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Ideal convergence in 2-fuzzy 2-normed spaces

Mohammad H.M. Rashid ∗ and Ljubi²a D.R. Ko£inac†

Abstract

In this paper we introduce the notion of I-convergence and I-
Cauchyness of sequences in 2-fuzzy 2-normed spaces and established
some basic results related to these notions. Further, we de�ne I-limit
and I-cluster points of a sequence in a 2-fuzzy 2-normed linear space
and investigate the relations between these concepts.
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1. Introduction

Convergence (of sequences) is one of the basic and most important concepts in
mathematics. It was generalized in several directions.

The notion of statistical convergence of sequences of real numbers was intro-
duced independently by H. Fast [20] and H. Steinhaus [42], although the �rst idea
of statistical convergence, under the name almost convergence, have appeared in
1935 in the �rst edition of the famous Zygmund's monograph [46]. It is based on
the notion of asymptotic density of a subset of the set N of natural numbers. For
A ⊂ N and n ∈ N, let A(n) := {k ∈ A : k ≤ n} and let |A(n)| denote cardinality
of A(n). The asymptotic (or natural) density of A is de�ned by

δ(A) = limn→∞
|A(n)|
n .
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Statistical convergence has many applications in di�erent �elds of mathematics
(see, for example, [17, 22] and references therein). Let us mention that statistical
convergence in function spaces was studied in [7, 11].

In 1970, Bernstein [8] introduced convergence of sequences with respect to a
�lter F on N. Using the concept of an ideal, Kostyrko et al. [30] (see also [31])
introduced the notion of ideal convergence which is a common generalization of
ordinary convergence and statistical convergence. The ideal convergence provides
a general framework to study the properties of various types of convergence. Let
S be a non empty set. Then a family of sets I ⊂ 2S (2S is the power set of S)
is said to be an ideal on S if for each A,B ∈ I we have A ∪ B ∈ I, and for each
A ∈ I and each B ⊂ A, we have B ∈ I. A non empty family of sets F ⊂ 2S is
said to be �lter on S if ∅ /∈ F, for each A,B ∈ F we have A ∩B ∈ F and for each
A ∈ F and each B ⊃ A, we have B ∈ F. An ideal I on S is called non-trivial
if I 6= ∅ and S /∈ I. It is clear that I ⊂ 2S is an non-trivial ideal on S if and
only if F = F(I) =: {S \ A : A ∈ I} is a �lter on S. A non-trivial ideal I ⊂ 2S

is called an admissible ideal if I ⊃ {{x} : x ∈ S}. In this paper we consider
the case S = N. An admissible ideal I ⊂ 2N is said to have the property (AP)
[13, 30] if for any sequence {A1, A2, · · · } of mutually disjoint sets of I, there is a
sequence {B1, B2, · · · } of subsets of N such that each symmetric di�erence Ai∆Bi

(i = 1, 2, · · · ) is �nite and
∞⋃
i=1

Bi ∈ I.

We will need the following two lemmas concerning ideals with property (AP).

1.1. Lemma. ([30]) Let {Ai}∞i=1 be a countable collection of subsets of N such
that Ai ∈ F(I) for each i, where I is an admissible ideal with the property (AP).
Then there exists a set A ⊂ N such that A ∈ F(I) and the set A \ Ai is �nite for
all i.

1.2. Lemma. ([30]) Let I ⊂ 2N be an admissible ideal with the property (AP)
and (X, ρ) be a metric space. Then I- lim

k→∞
xk = x0 if and only if there exists a set

P ∈ F(I), P = {p1 < p2 < · · · < pk < · · · } such that lim
k→∞

xpk = x0.

On the other hand, the fuzzy theory has emerged as one of the most active area
of research in many branches of mathematics and engineering. This new theory
was introduced by Zadeh [44] in 1965 and since then a large number of research
papers have appeared by using the concept of fuzzy sets/numbers and fuzzi�cation
of many classical theories has also been made.

The idea of fuzzy norm was initiated by Katsaras [29]. Felbin [21] de�ned a fuzzy
norm on a linear space whose associated fuzzy metric is of Kaleva and Seikkala type
[25]. Cheng and Mordeson [12] introduced an idea of a fuzzy norm on a linear space
whose associated metric is Kramosil and Michalek type [32]. Bag and Samanta in
[4] gave a de�nition of a fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [32]. They also studied some properties of
the fuzzy norm in [5] and [6]. Bag and Samanta discussed the notions of convergent
sequence and Cauchy sequence in fuzzy normed linear space in [4]. They also made
in [6] a comparative study of the fuzzy norms de�ned by Katsaras [32], Felbin [21],
and Bag and Samanta [4]. The concept of 2-normed spaces was initially introduced
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by Gähler [19] in the 1960s. Since then, this concept has been studied by many
authors (see, for instance, [4, 9, 10, 14, 18, 37]).

