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U(k)- and L(k)-homotopic properties of
digitizations of nD Hausdor� spaces

Sang-Eon Han∗

Abstract

For X ⊂ Rn let (X,En
X) be the usual topological space induced by

the nD Euclidean topological space (Rn, En). Based on the upper
limit (U -, for short) topology (resp. the lower limit (L-, for brevity)
topology), after proceeding with a digitization of (X,En

X), we obtain
a U - (resp. an L-) digitized space denoted by DU (X) (resp. DL(X))
in Zn [16]. Further considering DU (X) (resp. DL(X)) with a digital
k-connectivity, we obtain a digital image from the viewpoint of digital
topology in a graph-theoretical approach, i.e. Rosenfeld model [25],
denoted by DU(k)(X) (resp. DL(k)(X)) in the present paper. Since
a Euclidean topological homotopy has some limitations of studying
a digitization of (X,En

X), the present paper establishes the so called
U(k)-homotopy (resp. L(k)-homotopy) which can be used to study ho-
motopic properties of both (X,En

X) and DU(k)(X) (resp. both (X,En
X)

and DL(k)(X)). The goal of the paper is to study some relationships
among an ordinary homotopy equivalence, a U(k)-homotopy equiva-
lence, an L(k)-homotopy equivalence and a k-homotopy equivalence.
Finally, we classify (X,En

X) in terms of a U(k)-homotopy equivalence
and an L(k)-homotopy equivalence. This approach can be used to study
applied topology, approximation theory and digital geometry.
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1. Introduction

In relation to the digitizations of nD Euclidean spaces [3, 5, 14], the present
paper uses two kinds of local rules associated with the upper limit (U -, for short)
and the lower limit (L-, for brevity) topology [23]. These local rules are used to U -
and L-digitize Euclidean nD subspace so that we obtain digital images from the
viewpoint of digital topology in the graph-theoretical approach proposed in [25].

Let Z (resp. N) represent the set of integers (resp. natural numbers), and Zn

the set of points in the Euclidean nD space with integer coordinates. In digital
topology there are several approaches [1, 18, 25, 28] and so forth. Since the paper
uses both digital graph theory on Zn and topology on the nD Euclidean space,
we need to recall the graph-theoretical approach to digital topology. Rosenfeld
[25] introduced a digital image X ⊂ Zn with k-adjacency, denoted by (X, k),
and a (k0, k1)-continuous map f : (X, k0) → (Y, k1) of which f maps every k0-
connected subset of (X, k0) into a k1-connected subset of (Y, k1). We denote by
DTC the category of digital images (X, k) as Ob(DTC) and (k0, k1)-continuous
maps between every pair of digital images (X, k0) and (Y, k1) in Ob(DTC) as
Mor(DTC) [7, 9].

Let (Rn, En) be the nD real space with Euclidean topology [23]. For X ⊂ Rn

we consider the subspace (X,En
X) induced by (Rn, En). In this paper we denoted

by ETC the category of Euclidean topological spaces [27] consisting of the following
two sets:
• the set of spaces (X,En

X) as objects, denoted by Ob(ETC);
• for every ordered pair of objects (X,En

X) and (Y,En
Y ), the set of (Euclidean

topologically) continuous maps as morphisms denoted by Mor(ETC).
To digitize (X,En

X) into a space in Zn in a certain digital topological approach,
we have often used graph theory and locally �nite topological structures and so
forth [1, 4, 5, 11, 16, 20, 21, 22, 24, 28]. Hereafter, based on the U -topology and
the L-topology, after proceeding with a digitization of (X,En

X) [16], we obtain a
U - (resp. an L-) digitized space denoted by DU (X) (resp. DL(X)) in Zn [16].
Further considering DU (X) (resp. DL(X)) with a k-adjacency, we obtain a digital
image denoted by DU(k)(X) := (DU (X), k) (resp. DL(k)(X) := (DL(X), k)) in
the present paper.

Since we have some di�culty in digitizing an ordinary map f ∈ Mor(ETC)
(see Lemma 6.1 in the present paper), the present paper develops both a U(k)-
map and an L(k)-map and (see De�nitions 11 and 12). The present paper proves
that each of these maps is stronger than an ordinary map in ETC (see Lemma
6.1) but suitable for digitizing nD Euclidean spaces based on the graph-theoretical
approach (see Theorem 6.5). Besides, we establish a category, denoted by UDC
(resp. LDC), consisting of the sets of subspaces (X,En

X) and U(k)-maps (resp.
L(k)-maps) (see Section 5).

Let f : (X,En
X)→ (Y,En

Y ) be a map inMor(ETC). LetDU(k)(f) : DU(k)(X)→
DU(k)(Y ) be a k-continuous map induced by the map f (see De�nition 11) and
let DL(k)(f) : DL(k)(X) → DL(k)(Y ) be a k-continuous map induced by the map
f (see De�nition 12).
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To study some homotopic properties of among (X,En
X) in Ob(ETC), DU(k)(X)

and DL(k)(X) in Ob(DTC), the present paper develops a U(k)-homotopy in UDC
(see De�nition 15) and an L(k)-homotopy in LDC (see De�nition 16). In relation
to these homotopies, we may pose the following queries:
Assume two Euclidean topological spaces (X,En

X) and (Y,En
Y ). Let DU(k)(X) and

DU(k)(Y ) in Ob(DTC) be their U(k)-digitized spaces (or U(k)-spaces for short)
and let DL(k)(X) and DL(k)(Y ) in Ob(DTC) be their L(k)-digitized spaces (or
L(k)-spaces for brevity).

Assume that f, g : (X,En
X) → (Y,En

Y ) are homotopic in ETC. Then we have
the following queries (Q1)-(Q2) (see also the properties (4.1) and (4.2) and De�-
nitions 13, 15, and 16):

(Q1) Are DU(k)(f) and DU(k)(g) k-homotopic ?

(Q2) Are DL(k)(f) and DL(k)(g) k-homotopic ?

Let us investigate homotopic properties of maps inMor(UDC) andMor(LDC).
(Q3) In case f, g : (X,En

X) → (Y,En
Y ) are U(k)-homotopic in UDC, are

DU(k)(f) and DU(k)(g) k-homotopic ?

(Q4) In case f, g : (X,En
X)→ (Y,En

Y ) are L(k)-homotopic in LDC, areDL(k)(f)
and DL(k)(g) k-homotopic ?

