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Abstract  

 

In this article, we introduce and study three types of null hypersurfaces of a para-Sasakian manifold which are called re-current, 

Lie re-current and Hopf null hypersurfaces. Also, we obtain some results on such hypersurfaces. 
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1. Introduction 

 

In term of differential geometry, submanifolds theory has an 

attraction for geometers. One of the most important topics is 

the theory of null (lightlike) submanifolds. A submanifold of 

a semi-Riemann manifold is called a null submanifold if the 

induced metric is degenerate. So, geometry of null 

submanifold is very different from the non-degenerate 

submanifold.  

The general view of null submanifold has been introduced in 

[1]. Later, K. L. Duggal and B. Şahin have developed many 

new classes of null submanifolds such as indefinite Kaehler 

manifolds [2], indefinite Sasakian manifolds [3] and 

different applications of null submanifolds [4]. On this 

subject, some applications of the theory of mathematical 

physics is inspired, especially electromagnetisms[1], black 

hole theory [4] and general relativity [5]. Many studies on 

null submanifolds have been reported by many geometers 

(see [6], [7], [9]). 

On a semi-Riemannian manifold, S. Kaneyuki and M. 

Konzai [10] introduced a structure which is known the 

almost para-contact structure and then they characterized the 

almost para-complex structure on. Later, S. Zamkovoy [11] 

studied para-contact metric manifolds. The study of para-

contact geometry has been continued by several papers ([12], 

[13], [14], [15], [16]]) which are contained role of para-

contact geometry about semi-Riemannian geometry, 

mathematical physics and relationships with the para-

Kaehler manifolds.  

The purpose of this article is to examine three types of null 

submanifolds which are called re-current, Lie re-current and 

Hopf null hypersurface of a para-Sasakian manifold. Also 

some new results on this types of null submanifolds are 

given.  

 

2. Preliminaries 

A (2 1)n dimension semi-Riemannian manifold M   has 

an almost para-contact structure if it is equipped with a tensor 

field   of type (1,1), a 1-form  , a vector field   satisfying 

the following conditions [10]: 

                         

                             
2) = ,i I             

) ( ) =1,ii                      (2.1)    

) = 0, 0 ,iii          

                          

where I  is the identity transformation.  

If a manifold M  with an almost para-contact structure 

( , , )    admits a semi- Riemannian metric g  such that 

[11] 

            ( , ) = ( , ) ( ) ( ),g W Y g W Y W Y                 (2,2) 

for all , ( )Y W TM , then we say that M  has an almost 

para-contact metric structure an g  is called compatible 

metric of signature. 

Setting Y = ξ in (2.2), we get 

                                    ( ) = ( , ).W g W                        (2.3) 
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Definition 2.1 If  ( , ) ( , )g W Y d W Y    (where 

1
( , ) = { ( ) ( ) ([ , ])})

2
d W Y W Y Y W W Y      then   is a 

para-contact form and the almost para-contact metric 

manifold M  is said to be para-contact metric manifold. 

An almost para-contact metric manifold  M  is a para-

Sasakian manifold if and only if [13] 

                     ( ) = ( , ) ( ) ,W Y g W Y Y W              (2.4) 

where   is a Levi-Civita connection on M .  

From (2.4), we get 

                                          = .W W                   

Let M  be a semi-Riemannian manifold with index q , 

0 2 1q n   , and M  be a hypersurface of M , with 

|
M

g g .   M  is a null hypersurface of M  if the metric 

g  is of  rank 2 1n  and  the orthogonal complement TM 
 

of tangent space TM , given as 

{ : ( , ) 0, ( )}P P P P P PTM Y T M g W Y W T M       

is a distribution of rank 1 on M  [1]. TM TM   and then 

coincides with the radical distribution 

RadTM TM TM   . 