Karaku³ et al. [26] de�ned statistical convergence in intuitionistic fuzzy normed
spaces and Mursaleen et al. [34] investigated statistical convergence of double se-
quences in intuitionistic fuzzy normed spaces. Quite recently, in [27, 28], Karakaya
et al de�ned and studied statistical and ideal convergence of sequences of functions
in intuitionistic fuzzy normed spaces. The concept of statistical limit inferior and
limit superior of sequences of fuzzy numbers found in [2, 3]. Let us mention that
statistical and ideal convergence have been studied in fuzzy context (relations with
fuzzy numbers and fuzzy normed linear spaces) in many papers (see, for example,
[1, 23, 24, 33, 36, 38�41]).

In this paper we investigate ideal convergence in the fuzzy settings, more pre-
cisely in 2-fuzzy 2-normed spaces. The paper is organized as follows: In the sec-
ond section, we present some preliminary de�nitions and results related to fuzzy
normed spaces and 2-fuzzy 2-normed spaces. In the third section, we introduce the
notion of I-convergent sequence and I∗-convergence in a 2-fuzzy 2-normed space
and some basic results are obtained. In fourth section, we introduce the notion of
I-Cauchy and I∗-Cauchy sequences in a 2-fuzzy 2-normed space. In Section 5 the
concepts of I-limit points and I-cluster points of a sequence in a 2-fuzzy 2-normed
space are de�ned and relations between these concepts are investigated.

2. De�nitions and preliminaries

By R we denote the set of real numbers. All linear spaces are assumed to be
over R.

For the sake of completeness, we reproduce some de�nitions due to Gähler [19],
Bag and Samanta [4], Somasundaram and Beaula [43], and Zhang [45].

2.1. De�nition. ([19]) Let X be a real linear space of dimension s, where 2 ≤
s <∞. A 2-norm on X is a function ‖., .‖ : X ×X → R which satis�es

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(ii) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X;
(iii) ‖cx, y‖ = |c| ‖x, y‖ for all x, y ∈ X and c ∈ R ;
(iv) ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X.

The pair (X, ‖., .‖) is then called a 2-normed space.

An example of a 2-normed space is the set X = R2 equipped with the 2-norm

‖x, y‖ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2),

i.e. ‖x, y‖ is the area of the parallelogram spanned by the vectors x and y.

2.2. De�nition. ([4]) Let X be a linear space over R. A fuzzy subset N of X×R
is called a fuzzy norm on X if for all x, y ∈ X and c ∈ R.
(FN1) For all t ∈ R with t ≤ 0, N(x, t) = 0;
(FN2) for all t ∈ R with t > 0, N(x, t) = 1, if and only if x = 0;
(FN3) for all t ∈ R with t > 0, N(cx, t) = N(x, t/|c|), if c 6= 0,
(FN4) for all s, t ∈ R, x, y ∈ X, N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)},
(FN5) N(x, .) is a non decreasing function of R and lim

t→∞
N(x, t) = 1.
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The pair (X,N) will be referred to as a fuzzy normed linear space.

The following de�nition is actually a decomposition theorem from [4].

2.3. De�nition. ([4]) Let (X,N) be a fuzzy normed linear space. Assume further
that

(FN6) N(x, t) > 0 for all t > 0 implies x = 0.

De�ne ‖x‖α = inf{t : N(x, t) ≥ α}, α ∈ (0, 1). Then {‖.‖α : α ∈ (0, 1)} is an
ascending family of norms on X or α-norms on X corresponding to the fuzzy
norm on X.

2.4. De�nition. ([45]) Let X be a non-empty set and F(X) be the set of all fuzzy
sets on X. For U, V ∈ F(X) and k ∈ R de�ne

U + V = {(x+ y, λ ∧ µ) : (x, λ) ∈ U, (y, µ) ∈ V },
and kU = {(kx, λ) : (x, λ) ∈ U}.