More generally, we have the following:
(Q5) What are relationships among an ordinary homotopy equivalence in ETC, a
U(k)-homotopy equivalence in UDC and an L(k)-homotopy equivalence in LDC ?

The present paper shall address these issues in Sections 4-7. Roughly saying,
both the �rst and the second question can be answered negatively and both the
third and the fourth question can be answered a�rmatively.

The rest of the paper proceeds as follows: Section 2 provides some basic notions
on digital topology and various notions in UDC and LDC. Section 3 investigates
some properties of a U - and an L-local rule of (X,En

X) to establish a local neigh-
borhood. Section 4 proposes a U(k)- and an L(k)-digitization of (X,En

X). Section
5 develops two maps such as a U(k)-map and an L(k)-map and proves that these
maps are not compatible with a map in Mor(ETC) but suitable for studying a
digitization of a map f ∈ Mor(ETC). Section 6 develops a U(k)-homotopy and
an L(k)-homotopy and investigates their properties. Section 7 investigates some
relationships among a homotopy equivalence in ETC, a U(k)-homotopy equiva-
lence in UDC and an L(k)-homotopy equivalence in LDC. Section 8 concludes
the paper with a remark.

2. Preliminaries

This section recalls basic notions of the graph-theoretical approach to digital
topology. A digital picture is usually represented as a quadruple (Zn, k, k̄,X),
where n ∈ N, a black points set X ⊂ Zn is the set of points we regard as belonging
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to the image depicted, k represents as an adjacency relation for X and k̄ represents
an adjacency relation for white points set Zn \X [25]. We say that the pair (X, k)
is a digital image in a quadruple (Zn, k, k̄,X) [25]. Thus, motivated by 4- and
8-adjacencies of a 2D digital image and, 6-, 18-, and 26-adjacencies of a 3D digital
image [20, 25], the k-adjacency relations of Zn can be established to study a multi-
dimensional digital image. Indeed, these are induced by the following operator [6]
(see also [7]): for a natural number m with 1 ≤ m ≤ n, two distinct points

p = (p1, p2, ..., pn), q = (q1, q2, ..., qn) ∈ Zn,

are k(m,n)-(for brevity, k- or km-) adjacent if

at most m of their coordinates di�er by ± 1, and all others coincide. (2.1)

The number k of the k(m,n)-adjacency is the number of points q which are
k-adjacent to a given point p according to the number m in (2.1) [7] (see also
[9], for more details, see [10]). Concretely, the k-adjacency relations of Zn can be
represented, as follows:

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i , where Cn

i =
n!

(n− i)!i!
. (2.2)

For instance, (n,m, k) ∈ {(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); (5, 1, 10), (5, 2, 50),
(5, 3, 130), (5, 4, 210), (5, 5, 242)} [6, 7, 9].
Owing to the digital k-connectivity paradox of a digital image (X, k) [20], we re-
mind the reader that k 6= k̄ except for the case (Z, 2, 2, X). For {a, b} ⊂ Z with
a < b, [a, b]Z = {a ≤ n ≤ b |n ∈ Z} is considered in (Z, 2, 2, [a, b]Z) [20]. However,
the present paper is not concerned with the k̄-adjacency of Zn \X. To follow the
graph-theoretical approach to the study of nD digital images [26, 7], we use the
k-adjacency relations of Zn (see the property (2.2)), a digital k-neighborhood and
so forth [25].

Nk(p) := {q | p is k-adjacent to q}.
Furthermore, we often use the notation [20]

N∗k (p) := Nk(p) ∪ {p}.

We say that two subsets (A, k) and (B, k) of (X, k) are k-adjacent to each other if
A∩B = ∅ and there are points a ∈ A and b ∈ B such that a and b are k-adjacent
to each other [20]. We say that a set X ⊂ Zn is k-connected if it is not a union of
two disjoint non-empty sets that are not k-adjacent to each other [20].

For a k-adjacency relation of Zn, a simple k-path with l + 1 elements in Zn

is assumed to be an injective sequence (xi)i∈[0,l]Z ⊂ Zn such that xi and xj are
k-adjacent if and only if | i− j | = 1 [20]. If x0 = x and xl = y, then the length of
the simple k-path, denoted by lk(x, y), is the number l. A simple closed k-curve

with l elements in Zn, denoted by SCn,l
k [20, 6] (see Fig.2(a),(b)), is the simple

k-path (xi)i∈[0,l−1]Z , where xi and xj are k-adjacent if and only if |i−j| = 1(mod l)
[20].

For a digital image (X, k), we de�ne the digital k-neighborhood of x0 ∈ X with
radius ε to be the following set [6]: Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0},
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where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
Concretely, for X ⊂ Zn we obtain [11]

Nk(x, 1) = Nk(x) ∩X. (2.3)

The paper [25] established the notion of digital continuity. Motivated by this
continuity, we can represent the digital continuity of maps between digital images,
as follows:

2.1. Proposition. [6, 7, 10] Let (X, k0) and (Y, k1) be digital images in Zn0 and

Zn1 , respectively. A function f : X → Y is (k0, k1)-continuous if and only if for

every x ∈ X f(Nk0(x, 1)) ⊂ Nk1(f(x), 1).

In Proposition 2.1 in case n0 = n1 and k0 = k1, we call it k0-continuous.
Besides, the digital continuity of Proposition 2.1 has the transitive property.

Since the digital image (X, k) is considered to be a set X ⊂ Zn with one of the
adjacency relations of (2.2), we use the terminology a “(k0, k1)-isomorphism" as
used in [8] rather than a “(k0, k1)-homeomorphism" as proposed in [2].

2.2. De�nition. [2] (see also [8]) For two digital images (X, k0) in Zn0 and (Y, k1)
in Zn1 , a map h : X → Y is called a (k0, k1)-isomorphism if h is a (k0, k1)-
continuous bijection and further, h−1 : Y → X is (k1, k0)-continuous.

In De�nition 1, in case n0 = n1 and k0 = k1, we call it a k0-isomorphism.

3. Some properties of a U and an L-local rule

When digitizing a space (X,En
X) into a digital image, it is required that the

connectedness of the given spaces is preserved (see Lemma 6.4 in the present
paper). To do this work, this section uses two types of local rules which are
used to formulate special kinds of neighborhoods of the given point p ∈ Zn. And
the structures of the neighborhoods depend on the digital topological structures
related to the local rules. The U -topology on R, denoted by (R, EU ), is induced
by the set {(a, b] | a, b ∈ R and a < b} as a base [23]. Then we obtain the product
topology on Rn, denoted by (Rn, En

U ), induced by (R, EU ). Based on (Rn, En
U ),

we use a U -local rule [16] which is used to digitize (Rn, En
U ) into (Zn, Dn), where

(Zn, Dn) is the discrete topology on Zn.