A complementary bundle of TM 
 in TM  is a non-

degenerate distribution of constant rank 2 1n   over M . It 

is known a screen distribution and demonstrated with 

( ).S TM   

Theorem 2.1 [1] Let ( , , ( ))M g S TM  be a null 

hypersurface of a semi-Riemannian manifold M . Then 

there exists a unique rank one vector subbundle ( )ltr TM  of 

TM , with base space M , such that for any non-zero 

section E  of RadTM  on a coordinate neighbourhood 

U M , there exists a unique section N  of ( )ltr TM  on 

U  satisfying for ( ( )) |UW S TM : 

     ( , ) 0g N N   ,   ( , ) 0g N W  ,   ( , ) 1g N E  ,  

( )ltr TM  is called the null transversal vector bundle of M  

with respect to ( ).S TM    

By the previous theorem, we can state: 

       TM = S(TM) RadTM,                                       (2.5) 

     TM= TM ltr(TM)                       

                 = S(TM) {RadTM ltr(TM)}.                (2.6) 

Let   be the Levi-Civita connection of M  and 

: ( ) ( ( ))P TM S TM   be the projection morphism with 

respect to the orthogonal decomposition of TM . Then the 

local Gauss and Weingarten formulas are given by 

         
W WY = Y + h(W, Y ),                        (2.7) 

        lt

W N WN = A W + N   ,                        (2.8) 

        *

W WPY = PY + C(W, PY )E,              (2.9) 

            *

WE = A W ( )E W E   ,                   (2.10) 

for any , ( )Y W TM , where   is a linear connection on 

M  and 
*  is a linear connection on ( )S TM  and B , NA  

and   are called the local second fundamental form, the 

local shape operator, the transversal differential 1-form, 

respectively. 

The induced linear connection   is not a metric connection 

and we get 

     W( g)(Y,Z) = B(W,Z) (Y)+B(W,Y) (Z)        (2.11) 

where θ is a differential 1-form such that 

( ) ( , )W g N W  . 

Also the second fundamental form B is independent of the 

choice of ( )S TM and 

       B(W,E) = 0.                                 (2.12) 

The local second fundamental forms are related to their 

shape operators by 

              
*

*

E

g(A W, PY ) = B(W, PY ),

g (A W,N) = 0

E                    (2.13) 

              
( , ) ( , ),

( , ) 0.

N

N

g A W PY C W PY

g A W N




               (2.14)  

3. Screen Semi-Invariant Null Hypersurfaces of a Para-

Sasakian Manifold 

 

Let M  be a null hypersurface of a para-Sasakian manifold 

M  with ( )TM  . If E  is a local section of 

( )RadTM , then 

g( E,E) = 0 , 

and E is tangent to M . So, we obtain a distribution 

( )RadTM  of dimension 1 on M . 
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If (ltr(TM)) S(TM)   and (RadTM) S(TM)   then 

null hypersurface M  is called a screen semi-invariant null 

hypersurface of M  [17]. 

Since M  is a screen semi-invariant null hypersurface then 

we can state 

( , ) 0

( , ) 0 ( , )

( , ) 1

g N N

g N E g N E

g N E



 



  



,                  (3.1) 

and from (2.2), we obtain 

  g( E, ) = 1N   .         (3.2) 

Therefore (RadTM) (ltr(TM))   is a non-degenerate 

vector subbundle of screen distribution ( )S TM . 

Now, since ( )S TM  and (RadTM) (ltr(TM))  are 

non-degenerate, we can describe a non-degenerate 

distribution 
0D  such that [4] 

           
0S(TM)= { (RadTM) (ltr(TM))}D    .     (3.3) 

In that case  
0 0( )D D   and 

0.D   

In view of (2.5), (2.6) and (3.3), we arrive at followings: 

      
0TM= { (RadTM) (ltr(TM))} RadTMD           (3.4) 

       0TM= { (RadTM) (ltr(TM))}

{RadTM ltr(TM)}.

D   

 
               (3.5) 

If we take 
0D̂=RadTM (RadTM) D   and 

0

(ltr(TM))D   on M , we get 

                           
0

ˆ .TM D D                                     (3.6) 

 

Consider the local null vector fields V E  and 

U N . Let us denote the projection morphism of TM  

into D̂  and 
0

D , by S  and Q , respectively. So, for 

( )X TM , we have 

     X=SX+QX,     QX=u(X)U,  

where u  is a differential 1-form locally dfined by 

         u(X)= g( E,X),                          (3.7) 

with 

  v(X)= g( N,X).                          (3.8) 

Applying   to X , we find 

  X= (SX)+u(X)N  . 