2.5. De�nition. ([43]) A fuzzy linear space X̃ = X × (0, 1] over R where the
addition and scalar multiplication operation on X are de�ned by (x, λ) + (y, µ) =

(x + y, λ ∧ µ), k(x, λ) = (kx, λ) is a fuzzy normed space if for every (x, λ) ∈ X̃
there is associated a non-negative real number, ‖(x, λ)‖ , called the fuzzy norm of
(x, λ), in such a way that

(1) ‖(x, λ)‖ = 0 ⇐⇒ x = 0 the zero element of X, λ ∈ (0, 1],

(2) ‖k(x, λ)‖ = |k| ‖(x, λ)‖ for all (x, λ) ∈ X̃ and all k ∈ R,
(3) ‖(x+ y, λ+ µ)‖ ≤ ‖(x, λ+ µ)‖+ ‖(y, λ+ µ)‖ for all (x, λ), (y, µ) ∈ X̃,
(4) ‖(x,∨tλt)‖ = ∧t ‖(x, λt)‖ for λt ∈ (0, 1].

2.6. De�nition. ([43]) Let X be a non-empty and F(X) be the set of all fuzzy
sets in X. If f ∈ F(X), then f = {(x, µ) : x ∈ X and µ ∈ (0, 1]}. Clearly f is a
bounded function for |f(x)| ≤ 1. F(X) is a linear space over the �eld R, where the
addition and scalar multiplication are de�ned by

f + g = {(x, µ) + (y, ν)} = {(x+ y, µ ∧ ν) : (x, µ) ∈ f and (y, ν) ∈ g}
and

kf = (kx, µ) such that (x, µ) ∈ f
where k ∈ R.

The linear space F(X) is said to be a normed space if for every f ∈ F(X) there
is associated a non-negative real number ‖f‖ called the norm of f in such a way
that

(1) ‖f‖ = 0 if and only if f = 0.
(2) ‖kf‖ = |k| ‖f‖, k ∈ R.
(3) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for every f, g ∈ F(X).

Then (F(X), ‖.‖) is a normed linear space.

2.7. De�nition. ([43]) A 2-fuzzy set on X is a fuzzy set on F(X).

2.8. De�nition. ([43]) Let F(X) be a linear space over R. A fuzzy subset N of
F(X)× F(X)× R is called a 2-fuzzy 2-norm on X (or fuzzy 2-norm on F(X)) if

(F2N1) for all t ∈ R with t ≤ 0 N(f1, f2, t) = 0;
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(F2N2) for all t ∈ R with t > 0, N(f1, f2, t) = 1, if and only if f1 and f2 are
linearly dependent;

(F2N3) N(f1, f2, t) is invariant under any permutation of f1, f2;
(F2N4) for all t ∈ R, with t > 0, N(f1, cf2, t) = N(f1, f2, t/|c|) if c 6= 0, c ∈ R;
(F2N5) for all s, t ∈ R, N(f1, f2 + f3, s+ t) ≥ min{N(f1, f2, s), N(f1, f3, t)};
(F2N6) N(f1, f2, .) : (0,∞)→ [0, 1] is continuous,
(F2N7) lim

t→∞
N(f1, f2, t) = 1.

Then (F(X), N) is a fuzzy 2-normed linear space or (X,N) is a 2-fuzzy 2-normed
linear space.

2.9. Lemma. ([43, Theorem 3.2]) Let (F(X), N) be a fuzzy 2-normed linear space.
Assume that

(F2N8) N(f1, f2, t) > 0 for all t > 0 implies f1 and f2 are linearly dependent,

de�ne
‖f1, f2‖α = inf{t : N(f1, f2, t) ≥ α, α ∈ (0, 1)}.

Then {‖., .‖α : α ∈ [0, 1]} is an ascending family of 2-norms on F(X). These
2-norms are called α-2-norms on F(X) corresponding to the fuzzy 2-norms.

3. I-convergence in 2-fuzzy 2-normed spaces

In this section we introduce the notion of I-convergence and I∗-convergence
of sequences in a 2-fuzzy 2-normed space X, i. e. in a fuzzy 2-normed space
(F(X), N), and present some basic results.

3.1. De�nition. Let (F(X), N) be fuzzy 2-normed linear space. A sequence {fk}
in F(X) is said to be I-convergent to f in F(X) with respect to the α-2-norms on
F(X) if for each ε > 0, α ∈ [0, 1] and each g ∈ F(X), the set A(ε) = {k ∈ N :

‖fk − f, g‖α ≥ ε} belongs to I. In this case we write fk
I−→ f . The element f is

called the I-limit of {fk} in F(X).

The usual interpretation of the above de�nition is the following:

fk
I−→ f ⇐⇒ I- lim

k→∞
‖fk − f, g‖α = 0, for all g ∈ F(X) and α ∈ [0, 1].