3.1. De�nition. [16] Under (Rn, En
U ), for a point p := (pi)i∈[1,n]Z ∈ Zn we de�ne

NU (p) := {(xi)i∈[1,n]Z |xi ∈ (pi − 1
2 , pi + 1

2 ]} and we call NU (p) the U -localized
neighborhood of p associated with (Rn, En

U ).

For instance, we see NU (p) in Fig.1(b) for a 2D case.

In relation to the digitization of (Rn, En
U ), let us consider the following relation.

3.2. De�nition. [16] For two points x, y ∈ Rn, x is related to y if x, y ∈ NU (p)
for some point p ∈ Zn, denoted by ‘x ∼U y'. Then we say that (Rn,∼U ) is a
relation set associated with (Rn, En

U ).

3.3. Lemma. [16] The relation ‘ ∼U ' of De�nition 3 is an equivalence relation.
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3.4. Remark. [16] Since Rn =
⋃

p∈Zn NU (p) and further, for two points p, q in

Zn with p 6= q, NU (p) ∩NU (q) = ∅, we conclude that the set {NU (p) | p ∈ Zn} is
a partition of Rn.

By Lemma 3.1, we conclude that Zn is the space obtained by identifying the
points of Rn which belong to the same equivalence class of p. Namely, we may
conclude NU (p) = [p], where [p] is the equivalence class of the point p.

Concretely, based on (Rn, En
U ) associated with the U -topology, we can digitize

Rn according to the U -topology in such a way

(Rn, En
U )→ (Zn, Dn) given by NU (p)→ p. (3.1)

It is obvious that the process (3.1) is continuous.

Meanwhile, we may proceed the process of (3.1) in such a way:

(Rn, En)→ (Zn, Dn) given by NU (p)→ p.

Then this process cannot be continuous in topological sense. This approach will
be used in Section 4.

Let us now recall the L-local rule in [16]. The L-topology on R, denoted
by (R, EL), is induced by the set of closed open intervals in R, {[a, b) | a, b ∈
R and a < b}, as a base [23]. Then we obtain the product topology on Rn,
denoted by (Rn, En

L), induced by (R, EL).
Let us consider the L-local rule associated with the L-topology.

3.5. De�nition. [16] Under (Rn, En
L), for a point p := (pi)i∈[1,n]Z ∈ Zn we

de�ne NL(p) := {(xi)i∈[1,n]Z |xi ∈ [pi− 1
2 , pi + 1

2 )}. We call NL(p) the L-localized
neighborhood of p associated with (Rn, En

L).

For instance, we see NL(p) in Fig.1(a) for a 2D space.

In relation to the digitization of (Rn, En
L), let us consider the following relation:

3.6. De�nition. [16] For two points x, y ∈ Rn, we say that x is related to y if
for some point p ∈ Zn, x, y ∈ NL(p), denoted by ‘x ∼L y'. Then we say that
(Rn,∼L) is a relation set associated with (Rn, En

L).

3.7. Lemma. [16] The relation ‘ ∼L' of De�nition 5 is an equivalence relation.

3.8. Remark. [16] The set {NL(p) | p ∈ Zn} is a partition of Rn.

By Lemma 3.3, we observe that the set Zn can be considered on the space
obtained by identifying the points of Rn which belong to the same equivalence
class of p. By Lemma 3.3 and Remark 3.4, we may assume NL(p) = [p]. Finally,
based on (Rn, En

L), we can digitize Rn according to the L-topology in such a way

(Rn, En
L)→ (Zn, Dn) given by NL(p)→ p. (3.2)

It is obvious that the process (3.2) is continuous.

Meanwhile, we may proceed the process of (3.2) in such a way:

(Rn, En)→ (Zn, Dn) given by NL(p)→ p.
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p p

(a) N (p)
L (b) N (p)

U

P1 - 1

2 P2(         ,    )

P1 -P2(   ,         )
1

2

P1+ 1

2 P2(         ,    )

P1 +P2(   ,         )
1

2

Figure 1. [16] Con�guration of the local rules if the given point p
in the 2D Euclidean space in terms of the L-topology (a) and the U -
topology (b), where p := (p1, p2)

Then this process cannot be continuous in topological sense. This approach will
be used in Section 4.

4. Establishments of a U(k)- and an L(k)-digitization

This section recalls two types of digitizations associated with the U - and the
L-topology. By using the local rule proposed in De�nitions 3 and 4, we establish
the following:

4.1. De�nition. [16] Let X be a subspace in (Rn, En
U ) (resp. (Rn, En

L)). The
U - (resp. L-) digitization of X, denoted by DU (X) (resp. DL(X)), is de�ned as
follows: {

DU (X) = {p ∈ Zn |NU (p) ∩X 6= ∅ };
DL(X) = {p ∈ Zn |NL(p) ∩X 6= ∅}

with a k-adjacency of Zn of (2.1) depending on the situation.

4.2. Remark. [16] For a set X ⊂ Rn, we say that for two points x, y ∈ X, x is
∼U (resp. ∼L) related to y according to U - (resp. L-) topology, as follows:

(1) x ∼U y, if x, y ∈ NU (p) for some point p ∈ Zn such that X ∩ NU (p) 6= ∅.
The relation “ ∼U" is an equivalence relation (relative to X).

(2) x ∼L y, if x, y ∈ NL(p) for some point p ∈ Zn such that X ∩ NL(p) 6= ∅.
The relation “ ∼L" is an equivalence relation (relative to X).

Motivated by Remark 3.2, we obviously obtain the following:

4.3. Corollary. [16] For a non-empty nD Euclidean space (X,En
X), there is a

partition of Rn associated with the space (X,En
X):

{NU (p),Rn \ ∪p∈DU (X)NU (p) | p ∈ DU (X)}.

4.4. De�nition. [16] For a space (X,En
X) and two points p, q ∈ X, we say that

the point p is related to q if there is a point x ∈ DU (X) such that p, q ∈ NU (x). In
this case we use the notation (p, q) ∈ LX and further, the relation set is denoted
by (X,LX).
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It is clear that the relation LX in the set (X,LX) of De�nition 7 is an equivalence
relation [16].