If  we put ( )X SX   in above equation, we arrive at 

  X= X+u(X)N,                               (3.9) 

where   is a tensor field defined by S   of type (1,1). 

Again applying   to (3.9), we arrive at 

        
2X=X (X) ( ) ,u X U     ( ) 1u U              (3.10) 

Then from (2.5) comparing the components, we get 

    
( ) ( , ) ( , )

,
( ) ( )

X

N

Y B X Y U g X Y

Y X u Y A X

 



  

 
               (3.11) 

       
X( u)Y=u(Y) (X) B(X, Y),                          (3.12) 

       
X( v)Y=g(A X, Y)+v(Y) (X),N                      (3.13) 

           
XU= ( X) (X)U,NA                                    (3.14) 

           *

XV= ( X) (X)V,EA                                    (3.15) 

          (X)= (X,U)=C(X,V).B                                 (3.16) 

4. Main Results 

In this part, we examine our basic results. Firstly we give the 

following: 

Definition 4.1 Let M  be a screen semi-invariant null 

hypersurface of a para-Sasakian manifold M  and λ be a 1-

form on M . If M  admits a re-current tensor field   such 

that 

  X( )Y= (X) Y,                          (4.1) 

then it is called re-current [8]. 

Proposition 4.1 Assume that M  is a re-current screen semi-

invariant null hypersurface of a para-Sasakian manifold. 

Then we get 

i)   is parallel with respect to  , 

ii) 
NA X= v(X) (X)U,                      (4.2) 

iii) 
*A X= u(X) (X)V.E                      (4.3) 

Proof. If M  is a re-current screen semi-invariant null 

hypersurface, we can state  

             
( ) B(X, Y ) g(X,Y)

(Y)X+u(Y)A X.N

X Y U  



 


               (4.4) 

Putting Y   and in view of (2.13) with (3.7), we get 

                             (X)V= g(X,E) .                          (4.5) 

Taking inner product to U , we have 

          (X)=0.                                      (4.6) 

Using this result in (4.1) we arrive at (i). 
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Now taking Y U  in (4.4) and by use of (4.6), we find (ii).  

Similarly taking inner product V  to (4.4), we get (iii). 

Definition 4.2 A null hypersurface of semi-Riemannian 

manifold is said to be screen conformal [4] if there exists a 

non-zero smooth function ζ such that 

*

N EA A  

or 

  C(X, PY ) = ( , ).B X Y  

Theorem 4.1 Let M  be a re-current screen semi-invariant 

null hypersurface of a para-Sasakian manifold M . Suppose 

that M  is a screen conformal null hypersurface. Then M  

is either totally geodesic or screen totally geodesic if and 

only if 
0( )X D . 

Proof. Since M  is screen conformal, from (4.2) with (4.3), 

we get 

 (X)U+v(X) = ( (X) ( ) ).V u X      

Taking inner product with V  to above equation, we have 

          (X)=0.  

So, by using (4.2) and (4.3), we arrive at the proof of the our 

assertion. 

Theorem 4.2 Let M  be a re-current screen semi-invariant 

null hypersurface of a para-Sasakian manifold M . Then D̂  

is a parallel distribution on M .  

Proof. Using (4.1) with (3.11), we can write 

             
( ) B(X, Y ) g(X,Y)

(Y)X+u(Y)A X.N

X Y U  



 


          (4.7) 

Taking inner product with V  to (4.7) and using (4.6), we 

have 

          B(X, Y ) u(Y)u(A X) ( ) (Y).N u X             (4.8) 

Putting Y V  and Y Z  in (4.8), we arrive at 

    ( , ) 0B X V    and   ( , ) 0B X Z             (4.9) 

respectively. 

Now, from (3.9) and (3.15), we find, for all 
0( )Z D , 

      
X( E,V)= ( ,V),g B X                 (4.10) 

     
X( Z,V)= ( , ),g B X Z                             (4.11) 

      
X( V,V)=0.g                                           (4.12) 

So by use of (4.10)  (4.12) with (4.9), we arrive at for 

( )X TM and ˆ( )Y D , 

               
X

ˆY ( ),D   

from which we see that D̂  is a parallel distribution. 