3.2. Lemma. Let (F(X), N) be fuzzy 2-normed linear space and I be an admis-
sible ideal of N. If a sequence {fk} in F(X) is I-convergent with respect to the
α-2-norm on F(X), then I-limit is unique.

Proof. Suppose that fk
I−→ f and fk

I−→ g and f 6= g. Since ‖., .‖α is an α-2-norm,
we get for each h ∈ F(X),

(3.1)

‖f − g, h‖α = ‖fk − fk + f − g, h‖α ≤ ‖fk − f, h‖α+‖fk − g, h‖α , for all k ∈ N.
Put

A(ε) = {k ∈ N : ‖f − g, h‖α ≥ ε},

B(
ε

2
) = {k ∈ N : ‖fk − f, h‖α ≥

ε

2
},

C(
ε

2
) = {k ∈ N : ‖fk − g, h‖α ≥

ε

2
}.
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By assumption, we get that B( ε2 ) and C( ε2 ) belong to I, so we have B( ε2 )∪C( ε2 ) ∈ I.
From (3.1), it follows that A(ε) ⊆ B( ε2 )∪C( ε2 ). This implies that A(ε) ∈ I, which
achieves the proof. �

3.3. Theorem. Let (F(X), N) be a fuzzy 2-normed linear space and I be an
admissible ideal of N. Let {fk} and {hk} be two sequences in F(X) such that

fk
I−→ f and hk

I−→ h, where f, h ∈ F(X). Then

(i) fk + hk
I−→ f + h;

(ii) fkhk
I−→ fh;

(iii) cfk
I−→ cf for c ∈ R.

Proof. (i) Suppose that fk
I−→ f and hk

I−→ h. Since ‖., .‖α is an α-2-norm, we get
for each ε > 0, g ∈ F(X) and α ∈ [0, 1],

(3.2) ‖(fk + hk)− (f + h), g‖α ≤ ‖fk − f, g‖α + ‖hk − h, g‖α , for all k ∈ N.

Put

A(ε) = {k ∈ N : ‖(fk + hk)− (f + h), g‖α ≥ ε},

B(
ε

2
) = {k ∈ N : ‖fk − f, g‖α ≥

ε

2
},

C(
ε

2
) = {k ∈ N : ‖hk − h, g‖α ≥

ε

2
}.

By assumption, B( ε2 ) and C( ε2 ) belong to I, and thus B( ε2 ) ∪ C( ε2 ) ∈ I. From
(3.2), it follows that A(ε) ⊆ B( ε2 ) ∪ C( ε2 ). This implies that A(ε) ∈ I.

(ii) Since fk
I−→ f , we have

A(1) = {k ∈ N : ‖fk − f, g‖α < 1} ∈ F(I).

Now being α-2-norm, we get

‖fkhk − fh, g‖α ≤ ‖fk, g‖α ‖hk − h, g‖α + ‖h, g‖α ‖fk − f, g‖α .

For k ∈ A(1), we have ‖fk, g‖α ≤ ‖f‖α + 1 and it follows that

(3.3) ‖fkhk − fh, g‖α ≤ (‖f‖α + 1) ‖hk − h, g‖α + ‖h, g‖α ‖fk − f, g‖α .

Let ε > 0 and g ∈ F(X) be given. Choose η > 0 such that

(3.4) 0 < 2η <
ε

‖f‖α + ‖h‖α + 1
.

Since fk
I−→ f and hk

I−→ h, the sets

B(η) = {k ∈ N : ‖fk − f, g‖α < η} and C(η) = {k ∈ N : ‖hk − h, g‖α < η}.

belong to F(I). Thus we have B(η), C(η) ∈ F(I).
Obviously, A(1) ∩B(η) ∩C(η) ∈ F(I) and for each k ∈ A(1) ∩B(η) ∩C(η), we

have from (3.3) and (3.4),

‖fkhk − fh, g‖α < ε.

This implies that {k ∈ N : ‖fkhk − fh, g‖α ≥ ε} ∈ I, i.e., fkgk
I−→ fh.
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(iii) It is trivial for c = 0. Now let c 6= 0, ε > 0, α ∈ [0, 1] and g ∈ F(X). Since

‖., .‖α is an α-2-norm, we get ‖cf, g‖α = |c| ‖f, g‖. Since fk
I−→ f , therefore the set

A = {k ∈ N : ‖fk − f, g‖α ≥ ε}

belongs I. Let B(ε) = {k ∈ N : ‖cfk − cf, g‖α ≥ ε}. We need to show that B(ε)
is contained in A(ε1), for some ε1 > 0. Let m ∈ B(ε); then ε ≤ ‖cfm − cf, g‖α =
|c| ‖fm − f, g‖α. This implies that ‖fm − f, g‖α ≥

ε
|c| = ε1. Therefore, m ∈ A(ε1).