After digitizing X in the U - and the L-topological approach (see Lemmas 3.1
and 3.3), we de�ne the following:

4.5. De�nition. (1) We say that DU(k)(X) is the set DU (X) with a k-adjacency.
(2) We say that DL(k)(X) is the set DL(X) with a k-adjacency.

Using the local rule in De�nition 2, we de�ne the following:

4.6. De�nition. LetDU(k) : (Rn, En)→ (Zn, k) be the map de�ned byDU(k)(x) =
p, where x ∈ NU (p) and the k-adjacency depends on the situation. Then we say
that DU(k) is a U(k)-digitization operator.

Indeed, the U(k)-digitization operator DU(k) is represented as follows: under
(Rn, En

U ), for a point x = (x1, ..., xn) ∈ Rn let DU : (Rn, En
U ) → Zn be a map

de�ned by DU ((xi)i∈[1,n]Z) = (pi)i∈[1,n]Z := p ∈ Zn satisfying that for all i ∈
[1, n]Z, xi = pi + di, where − 1

2 < di ≤ 1
2 (see Lemma 3.1) [16]. Furthermore, on

Zn consider one of the k-adjacency relations of Zn of (2.1). Finally, we obtain the
following process.

(Rn, En)→ (Rn, En
U )→ (Zn, Dn)→ (Zn, k) (∗1)

Using the local rule of De�nition 4, we de�ne the following:

4.7. De�nition. LetDL(k) : (Rn, En)→ (Zn, k) be the map de�ned byDL(k)(x) =
p, where x ∈ NL(p), p ∈ Zn and the k-adjacency depends on the situation. Then
we say that DL(k) is an L(k)-digitization operator.

Indeed, an L(k)-digitization operator DL(k) is represented as follows: under
(Rn, En

L), for a point x = (x1, ..., xn) ∈ Rn let DL(k) : (Rn, En
L) → (Zn, k) be

the map de�ned by DL((xi)i∈[1,n]Z) = (pi)i∈[1,n]Z := p ∈ Zn satisfying that for all

i ∈ [1, n]Z, xi = pi + di, where − 1
2 ≤ di <

1
2 (see Lemma 3.3) [16]. Besides, on Zn

consider one of the k-adjacency relations of Zn of (2.1).
Finally, we obtain the following process.

(Rn, En)→ (Rn, En
L)→ (Zn, Dn)→ (Zn, k) (∗2)

For a non-empty set X ⊂ Rn, let us now investigate some properties of a U(k)-
and an L(k)-digitization.

The digitizations DU(k)(X) and DL(k)(X) of a Euclidean subspace X are pro-
ceeded according to the following algorithms.

Algorithms for the U(k)- and the L(k)-digitizing process from ETC to

DTC
For (X,En

X) ∈ ETC we write the following algorithms for digitizing a space
(X,En

X) from ETC to DTC in such two ways [16]:
(Case 1): In case of the U -digitization of (X,En

X):
(Step 1) Read the points p ∈ DU (X).
(Step 2) For each point p ∈ DU (X) take NU (p) ∩X.
(Step 3) Put NU (p) ∩X := {p}.
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(Step 4) Consider the set DU (X) with a certain k-adjacency so that we obtain
(DU (X), k) ∈ DTC.
Finally, according to (∗1) and (3.1), we obtain the map DU(k) : ETC → DTC
given by

DU(k)((X,En
X)) = (DU (X), k) ∈ Obj(DTC) (4.1)

which is called a U(k)-digitization operator for (X,En
X).

(Case 2): In case of the L(k)-digitization of (X,En
X):

(Step 1) Read the points p ∈ DL(X).
(Step 2) For each point p ∈ DL(X) take NL(p) ∩X.
(Step 3) Put NL(p) ∩X := {p}.
(Step 4) Consider the set DL(X) with a certain k-adjacency so that we obtain
(DL(X), k) ∈ DTC.
Finally, according to (∗2) and (3.2), we obtain the map DL(k) : ETC → DTC
given by

DL(k)((X,En
X)) = (DL(X), k) ∈ Obj(DTC) (4.2)

which is called an L(k)-digitization operator for (X,En
X).

4.8. Proposition. For a (X,En
X) in Ob(ETC), DU(k)(X) is di�erent from DL(k)(X).

Proof: As shown in Fig.2, given a space (X,En
X) in Ob(ETC), take points

p := (pi)i∈[1,n]Z ∈ Zn such that there is a point x := (xi)i∈[1,n]Z ∈ X satisfying

xi = pi + di, where di = 1
2 or di = −1

2 . Then, depending on the choice of a U -
or an L-local rule of x, the point x is recognized to be a di�erent point. Hence
DU(k)(X) is di�erent from DL(k)(X). 2

4.9. Example. Consider the space (X,E2
X) in Fig.2. After obtaining DU(k)(X)

and DL(k)(X), we can see some di�erence between them, k ∈ {4, 8}

5. Developments of a U(k)- and an L(k)-map

Combining a U -localized neighborhood of De�nition 2 with a k-continuous
map, we de�ne the following map which can be used to study both (X,En

X) and
DU(k)(X).

5.1. De�nition. Consider the map F : (X,En
X)→ (Y,En

Y ) in ETC.
(1) We de�ne DU(k)(F ) := f : DU(k)(X)→ DU(k)(Y ) given by{

for p ∈ DU(k)(X), f maps p to qi,

where {qi ∈ Zn | NU (qi) ∩ F (NU (p) ∩X) 6= ∅} ⊂ DU(k)(Y ).

}
Then DU (F ) is called a U -digitization of F .

(2) DU(k)(F ) := f is a k-continuous map satisfying that for any point
p ∈ DU(k)(X), F (NU (p) ∩X) ⊂ NU (f(p)) ∩ Y.

Then we say that the map F is a lattice-based U(k)-continuous map (a U(k)-
map, for short).
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Figure 2. Comparison between DU(k)(X) and DL(k)(X), k ∈ {4, 8}.

The paper denotes by UDC the category consisting of the following two sets:
(∗ 1) the set of spaces (X,En

X) := X as objects of UDC denoted by Ob(UDC);
(∗ 2) the set of U(k)-maps of every ordered pair of elements in Ob(UDC) as
morphisms of UDC denoted by Mor(UDC).

