Then, Y.f.f−1.u = Y.f.f−1 because
Y.f.f−1 is closed in (S, u). Since Y ⊆ Y.f.f−1, we have Y.u.f ⊆ Y.f.f−1.u.f =
Y.f.f−1.f = Y.f . As the converse inclusion is evident (it follows from the ex-
tensiveness of u and monotonicity of f), we have Y.u.f = Y.f . Therefore, f is
continuous by Proposition 3.3. �

It is well known that, for the transformations between closure systems that are
extensions of mappings, also the converse of Corollary 3.4 is true.

3.5. Proposition. If (S, ρ)
f−→ (S′, ρ′) is a monotone and continuous transfor-

mation between networks, then Y.u.f.u′ = Y.f.u′.

Proof. Continuity implies Y.u.f ⊆ Y.f.u′ so that Y.u.f.u′ ⊆ Y.f.u′.u′. Since Y.f ⊆
Y.u.f by monotonicity of u and f , we get Y.f.u′ ⊆ Y.u.f.u′.

�

3.6. Proposition. Let (S, u)
f−→ (S′, u′), (S′, u′)

g−→ (S′′, u′′) be transforma-

tions and let g be monotone. If both f and g are continuous, then so is S
f.g−→ S′′.
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Proof. We have X.u.f ⊆ X.f.u′ for any X ⊆ S and Y.u′.g ⊆ Y.g.u′′ for any
Y ⊆ S′. Consequently, as g is monotone, X.u.f.g ⊆ X.f.u′.g ⊆ X.f.g.u′′. This
means that f.g is continuous. �

In his seminal work [13], Ore considered only extended, continuous transforma-
tions.

3.7. Proposition. Let (S, ρ)
f−→ (S′, ρ′) be a monotone transformation between

networks. Then f is continuous if and only if f is neighborhood monotone.

Proof. Let f be continuous and let X,Y ⊆ S be subsets with X.ρ ⊆ Y.ρ. By
Proposition 2.4, X ⊆ X.uρ ⊆ Y.uρ. Thus, X.f ⊆ Y.uρ.f ⊆ Y.f.uρ′ by continuity.
So, X.f.uρ′ ⊆ Y.f.uρ′ , which yields X.f.ρ′ ⊆ Y.f.ρ′ by Proposition 2.4.
Conversely, let f be neighborhood monotone and let Y ⊆ S be a subset. Since
Y.uρ.ρ = Y.ρ, we have Y.uρ.f.ρ′ ⊆ Y.f.ρ′ by neighborhood monotinicity. Thus,
by Proposition 2.4, Y.uρ.f.uρ′ ⊆ Y.f.uρ′ . Now, by the extensivity of u′, Y.u.f ⊆
Y.u.f.u′ ⊆ Y.f.u′. �

3.8. Proposition. Let (S, ρ)
f−→ (S′, ρ′) be a monotone and continuous trans-

formation between networks. If X generates Z in (S, uρ) and Z.f is closed in
(S′, uρ′), then X.f generates Z.f in (S′, uρ′).

Proof. Let X generate Z in (S, uρ). Then, X.ρ = Z.ρ by Proposition 2.6. Since
f is continuous, f is neighborhood monotone by Proposition 3.7 and we have
X.f.ρ = Z.f.ρ. Therefore, X.f generates Z.f in (S′, uρ′) by Proposition 2.6. �

3.9. De�nition. A transformation (S, u)
f−→ (S′, u′) between closure systems is

said to be closed if Y.f is closed in (S′, u′) whenever Y is closed in (S, u).

3.10. Proposition. Let (S, u)
f−→ (S′, u′) be a transformation between closure

systems. If Y.f.u′ ⊆ Y.u.f for all Y ⊆ S, then f is closed. The converse is true
provided that f is monotone.

Proof. Let Y.f.u′ ⊆ Y.u.f for every subset Y ⊆ S. If Y is closed, then Y.f.u′ ⊆ Y.f ,
so that Y.f is closed. Hence, f is closed.
Conversely, let f be monotone and closed and let Y ⊆ S be a subset. Then,
Y.f.u′ ⊆ Y.u.f.u′ = Y.u.f because Y.u.f is closed in (S′, u′) (as Y.u is closed in
(S, u)). �

3.11. De�nition. A transformation (S, ρ)
f−→ (S′, ρ′) between networks is said

to be a homomorphism if, for every Y ⊆ S,

Y.ρ.f ⊆ Y.f.ρ′.