Then we have B(ε) ⊂ A(ε1). By the de�nition of I, we get B(ε) ∈ I.
The theorem is proved. �

3.4. Theorem. Let I be an admissible ideal with the property (AP). Let (F(X), N)
be a fuzzy 2-normed space and {fk} be a sequence in F(X). Then {fk} is an I-
convergent sequence in F(X) if and only if there is a sequence {hk} converging to
f and such that {k ∈ N : fk 6= hk} ∈ I.

Proof. Suppose fk
I−→ f . For each k ∈ N and each g ∈ F(X), let

An = {k ∈ N : ‖fk − f, g‖α <
1

n
},

Then An ∈ F(I) for each n ∈ N.
Since I is admissible ideal with the property (AP), by Lemma 1.1, there is

A ⊂ N such that A ∈ F(I) and the set A \ An is �nite for each n. Observe that
fk →(A) f , i.e., for each ε > 0, there exists n0 = n0(ε) ∈ N such that k ≥ n0 and
k ∈ A imply ‖fk − f, g‖α < ε.

De�ne a sequence {hk} in F(X) as

hk =

{
fk, for k ∈ A;
f, for k ∈ N \A.

The sequence {hk} is convergent to f with respect to the α-2-norm on F(X). Thus
we have {k ∈ N : fk 6= hk} ∈ I.

Conversely, suppose that {k ∈ N : fk 6= hk} ∈ I and hk → f . Let ε > 0 and
g ∈ F(X) be given. Then for each n, we can write

(3.5) {k ≤ n : ‖fk − f, g‖α ≥ ε} ⊆ {k ≤ n : fk 6= hk}∪{k ≤ n : ‖hk − f, g‖α > ε}.

Since the �rst set on the right side of (3.5) belongs to I and the second set is
contained in a �nite subset of N, it belongs to I. This implies that {k ∈ N :
‖fk − f, g‖α ≥ ε} belongs to I. This achieves the proof. �

Now we prove a decomposition theorem for I-convergent sequences.

3.5. Theorem. Let {fk} be a sequence in a fuzzy 2-normed space (F(X), N) and
let I be an admissible ideal with the property (AP). Then the following assertions
are equivalent:

(i) fk
I−→ f ;

(ii) There exist {hk} and {qk} in F(X) such that fk = hk + qk, hk → h, and
supp(qk) = {k ∈ N : qk 6= θ} ∈ I, where θ is the zero element of the linear
space F(X).
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Proof. (i)=⇒ (ii) Suppose fk
I−→ f . Then, by Lemma 1.2, we there is a set H ∈

F(I), H = {km : k1 < k2 < · · · } ⊂ N such that fkm → f .
De�ne the sequence {hk} in F(X) as

(3.6) hk =

{
fk, for k ∈ H;
f, for k ∈ N \H.

It is clear that hk → f . Further, we set qk = fk − hk, for each k ∈ N. Since
{k ∈ N : fk 6= hk} ∈ N \ H ∈ I, we have {k ∈ N : qk 6= θ} ∈ I. It follows that
supp(qk) ∈ I and by (3.6), we get fk = hk + qk.

(ii)=⇒ (i) Suppose that there exist two sequences {hk} and {qk} in F(X) such

that fk = hk+qk; hk → f and supp(qk) ∈ I. We prove that fk
I−→ f. Let H = {km}

be a subset of N such that H = {k ∈ N : qk = θ}. Since supp(qk) = {m ∈ N : qm 6=
θ} ∈ I, we have H ∈ F(I), therefore fk = hk, if k ∈ H. Thus, we conclude that
there exists a set H = {km : k1 < k2 < · · · } ⊂ N, H ∈ F(I), such that fkm → f .

By Lemma 1.2, it follows that fk
I−→ f . �

3.6. De�nition. Let (F(X), N) be a fuzzy 2-normed space. We say that a se-
quence {fk} in F(X) is I∗-convergent to f ∈ F(X) with respect to the α-2-norm
on F(X) if there exists a subset

K = {km : k1 < k2 < · · · } ⊂ N

such that K ∈ I and limm→∞ ‖fkm − f, g‖α = 0 for each g ∈ F(X).