5.2. Example. In Fig.3(a), put X = X1 ∪ X2 ∪ X3, where X1 := (−12 , −14 ]2,

X2 := (−14 , 1
4 ]2 and X3 := ( 1

4 ,
1
2 )2. Besides, put Y = Y1 ∪ Y2 ∪ Y3, where Y1 = X1,

Y2 := (−18 , 1
8 ]2, X3 = Y3 and p = (0, 0). Then consider the map F : (X,E2

X) →
(Y,E2

Y ) given by F (p) = p, F (Xi) ⊂ Yi, i ∈ {1, 2, 3}. Then F is a U(k)-map,
k ∈ {4, 8}.

By using the method similar to the establishment of a U(k)-map, we can estab-
lish an L(k)-map: Combining an L-localized neighborhood of De�nition 4 with a
k-continuous map, let us now de�ne the following map which can be used to study
both (X,En

X) and DL(k)(X).

5.3. De�nition. Consider the map F : (X,En
X)→ (Y,En

Y ) in ETC.
(1) We de�ne DL(k)(F ) := f : DL(k)(X)→ DL(k)(Y ) given by{

for p ∈ DL(k)(X), f maps p to qi,

where {qi ∈ Zn | NL(qi) ∩ F (NL(p) ∩X) 6= ∅} ⊂ DL(k)(Y ).

}
Then DL(F ) is called an L-digitization of F .
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Figure 3. (a) Con�guration of a U(k)-map in UDC; (b) con�guration
of an L(k)-map in LDC.

(2) DL(k)(F ) := f is a k-continuous map satisfying that for any point
p ∈ DL(k)(X), F (NL(p) ∩X) ⊂ NL(f(p)) ∩ Y.

Then we say that the map F is a lattice-based L(k)-continuous map (an L(k)-
map, for short).

The paper denotes by LDC the category consisting of the following two sets:
(∗ 1) the set of spaces (X,En

X) := X as objects of LDC denoted by Ob(LDC);
(∗ 2) the set of L(k)-maps of every ordered pair of elements in Ob(LDC) as mor-
phisms of LDC denoted by Mor(LDC).

5.4. Example. In Fig.3(b), put Z = Z1 ∪ Z2 ∪ Z3, where Z1 := (−12 , −14 )2,

Z2 := [−14 , 1
4 )2 and Z3 := [14 ,

1
2 )2. Besides, put W = W1 ∪ W2 ∪ W3, where

W1 = Z1, W2 := [−18 , 1
8 )2, Z3 = W3 and p = (0, 0). Then consider the map

G : (Z,E2
Z) → (W,E2

W ) given by G(p) = p,G(Zi) ⊂ Wi, i ∈ {1, 2, 3}. Then G is
an L(k)-map, k ∈ {4, 8}.

Owing to Proposition 4.3, we obtain the following:

5.5. Proposition. For a given map f : (X,Em
X ) → (Y,En

X) in Mor(ETC), a
U(k)-map is di�erent from an L(k)-map.

5.6. De�nition. (1) Let f : (X,Em
X ) → (Y,En

Y ) be a U(k)-map. Then consider
a map DU(k)(f) : DU(k)(X) → DU(k)(Y ) induced by the given map f . Then we
say that DU(k)(f) is a U(k)-digitization induced by the map f of De�nition 11.

(2) Let f : (X,Em
X )→ (Y,En

Y ) be an L(k)-map. Then consider a mapDL(k)(f) :
DL(k)(X) → DL(k)(Y ) induced by the given map f . Then we say that DL(k)(f)
is an L(k)-digitization induced by the map f of De�nition 12.

6. U(k)- and L(k)-homotopic properties in UDC and LDC

This section addresses the questions (Q1) and (Q2) posed in Section 1. First
of all, let us investigate a relation among f ∈ Mor(ETC), a U(k)-map and an
L(k)-map, as follows:
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6.1. Lemma. A map f ∈Mor(ETC) need not induce a U(k)-map and an L(k)-
map.

Proof: By using a counterexample, we prove the assertion (see Fig.4(a)). Put
X := {(t, 1) | 0 � t ≤ 1} ∪ {(1, t) | 0 � t ≤ 1} and Y := {(t, 2) | 0 � t ≤ 2} ∪
{(2, t) | 0 � t ≤ 2} (see Fig.4(a)).

Let us consider the map f : (X,E2
X)→ (Y,E2

Y ) given by

f((t, 1)) = (4t, 2) if 0 � t �
1

2
,

f((t, 1)) = (2, 2) if
1

2
≤ t ≤ 1,

f((1, t)) = (2, 4t) if 0 � t �
1

2
,

f((1, t)) = (2, 2) if
1

2
� t ≤ 1.

Then the map f is a continuous map in Mor(ETC). But it is clear that the
map f is neither a U(k)-map nor an L(k)-map, k ∈ {4, 8}.

To be speci�c, based on the given map f , we cannot have its U(k)- and L(k)-
maps which are denoted by DU(k)(f) and DL(k)(f) induced by the map f , respec-
tively. contrary to the properties of De�nitions 11 and 12, respectively. Namely,{

DU(k)(f) : DU(k)(X)→ DU(k)(Y ) is not a k-continuous map, k ∈ {4, 8};
DL(k)(f) : DL(k)(X)→ DL(k)(Y ) is not a k-continuous map, k ∈ {4, 8}.

For instance, we observe that DU(k)(f) (resp. DL(k)(f)) is not a U(k)-map (resp.
an L(k)-map) at the point (0, 0), k ∈ {4, 8}. 2

6.2. Remark. (1) Unlike the given map f in Lemma 6.1, as shown in Fig.4(c),
it is clear that the given map g : Z → W given by g(t) = 2t is a (Euclidean
topologically) continuous map, where Z := (0, 1

4 ) and W := (0, 1
2 ). But we see

that its digitization DU(2)(g) (resp. DL(2)(g)) is a U(2)-map (resp. an L(2)-map).
(2) By Lemma 6.1 and Proposition 5.3, it turns out that none of a map f ∈

Mor(ETC), a U(k)-map in Mor(UDC) and an L(k)-map in Mor(LDC) implies
the other.