Homomorphisms are common in graph theory (and, more generally, theory
of binary relations - cf. [19]). If G = (S,E) and G′ = (S′,E′) are undirected
graphs with edge sets E and E′, then a mapping f : S → S′ is said to be a
graph homomorphism if {x, y} ∈ E implies {f(x), f(y)} ∈ E′ [1, 3, 4]. The above
de�nition of homomorphisms is obtained by naturally extending the de�nition of
graph homomorphisms.
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Homomorphisms need not be continuous even if they are monotone. Consider

the monotone homomorphism (S, ρ)
f−→ (S′, ρ′) displayed in Figure 3, which is

an extension of the mapping f : {x, y1, y2, z} → {x′, y′, z′} given by x.f = x′,
y1.f = y2.f = y′, and z.f = z′. So, x.uρ = xy1 and z.uρ = y2z while x′.uρ′ = x′

and z′.uρ′ = z′. Thus, {x}.uρ.f = {x′y′} 6⊆ {x′} = {x}.f.uρ′ .

x’ y’ z’
x y

y z

1

2

f

Figure 3. A homomorphism that is not continuous.

Monotone and continuous transformations, too, need not be homomorphisms.

Consider the monotone, continuous transformation (S, ρ)
f−→ (S′, ρ′) displayed in

Figure 4, which is an extension of the bijection f : {w, x, y, z} → {w′, x′, y′, z′}
given by t.f = t′ for every t ∈ {w, x, y, z}.

x’ y’ z’w’x y zw
f

Figure 4. A monotone, continuous map that is not a homomorphism.

Clearly, {wxy} = {wxy}.f = {x}.ρ.f 6⊆ {x}.f.ρ′ = {w′x′}, but it is easy
to verify that f is continuous because the closed sets in (S, ρ) and (S′, ρ′) are
{∅, wxyz, wx, yz, w, z} and {∅, w′x′y′z′, w′x′, y′z′}, respectively

3.12. Proposition. Let (S, ρ)
f−→ (S′, ρ′) be a monotone homomorphism between

networks. If X dominates Y in S, then X.f dominates Y.f in S′.

Proof. If Y ⊆ X.ρ, then Y.f ⊆ X.ρ.f ⊆ X.f.ρ′
�

3.13. De�nition. A transformation (S, ρ)
f−→ (S′, ρ′) between networks is called

a strong homomorphism if, for every Y ⊆ S,

Y.ρ.f = Y.f.ρ′.

E�ectively, if (x′, y′) ∈ ρ′ and x ∈ S is a point with x.f = x′, then there exists
y ∈ S such that y.f = x′ and {x, y} ∈ ρ is an edge in S. The transformation in Fig-
ure 5 represents the typical con�guration of a strong homomorphism. The trans-
formation is an extension of the mapping f : {x1, x2, y1, y2, z1, z2} → {x′, y′, z′}
given by x1.f = x2.f = x′, y1.f = y2.f = y′, and z1.f = z2.f = z′.

3.14. Proposition. Let (S, ρ)
f−→ (S′, ρ′) be a strong homomorphism between

networks that is an extension of a mapping. Then,
(a) f is continuous,
(b) f is closed provided that, for every X ⊆ S, x ∈ X.ρ and x.f ⊆ X.f imply
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Figure 5. Typical con�guration for a neighborhood homomorphism.

x ∈ X, and
(c) Y ′.f−1.ρ ⊆ Y ′.ρ′.f−1.

Proof. (a) Let Y ⊆ S be a subset and z′ ∈ Y.uρ.f a point. Then, there exists z ∈
Y.uρ with z.f = z′. Thus, z.ρ ⊆ Y.ρ and z′.ρ′ = z.f.ρ′ = z.ρ.f ⊆ Y.ρ.f = Y.f.ρ′.
This yields z′ ∈ Y.f.uρ′ . Therefore, Y.uρ.f ⊆ Y.f.uρ′ and the continuity of f is
proved.
(b) Let Y ⊆ S be a subset and z′ ∈ Y.f.uρ′ a point. Then, z′.ρ ⊆ Y.f.ρ. Since
z′ ∈ Y.f.uρ′ ⊆ Y.f.ρ = Y.ρ.f , there exists z ∈ Y.ρ such that z′ = z.f . Let
x ∈ z.ρ ⊆ Y.ρ.ρ. Then, x.f ⊆ z.ρ.f = z.f.ρ′ = z′.ρ′ ⊆ Y.f.ρ′ = Y.ρ.f . Because of
the extra provision, x ∈ Y.ρ. Thus, z.ρ ⊆ Y.ρ, i.e., z ∈ Y.uρ. Hence, z′ ⊆ Y.uρ.f .
Therefore, Y.f.uρ′ ⊆ Y.uρ.f and the closedness of f is proved.
(c) Let Y ⊆ S′ be a subset. Then, Y.f−1.ρ ⊆ Y.f−1.ρ.f.f−1 = Y.f−1.f.ρ′.f−1 =
Y.ρ′.f−1. Conversely, let z ∈ Y.ρ′.f−1 be a point and put z′ = z.f =∈ Y ′.ρ′.
Then, there exists y ∈ Y with z′ ∈ y.ρ′, i.e., with y ∈ z′.ρ′. Now, since f is a
strong homomorphism, z.ρ.f = z.f.ρ′ = z′.ρ′. Therefore, there exists x ∈ z.ρ such
that x.f = y ∈ Y . Thus, we have z ∈ x.ρ and x ∈ y.f−1 ⊆ Y.f−1. Therefore,
z ∈ Y.f−1.ρ and the inclusion Y ′.ρ′.f−1 ⊆ Y ′.f−1.ρ is proved.