In this case we write fk
I∗−→ f .

3.7. Theorem. Let (F(X), N) be a fuzzy 2-normed space and I be an admissible

ideal. If fk
I∗−→ f , then fk

I−→ f .

Proof. Suppose that fk
I∗−→ f . Then, by de�nition, there exists

K = {km ∈ N : k1 < k2 < · · · } ∈ F(I)

such that

(3.7) lim
m→∞

‖fkm − f, g‖α = 0, for all g ∈ F(X).

Let ε > 0 and g ∈ F(X) be given. By (3.7, there exists an integer n0 ∈ N such
that ‖fkm − f, g‖α < ε for every km ∈ K,km ≥ n0.

Let A = {k1, k2, · · · , kn0
}. Since K ∈ F(I), there exists a set B ∈ I such that

K = N \B. It is clear

A1(ε) = {k ∈ N : ‖fk − f, g‖α ≥ ε} ⊆ A ∪B.

As I is admissible ideal, A ∈ I. This implies that A ∪ B ∈ I and so A1(ε) ∈ I.

Thus we have fk
I−→ f . This completes the proof. �

3.8. Theorem. Let I be an admissible ideal with the property (AP) and (F(X), N)

be a fuzzy 2-normed space and {fk} be a sequence in F(X). Then fk
I−→ f if and

only if fk
I∗−→ f.
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Proof. If fk
I∗−→ f, then fk

I−→ f by Theorem 3.7.

Conversely, let fk
I−→ f . Then by de�nition, for each ε > 0 and each g ∈ F(X),

there exists an integer n = n(ε) such that

B(ε) = {k ∈ ‖fk‖α ≥ ε} ∈ I.

For m ∈ N, we de�ne the set Pm as follows:

P1 = {k ∈ N : ‖fk − f, g‖α ≥ 1},

Pm = {k ∈ N :
1

m
≤ ‖fk − f, g‖α <

1

m− 1
}, for m ≥ 2 in N.

It is clear that {P1, P2, · · · } is a countable family of mutually disjoint sets be-
longing to I. Then by the property (AP) of I, there is a countable family of
sets {Q1, Q2, · · · } in I such that Pj∆Qj is a �nite set for each j ∈ N and Q =⋃∞
j=1Qj ∈ I. Since Q ∈ I, we have B = N \ Q ∈ F(I). To prove the result it is

su�cient to show that fk →(B) f . Let ξ > 0 be given. Choose an integer p such

that ξ > 1
p+1 . Thus, we have

(3.8) {k ∈ N : ‖fk − f, g‖α ≥ ξ} ⊂ {k ∈ N : ‖fk − f, g‖α ≥
1

p+ 1
} =

p+1⋃
m=1

Pm.

Since Pm∆Qm is a �nite set for eachm = 1, · · · , p+1, therefore there exists k0 ∈ N
such that(

p+1⋃
m=1

Qm

)
∩ {k ∈ N : k ≥ k0} =

p+1⋃
m=1

Pm ∩ {k ∈ N : k ≥ k0}.

If k ≥ k0 and k ∈ Q, then k /∈
p+1⋃
m=1

Qm and so k /∈
p+1⋃
m=1

Pm. Thus for every k ≥ k0

and k ∈ B, from (3.8), we get ‖fk − f, g‖α < ξ. This shows fk →(B) f which
completes the proof. �

The proof of the following theorem follows from the decomposition theorem
(Theorem 3.5).

3.9. Theorem. Let {fk} be a sequence in a fuzzy 2-normed space (F(X), X) and
I be an admissible ideal. If there exist two sequences {hk} and {qk} in F(X) such

that fk = hk + qk; hk → f and supp(qk) = {k ∈ N : qk 6= θ} ∈ I, then fk
I∗−→ f .

4. I-Cauchy and I∗-Cauchy sequences in 2-fuzzy 2-normed spaces

In this section we study the concepts of I-Cauchy and I∗-Cauchy sequences in
fuzzy 2-normed spaces (F(X), N). Also, we will study the relations between these
concepts. For statistical Cauchy sequences and I-Cauchy sequences see [15, 16, 35].