In view of Lemma 6.1, we need to propose a certain homotopy suitable for
studying a U(k)- and an L(k)-digitization. To do this work, �rst of all, we need
to recall the notion of a k-homotopy [2]. For a space X ∈ Ob(DTC) let B be a
subset of X. Then (X,B) is called a digital image pair [7]. Furthermore, if B is
a singleton set {x0}, then (X,x0) is called a pointed digital image in Ob(DTC).
To study homotopic properties of DU(k)(X), in this section we use the notions
of a k-homotopy relative to a subset B ⊂ X [10] and a k-homotopy equivalence
[6, 15]. Based on the pointed digital homotopy in [2], the following notion of a
k-homotopy relative to a subset A ⊂ X is often used in studying a k-homotopic
thinning and a strong k-deformation retract of a digital image (X, k) in Zn [9].

6.3. De�nition. [9] (see also [10]) Let ((X,A), k0) and (Y, k1) be a digital image
pair and a digital image, respectively. Let f, g : X → Y be (k0, k1)-continuous
functions. Suppose there exist m ∈ N and a function F : X × [0,m]Z → Y such



139

X
 Y

f


(0, 1)


(2, 2)


(1, 1)


(1, 0)
 (2, 0)


D    (X)


(0, 2)
 (2, 2)


(1, 1)


(1, 0)
 (2, 0)


U(4)

D     (Y)


U(4)


(1,2)


(2, 1)


D      (f)
U(4)


(a)


(b)


(c)
 0


Z
 W

g


0


(0, 2)


(0, 1)


Figure 4. Comparison among a map f ∈ Mor(ETC), a U(k)-map
and an L(k)-map

that
• for all x ∈ X,F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0,m]Z is (2, k1)-continuous;
• for all t ∈ [0,m]Z, the induced function Ft : X → Y given by Ft(x) = F (x, t) for
all x ∈ X is (k0, k1)-continuous.
Then we say that F is a (k0, k1)-homotopy between f and g [2].
• Furthermore, for all t ∈ [0,m]Z, Ft(x) = f(x) = g(x) for all x ∈ A.
Then we call F a (k0, k1)-homotopy relative to A between f and g, and we say
that f and g are (k0, k1)-homotopic relative to A in Y , f '(k0,k1)relA g in symbols.

In De�nition 14, if A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-
homotopy at {x0} [2]. When f and g are pointed (k0, k1)-homotopic in Y , we use
the notation that f '(k0,k1) g. In addition, if k0 = k1 and n0 = n1, then we say
that f and g are pointed k0-homotopic in Y and we use the notation that f 'k0

g
and f ∈ [g] which denotes the k0-homotopy class of g.

Based on this digital k-homotopy, to study some relations between DU(k)(X)
and (X,En

X) from the viewpoint of homotopy theory, after combining an ordinary



140

homotopy in ETC and a k-homotopy in DTC, we develop the following U(k)-
homotopy.

6.4. De�nition. Consider (X,En
X) := X and (Y,En

Y ) := Y and (B,En
B) := B

which is a subspace of (X,En
X). Let f, g : X → Y be U(k)-maps. Suppose there

exist m ∈ N and a function F : X × [0,m]Z → Y such that
• for all x ∈ X,F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0,m]Z is a U(k)-map;
• for all t ∈ [0,m]Z, the induced function Ft : X → Y given by Ft(x) = F (x, t) for
all x ∈ X is a U(k)-map.
Then we say that F is a U(k)-homotopy between f and g.
• Furthermore, for all t ∈ [0,m]Z, assume that Ft(x) = f(x) = g(x) for all x ∈ B.
Then we call F a U(k)-homotopy relative to B between f and g, and we say that
f and g are U(k)-homotopic relative to B in Y , f 'U(k)rel.B g in symbol.

To study some relations between DL(k)(X) and (X,En
X) from the viewpoint of

homotopy theory, combining an ordinary homotopy in ETC and a k-homotopy in
DTC, we develop the following L(k)-homotopy.

6.5. De�nition. Consider (X,En
X) := X and (Y,En

Y ) := Y and (B,En
B) := B

which is a subspace of (X,En
X). Let f, g : X → Y be L(k)-maps. Suppose there

exist m ∈ N and a function F : X × [0,m]Z → Y such that
• for all x ∈ X,F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0,m]Z is an L(k)-map;
• for all t ∈ [0,m]Z, the induced function Ft : X → Y given by Ft(x) = F (x, t) for
all x ∈ X is an L(k)-map.
Then we say that F is an L(k)-homotopy between f and g.
• Furthermore, for all t ∈ [0,m]Z, assume that Ft(x) = f(x) = g(x) for all x ∈ B.
Then we call F an L(k)-homotopy relative to B between f and g, and we say that
f and g are L(k)-homotopic relative to B in Y , f 'L(k)rel.B g in symbol.

Owing to Lemma 6.1 and Remark 6.2, we obtain the following related to the
queries (Q1)-(Q2):

6.6. Proposition. An ordinary homotopy in ETC does not induce a U(k)-homotopy

in UDC and an L(k)-homotopy in LDC

Let us now investigate relations among a U(k)-homotopy, an L(k)-homotopy
and a k-homotopy. To do this work, we recall some notions related to a U(k)- and
an L(k)-digitization. The paper [16] studied the following:

6.7. Lemma. [16] If (X,En
X) is connected, then both DU(k)(X) and DL(k)(X) are

(3n − 1)-connected.

Let us prove that a U(k)- and an L(k)-homotopy induces a k-homotopy in
DTC, as follows:

6.8. Theorem. Consider two U(k)-maps f, g : (X,En
X) → (Y,En

Y ) and their

U(k)-digitizations DU(k)(f), DU(k)(g) : DU(k)(X) → DU(k)(Y ), where (X,En
X)

and (Y,En
Y ) are connected. If there is a U(k)-homotopy between f and g, then we



141

obtain a k-homotopy between DU(k)(f) and DU(k)(g) induced by the given U(k)-
homotopy.

Proof: Assume a U(k)-homotopy H in UDC between two U(k)-maps f, g :
(X,En

X)→ (Y,En
Y ), i.e.