�

In contrast to monotone homomorphisms, which may not be continuous (see
Figure 3), monotone strong homomorphisms always are.

We have seen that the domination is preserved by monotone homomorphisms
(Proposition 3.12). It would be convenient if minimal dominating sets were pre-
served by (monotone) strong homomorphisms. Unfortunately, this need not be
true as illustrated by the strong homomorphism displayed in Figure 6, which is an
extension of the mapping f : {a, b, c, d, e, f, g, h} → {a′, b′, e′, g′} given by a.f = a′,
b.f = c.f = d.f = b′, e.f = f.f = e′, and g.f = h.f = g′. The minimal dominating
sets of S and S′ are enumerated. Here, aeh is a minimal dominating set of S, but
a′e′g′, although dominating in S′, is not minimal. Only the minimal dominating
sets aef , agh, bef , and cg are mapped onto the minimal dominating sets a′e′, a′g′,
b′e′, and b′g′, respectively.

3.15. Proposition. Let (S, ρ)
f−→ (S′, ρ′) be a strong homomorphism that is an

extension of a mapping. Let X be a minimal dominating set of Y in (S, ρ) such
that, for every element x ∈ Y.ρ, x′ ∈ X.f and x′ = x.f ∈ X.f imply x ∈ X. Then,
X.f is a minimal dominating set of Y.f in (S′, ρ′).

Proof. Put X ′ = X.f and Y ′ = Y.f . By Proposition 3.12, X ′ dominates Y ′,
i.e., Y ′ ⊆ X ′.ρ′. If Y ′ = ∅, then Y = ∅, so that x = ∅. Hence, X ′ = ∅ and,
consequently, X ′ is a minimal dominating set of Y ′ in (S′, ρ′). Let Y ′ 6= ∅ and
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Figure 6. Neighborhood homomorphisms may not preserve minimal
dominating sets.

suppose that X ′ is not a minimal dominating set of Y ′. Then, there exists a proper
non-empty subset X ′1 ⊂ X ′ dominating Y ′, i.e., ful�lling Y ′ ⊆ X ′1.ρ

′. Let x′0 ∈
X ′−X ′1 be an arbitrary element. Since X ′1 ⊆ X ′−x′0, we have Y ′ ⊆ (X ′−x′0).ρ′.
Let x0 ∈ X be a point with x′0 = x0.f and put Y ′0 = Y ′ ∩ x′0.ρ′. Let y ∈ Y be an
arbitrary element and put y′ = y.f . Then, y′ ∈ Y ′.
If y′ /∈ Y ′0 , then y.f /∈ x′0.ρ′ = x0.f.ρ

′ = X0.ρ.f . Thus, y /∈ x0.ρ, so that Y ∩X0.ρ =
∅. Since Y ⊆ X.ρ = x0.ρ∪(X−x0).ρ, we have Y ⊆ (X−x0).ρ. Therefore, X−X0

dominates Y , which is a contradiction.
Suppose that y′ ∈ Y ′0 . Then, Y ′0 ⊆ Y ′ implies y′ ∈ (X ′ − x′0).ρ′, which means that
there exists z′ ∈ X ′−x′0 such that y′ ∈ z′.ρ′. This yields z′ ∈ y′.ρ′ = y.f.ρ′ = y.ρ.f .
Thus, there exists a point z ∈ y.ρ such that z′ = z.f . Therefore, y ∈ z.ρ and we
have z ∈ Y.ρ and z.f = z′ ∈ X.f . Hence, z ∈ X by the assumption of the
statement. But we also have z 6= x0 because, otherwise, z.f = x′0 6= z′, which is a
contradiction. Thus, z ∈ X − x0 so that y ∈ (X − x0).ρ. Again, we have shown
that Y ⊆ (X−x0).ρ, i.e., that X−x0 dominates Y , which is a contradiction. This
proves the statement. �

In Figure 6, only the minimal dominating sets aef , agh, bef and cg satisfy the
condition of Proposition 3.15. Each of them is mapped onto one of the minimal
generating sets of S′.

Reducing networks to simpler forms by strong homomorphisms provides an
alternative method of approaching some of the classic problems in domination
theory. However, it should be emphasized that "minimal" in domination theory
means minimal cardinality whereas we use "minimal" in the set inclusion sense.
Nevertheless, only sets that are minimal in the set inclusion sense can have minimal
cardinality. So, network reduction by strong homomorphisms can still yield some
insight into these classic problems.
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