4.1. De�nition. Let (F(X), N) be a fuzzy 2-normed space and I be an admissible
ideal of N. A sequence {fk} in F(X) is said to be I-Cauchy with respect to the
α-2-norm on F(X) if for each ε > 0 there exist a positive integer n = n(ε) and
g, h ∈ F(X) which are linearly independent such that {k ∈ N : ‖fk − fn, g‖α ≥ ε}
and {k ∈ N : ‖fk − fn, h‖α ≥ ε} belong to I.
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4.2. De�nition. Let (F(X), N) be a fuzzy 2-normed space and I be an admissible
ideal of N. A sequence {fk} in F(X) is said to be I∗-Cauchy with respect to the
α-2-norm on F(X) if there exists a set

K = {km : k1 < k2 < · · · } ⊂ N

such that K ∈ F(I) and {fkm} is an ordinary Cauchy sequence in F(X).

The next theorem gives that each I∗-Cauchy sequence is I-Cauchy sequence.

4.3. Theorem. Let I be an admissible ideal and (F(X), N) be a fuzzy 2-normed
space. Then every I-convergent sequence is an I-Cauchy sequence.

Proof. Let fk
I−→ f . Then for each ε > 0 and each φ ∈ F(X), we have

A(ε) = {k ∈ N : ‖fk − f, φ‖α ≥ ε} ∈ I.

Since I is an admissible ideal, there exists an k0 ∈ N such that k0 /∈ A(ε).
Let B(ε) = {k ∈ N : ‖fk − fk0 , φ‖α ≥ 2ε}. Since ‖., .‖α is an α-2-norm, we get

‖fk − fk0 , φ‖α ≤ ‖fk − f, φ‖α + ‖fk0 − f, φ‖α .

We observe that if k ∈ B(ε), then ‖fk − f, φ‖α + ‖fk0 − f, φ‖α ≥ 2ε.
On the other hand, since k0 /∈ A(ε), we have

‖fk0 − f, φ‖α < ε.

So we conclude that ‖fk − f, φ‖α ≥ ε, hence k ∈ A(ε).
This implies that B(ε) ⊂ A(ε), for each ε > 0. This gives B(ε) ∈ I. Since

φ ∈ F(X) was arbitrary we can take g, h ∈ F(X) which are linearly independent,
such that the sets {k ∈ N : ‖fk − fk0 , g‖α ≥ 2ε} and {k ∈ N : ‖fk − fk0 , h‖α ≥ 2ε}
belong to I, i.e., {fk} is an I-Cauchy sequence. �

4.4. Theorem. Let (F(X)), N) be a fuzzy 2-normed space and I be an admissible
ideal of N. If {fk} is I∗-Cauchy sequence, then it is an I-Cauchy sequence.

Proof. Let {fk} be an I∗-Cauchy sequence. Then for ε > 0 and each φ ∈ F(X),
there are

K = {km : k1 < k2 < · · · } ∈ F(I)

and a number n0 ∈ N such that∥∥fkm − fkp , φ∥∥α < ε

for every m, p ≥ n0. Now, �x p = kn0+1. Then for every ε > 0 and each φ ∈ F(X),
we have

‖fkm − fp, φ‖α < ε for every m ≥ n0.

Let H = N \K. It is obvious that H ∈ I and

A(ε) = {k ∈ N : ‖fkm − fp, φ‖α ≥ ε} ⊂ H ∪ {k1 < k2 < · · · < kn0} ∈ I.

Therefore, for every ε > 0, we can �nd p ∈ N and g, h ∈ F(X) such that the sets

{k ∈ N : ‖fkm − fp, g‖α ≥ ε} and {k ∈ N : ‖fkm − fp, h‖α ≥ ε}

belong to I, i.e., {fk} is an I-Cauchy sequence. �
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Now we prove that I∗-convergence implies I-Cauchy condition in a fuzzy 2-
normed space (F(X), N).

4.5. Theorem. Let (F(X), N) be a fuzzy 2-normed space and I be an admissible
ideal of N. If {fk} is I∗-convergent, then it is an I-Cauchy sequence.

Proof. By assumption there exists a set K = {km : k1 < k2 < · · · } such that
K ∈ F(I) and limm ‖fkm − f, φ‖α = 0 for each φ ∈ F(X), i.e., there exists n0 ∈ N
such that ‖fkm − f, φ‖α < ε for every ε > 0, each φ ∈ F(X) and m > n0. Since
‖., .‖α is an α-2-norm, we have∥∥fkm − fkp , φ∥∥α ≤ ‖fkm − f, φ‖α +