H : X × [0,m]Z → Y such that H(x, 0) = f(x) and H(x,m) = g(x)

satisfying the property of De�nition 15. By Remark 3.2, we obtain

DU(k)(H) : DU(k)(X)× [0,m]Z → DU(k)(Y ) such that

• for all x′ ∈ DU(k)(X){
DU(k)(H)(x′, 0) = DU(k)(f)(x′) and

DU(k)(H)(x′,m) = DU(k)(g)(x′);

}
• for all x′ ∈ DU(k)(X), the induced function Hx′ : [0,m]Z → DU(k)(Y ) given

by Hx′(t) = H(x′, t) for all t ∈ [0,m]Z is a (2, k)-continuous map;

• for all t ∈ [0,m]Z, the induced function Ht : DU(k)(X)→ DU(k)(Y ) given by
Ht(x

′) = H(x′, t) for all x′ ∈ DU(k)(X) is a k-continuous map,
which implies that H is a k-homotopy between the above k-continuous maps
DU(k)(f) and DU(k)(g). 2

By De�nition 16 and Remark 3.4, by using the method similar to Theorem 6.5,
we obtain the following:

6.9. Corollary. Consider two L(k)-maps f, g : (X,En
X) → (Y,En

Y ) and their

L(k)-digitizations DL(k)(f), DL(k)(g) : DL(k)(X)→ DL(k)(Y ). If there is an L(k)-
homotopy between f and g, then we obtain a k-homotopy between DL(k)(f) and

DL(k)(g) induced by the given L(k)-homotopy.

6.10. Remark. In view of Propositions 5.3 and 6.3, it turns out that none of an
ordinary homotopy in ETC, a U(k)- and an L(k)-homotopy implies the other.

In view of Theorem 6.5 and Corollary 6.6, we can answer the questions (Q3)-
(Q4) a�rmatively. Finally, it turns out that both a U(k)- and an L(k)-homotopy
can play an important role in studying both (X,En

X) and its U(k)-digitized space
DU(k)(X) and its L(k)-digitized space DL(k)(X).

7. A comparison among an ordinary homotopy equivalence, a

U(k)- and an L(k)-homotopy equivalence and a k-homotopy

equivalence

In this section, after proposing the notions of a U(k)- and an L(k)-homotopy
equivalence, we compare among an ordinary homotopy equivalence, a U(k)- and
an L(k)-homotopy equivalence, and a k-homotopy equivalence.

7.1. De�nition. [6](see also [15]) In DTC, for two spaces X and Y , if there are
k-continuous maps h : X → Y and l : Y → X such that l ◦h is k-homotopic to 1X
and h ◦ l is k-homotopic to 1Y , then the map h : X → Y is called a k-homotopy
equivalence. Then we use the notation X 'k·h·e Y .
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7.2. Theorem. [6] The composition also preserves a k-homotopy equivalence in

DTC. Namely, if X 'k·h·e Y and Y 'k·h·e Z, then X 'k·h·e Z.

Motivated by several types of digital versions of homotopy equivalences in [6,
9, 10], let us propose the notion of a U(k)-homotopy equivalence in UDC.

7.3. De�nition. For two spaces (X,En
X) and (Y,En

Y ), if there are U(k)-maps
h : X → Y and l : Y → X such that l ◦ h is U(k)-homotopic to 1X and h ◦ l
is U(k)-homotopic to 1Y , then the map h : X → Y is called an U(k)-homotopy
equivalence. Then we use the notation X 'U(k)·h·e Y .

7.4. Example. Consider the two spaces (X,E2
X) and (Y,E2

Y ) in Fig.5(a) and (b),
where p := (−12 , 3

2 ) and q := (−12 , 1
2 ) in Fig.5. In addition, the spaces X and Y are

assumed to contain the point p and do not have the point q, respectively. While
they are quite di�erent from each other up to an ordinary homotopy equivalence,
they are U(k)-equivalent, k ∈ {4, 8}. Indeed, in this case we see DU(k)(X) =
DU(k)(Y ).

X


(a)

D  (X)


U


D  (X)

L
(0,0)


(2,1)


(1, 2)


(1, 2)


(2,1)


(0,0)


(-1,1)


Y


(b)


(0,0)


(2,1)


p
 p


D  (Y)

U


D  (Y)
L


q
 q


Figure 5. Comparison among a homotopy equivalence in ETC, a
U(k)-, an L(k)-and a k-homotopy equivalence.

Comparing a U(k)-homotopy equivalence and an ordinary homotopy equiva-
lence in [27], we can observe that a U(k)-homotopy equivalence has some merits
in approximation theory.

7.5. Theorem. The composition also preserves a U(k)-homotopy equivalence in

UDC. Namely, if X 'U(k)·h·e Y and Y 'U(k)·h·e Z, then X 'U(k)·h·e Z.

Proof: It is clear.
By using the method similar to that of De�nition 18, we now establish the

notion of an L(k)-homotopy equivalence in LDC.

7.6. De�nition. For two spaces (X,En
X) and (Y,En

Y ), if there are L(k)-maps
h : X → Y and l : Y → X such that l ◦ h is L(k)-homotopic to 1X and h ◦ l
is L(k)-homotopic to 1Y , then the map h : X → Y is called an L(k)-homotopy
equivalence. Then we use the notation X 'L(k)·h·e Y .

7.7. Example. Consider the two spaces (X,E2
X) and (Y,E2

Y ) in Fig.5 (a) and
(b). While they are quite di�erent from each other up to an ordinary homotopy
equivalence, they are L(k)-homotopy equivalent, k ∈ {4, 8}. Indeed, in this case
we see DL(k)(X) = DL(k)(Y ), k ∈ {4, 8}.



143

Let us now compare among an ordinary homotopy equivalence in ETC, a U(k)-
and an L(k)-homotopy equivalence.

7.8. Theorem. None of a homotopy equivalence in ETC and a U(k)-homotopy

equivalence in UDC implies the other.

Proof: Consider two Euclidean topological spaces (X,En
X) and (Y,En

Y ) in Fig.6
and their U(k)-spaces DU(k)(X) and DU(k)(Y ). In addition, we assume both
X and Y contain the point p and they do not have the point q. Besides, in
X, we assume p := (−12 , 7

8 ) and q := (−78 , 1
2 ); in Y , we assume p := (−12 , 1

2 )

and q := (−12 , −12 ) First of all, by Lemma 6.1 and Remark 6.2, it is clear that
none of a homotopy equivalence between (X,En

X) and (Y,En
Y ) in ETC and a

k-homotopy equivalence in DTC implies the other. For instance, consider the
spaces (X,E2

X) in Fig.6(a) and (Y,E2
Y ) in Fig.6(b). While they are homotopy

equivalent to each other, they are not U(k)-homotopy equivalent, k ∈ {4, 8}. To
be speci�c, comparing DU (X) in Fig.6(a) and DU (Y ) in Fig.6(b), we obviously
see that (DU (X), k) in Fig.6(a) is not k-homotopy equivalent to (DU (Y ), k) in
Fig.6(b), k ∈ {4, 8}. Hence the given space (X,En

X) cannot be U(k)-homotopy
equivalent to (Y,En

Y ), k ∈ {4, 8}.
Conversely, consider the spaces (Y,E2

Y ) in Fig.6(b) and (Z,E2
Z) in Fig.6(c).