Definition 4.3 Let M  be a screen semi-invariant null 

hypersurface of a para-Sasakian manifold M  and   be a 

1-form on M .  Then M  is called Lie re-current [8] if it is 

admits a Lie re-current tensor field   such that  

          ( )Y= ( ) ,X X Y                             (4.13) 

where   denotes the Lie derivative, that is, 

         ( )Y=[ , ] [ , ].X X Y X Y     

If the structure tensor field   satisfies the condition 

        =0,X                  (4.14) 

then   is called Lie parallel. 

Thus, a screen semi-invariant null hypersurface M  of a 

para-Sasakian manifold M is called Lie re-current if it 

admits Lie re-current structure tensor field  . 

Theorem 4.3 Let M  Lie re-current screen semi-invariant 

null hypersurface of a para-Sasakian manifold M . Then the 

structure tensor field   is Lie parallel. 

Proof. In view of above definition with (3.11), we get 

( )X Y  ( )X Y   

               [ , ] [ , ]X Y X Y    

               B(X, Y ) +u(Y)A X g(X,Y)NU    

               ( ) .Y YY X X X                   (4.15) 

Putting Y E  in (4.15) and by use of (2.12), we find 

    ( ) = ( , ) .EV
X V X X g X E                 (4.16) 

Taking inner product with V  to (4.16), we obtain 

          ( , ) ( ) 0.
V V

g X V u X                                     (4.17) 

In equation (4.15), replacing Y  by V  , we get 

     ( ) = ( , )E V
X E X X B X V U      

                  ( ) .u X                                                      (4.18) 

Applying   to (4.18), using (3.10) with (4.17) and 

comparing (4.18), we arrive at   is Lie parallel. 
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Definition 4.4 Let M  be a screen semi-invariant null 

hypersurface of a para-Sasakian manifold M  and U  be a 

structure tensor field on M .  The structure tensor field U  

is called principal if there exists a smooth function   such 

that  

                 
*X= .EA U                                 (4.19) 

A screen semi-invariant null hypersurface M  of a para-

Sasakian manifold M  is a called Hopf null hypersurface if 

it admits principal vector field U . 

If we consider equation (4.19), from (2.13) and (3.8), we 

arrive at 

( , ) ( ).B X U v X                       (4.20) 

From this equation, we get 

  ( , ) ( ).C X V u X                  (4.21) 

Theorem 4.4 Let M  be a screen semi-invariant Hopf null 

hypersurface of a para-Sasakian manifold M . If M  is 

screen totally umbilical then 0   and M  is a screen 

totally geodesic null hypersurface. 

Proof. We know that, M  is a screen totally umbilical null 

hypersurface if there exists a smooth function f such that 

( , )NA X fg X Y  or  

    ( , ) ( , ),C X PY fg X Y                  (4.22) 

and 0f   we say that M  is a screen totally geodesic null 

hypersurface. 

So, in (4.22) replacing PY  with V  and by use of (3.8) and 

(4.21), we find 

                  ( ) ( ).fv X fu X        

Putting X U  in above equation we obtain 0f  . So, we 

get 0NA C   and 0 ( , )Ng A X V   . Therefore 

0   and M  is a screen totally geodesic null 

hypersurface. 

Theorem 4.5 Let M  be a screen semi-invariant null 

hypersurface of a para-Sasakian manifold .M  If V  is a 

parallel null vector field then M  is a Hopf null hypersurface 

such that 0  . 

Proof. WeIf we consider V  is parallel null vector field, from 

(3.9) and (3.15), we find 

 * *( ) ( ) ( ) 0.E EA X u A X N X V               (4.23) 

Applying   to (4.23) and in view of (2.1), we have 

     * *( ) ( ) 0.E EA X u A X U X E    

Taking inner product with N  to above equation, we arrive 

at 0  , which yields 

             
* *( ) .E EA X u A X U                        (4.24) 

So, we can say M  is a Hopf null hypersurface. If we take 

inner product with U  to (4.24), we find 

( ) 0 ( , )X B X U   . 
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