∥∥fkp − f, φ∥∥α < 2ε

for every ε > 0, each φ ∈ F(X) and m, p > n0, we have
∥∥fkm − fkp , φ∥∥α < 2ε for

every m, p > n0 and each φ ∈ F(X), i.e., {fk} is an I∗-Cauchy sequence in F(X).
Therefore, it follows from Theorem 4.4 that {fk} is an I-Cauchy sequence. �

4.6. Theorem. Let I be an admissible ideal. Let {fk} be a sequence in a fuzzy
2-normed space (F(X), N) and denote A(ε) = {k ∈ N : ‖fk − fn, g‖α ≥ ε}, where
n ∈ N and g ∈ F(X). If {fk} is an I-Cauchy sequence, then for every ε > 0 and
g ∈ F(X) there exists B ∈ I such that ‖fl − fk, g‖α < ε, for all k, l /∈ B.

Proof. Let ε > 0 and g ∈ F(X) be given. Set B = An(ε/2), where n ∈ N. Since
{fk} is an I-Cauchy sequence, we have B ∈ I and for all l, k /∈ B, we get

‖fk − fn, g‖α <
ε

2
and ‖fl − fn, g‖α <

ε

2
.

Because ‖., .‖ is an α-2-norm, by the triangle inequality we have ‖fk − fl, g‖α < ε,
for all l, k /∈ B. �

5. I-limit points and I-cluster points

In this section we introduce the notion of I-limit point and I-cluster point of
real sequences in 2-fuzzy 2-normed linear spaces.

5.1. De�nition. Let {fk} be a sequence in a fuzzy 2-normed space (F(X), N).
An element ψ ∈ F(X) is said to be an I-limit point of {fk} provided there is a set
K = {k1 < k2 < · · · < km < · · · } ⊂ N such that K /∈ I and limm ‖fkm − ψ, g‖α =
0, for every g ∈ F(X).

5.2. De�nition. Let {fk} be a sequence in a fuzzy 2-normed space (F(X), N).
An element φ ∈ F(X) is said to be an I-cluster point of {fk} if for every ε > 0 and
each g ∈ F(X), the set {k ∈ N : ‖fk − φ, g‖α < ε} /∈ I.

We denote LI
F(X)(fk) and CI

F(X)(fk) the set of of all I-limit points and I-cluster

points of a sequence {fk} in (F(X), N), respectively.

5.3. Theorem. Let I be an admissible ideal. Then for any {fk} in a fuzzy 2-
normed space (F(X), N), we have

LI
F(X)(fk) ⊂ CI

F(X)(fk).



160

Proof. Suppose that ψ ∈ LI
F(X)(fk). Then there exists a set K = {k1 < k2 < · · · <

km < · · · } ⊂ N such that K /∈ I and

(5.1) lim
m→∞

‖fk − ψ, g‖α = 0 for each g ∈ F(X).

Let ε > 0 and g ∈ F(X) be given. According to (5.1), there exists an integer
n0 = n0(ε) ∈ N such that for k ≥ n0, we have ‖fk − ψ, g‖α < ε. Thus we have

K \ {k1, k2, · · · , kn0} ⊂ {k ∈ N : ‖fk − ψ, g‖α < ε}.
This implies that {k ∈ N : ‖fk − ψ, g‖α < ε} /∈ I. Therefore, ψ ∈ CI

F(X)(fk). �

5.4. Theorem. Let {fk} be a sequence in a fuzzy 2-normed space (F(X), N). If

fk
I−→ f , then

LI
F(X)(fk) = CI

F(X)(fk) = {f}.

Proof. Suppose that fk
I−→ f . Then for each ε > 0 and g ∈ F(X), we have

{k ∈ N : ‖fk − f, g‖α ≥ ε} ∈ I, i.e. {k ∈ N : ‖fk − f, g‖α < ε} /∈ I,

which implies that f ∈ CI
F(X)(fk).

We assume that there exists at least one h ∈ CI
F(X)(fk) such that h 6= f . Then

there exists ε > 0 such that

{k ∈ N : ‖fk − f, g‖α ≥ ε} ⊃ {k ∈ N; ‖fk − h, g‖α < ε}.
But {k ∈ N : ‖fk − f, g‖α ≥ ε} ∈ I implies that {k ∈ N : ‖fk − h, g‖α < ε} ∈ I,

which contradicts that h ∈ CI
F(X)(fk). Thus we have CI

F(X)(fk) = {f}.

On the other hand, from fk
I−→ f , by Theorem 3.4 and De�nition 5.2, we have

f ∈ CI
F(X)(fk). By Theorem 5.3, we have LI

F(X)(fk) = CI
F(X)(fk) = {f}. �
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