While the U(k)-spaces DU(k)(Y ) in Fig.6(a) and DU(k)(Z) in Fig.6(c) are 8-

homotopy equivalent to each other, it is clear that the space (Y,E2
Y ) is not homo-

topy equivalent to (Z,E2
Z) in ETC, which means that a U(k)-homotopy equiva-

lence of (Y,E2
Y ) and (Z,E2

Z) in UDC does not imply their homotopy equivalence
in ETC. 2

Let us now compare between a U(k)-homotopy equivalence in UDC and a k-
homotopy equivalence in DTC.

7.9. Theorem. A U(k)-homotopy equivalence between (X,En
X) and (Y,En

Y ) in

UDC implies a k-homotopy equivalence between DU(k)(X) and DU(k)(Y ) in DTC.

Proof: Consider two topological spaces (X,En
X) and (Y,En

Y ) in Ob(UDC) and
their U(k)-spaces DU(k)(X) and DU(k)(Y ). By Theorem 6.5, we conclude that
an U(k)-homotopy equivalence between (X,En

X) and (Y,En
Y ) in UDC implies a

k-homotopy equivalence between DU(k)(X) and DU(k)(Y ) in DTC. 2
By the method similar to Theorem 7.5, we obtain the following:

7.10. Corollary. None of a homotopy equivalence in ETC and an L(k)-homotopy

equivalence in LDC implies the other.

By the method similar to Theorem 7.6, we obtain the following:

7.11. Corollary. An L(k)-homotopy equivalence between (X,En
X) and (Y,En

Y ) in
LDC implies a k-homotopy equivalence between DL(k)(X) and DL(k)(Y ) in DTC.

In view of Proposition 5.3, we obtain the following:

7.12. Proposition. None of U(k)- and L(k)-homotopy equivalence implies the

other.

Proof: By Proposition 4.3, the proof is trivial. 2
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Figure 6. Comparison among the homotopy equivalence in ETC, the
U(k)- and L(k)-homotopy equivalence, and the k-homotopy equiva-
lence.

7.13. Example. Consider the spaces (Y,E2
Y ) in Fig.6(b) and (Z,E2

Z) in Fig.6(c).
Then, while (Y,E2

Y ) is U(8)-homotopy equivalent to (Z,E2
Z), they are not L(8)-

homotopy equivalent.

7.14. Remark. In view of Theorem 6.5, we obtain the following:
(1) the notion of a U(k)-homotopy equivalence in UDC can be used to study both
(X,En

X) and its U(k)- space DU(k)(X) from the viewpoint of homotopy theory.
(2) In view of Corollary 6.6, the notion of an L(k)-homotopy equivalence in

LDC can be used to study both (X,En
X) and its L(k)-space DL(k)(X) from the

viewpoint of homotopy theory.

8. Summary and further works

Comparing with the usual topology on Rn, we found that the U - and the L-
topology has some merits of digitizations of (X,En

X). Thus we have studied vari-
ous properties of an L(k)-homotopy and an L(k)-homotopy equivalence. Besides,
comparing a Euclidean topological continuous map with an L(k)-map, we observed
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Figure 7. Comparison among a homotopy equivalence in ETC, a
U(k)- an L(k)-and a k-homotopy equivalence.

that an L(k)-map has strong merits of digitizing (X,En
X). Furthermore, compar-

ing a Euclidean homotopy with both a U(k)-homotopy and an L(k)-homotopy, we
concluded that a U(k)-homotopy and an L(k)-homotopy are suitable homotopies
for studying both ETC, UDC and LDC. Besides, the paper investigated some
relations between subspaces (X,En

X) and their U(k)-spaces DU(k)(X) in terms of
an U(k)-homotopy equivalence and a k-homotopy equivalence (see Fig.7).

Recently, the paper[13] improved the LMA-map in [14] as follows: Let us now
develop the notion of a generalized LMA-map as follows:

8.1. De�nition. [13] Consider the map F : (X,E2
X)→ (Y,E2

Y ) such thatDMA(F ) :=
f : DMA(X) → DMA(Y ) is an MA-map, where DMA(F ) := f is induced by F
satisfying that for any point p ∈ DMA(X)

F (NM (p) ∩X) ⊂ NM (f(p)) ∩ Y, and

f maps p to qi, where

{qi ∈ Z2 | NM (qi) ∩ F (NM (p) ∩X) 6= ∅} ⊂ DMA(Y ).


Then we say that the map F is a generalized LMA-map.

It turns out that [13] this version is both a kind of a generalization of an LMA-
map in [14] and an improved and corrected version of an LMA-map in [14]. Thus
the LMA-map of the paper [14] can be replaced by the current generalized LMA-
map. Hereafter, we will call the map F in De�nition 20 an LMA-map instead of
a generalized LMA-map[13].
Besides, the paper[13] also improved the LA-map in [12] as follows:

8.2. De�nition. [13] Consider the map F : (X,En
X)→ (Y,En

Y ) such thatDKA(F ) :=
f : DKA(X)→ DKA(Y ) is an A-map, where DKA(F ) := f is induced by F satis-
fying that for any point p ∈ DKA(X)
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
F (NK(p) ∩X) ⊂ NK(f(p)) ∩ Y and

f maps p to qi, where

{qi ∈ Zn | NK(qi) ∩ F (NK(p) ∩X) 6= ∅} ⊂ DKA(Y ).


Then we say that the map F is a generalized LA-map.

It turns out that [13] this version is both a kind of a generalization of an LA-
map in [12] and an improved and corrected version of an LA-map in [12].
Hereafter, we will call the map F in De�nition 21 an LA-map instead of a gen-

eralized LA-map[13]. Thus the LA-map of the paper [12] can be replaced by the
current generalized LA-map.
As a further work, we can compare among digitizations based on several kinds of
digital topological structures in terms of the above LMA-map, LA-map, U(k)-
map, and L(k)-map and further, �nd their own features and utilities.
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