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Abstract — In this paper, it is introduced the notion of r-fuzzy (-T;,7 = 0, 1, 2 separation axioms
related to a fuzzy operator 8 on the initial set X which is a generalization of previous fuzzy separa-
tion axioms. An r-fuzzy a-connectedness related to a fuzzy operator a on the set X is introduced
which is a generalization of many types of r-fuzzy connectedness. An r-fuzzy a-compactness related
to a fuzzy operator o on the set X is introduced which is a generalization of many types of fuzzy
compactness.
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1 Introduction

It is a way to use fuzzy operators «, 3 on the initial set X and to use fuzzy operators
0,6 on the set Y giving generalizations of many notions and results in fuzzy topolog-
ical spaces. r-fuzzy 0-T;, 1 = 0, 1, 2 separation axioms of the set X is a new type of
fuzzy separation axioms related with a fuzzy operator 5 on X. It is proved that the
image of r-fuzzy (-T;, ¢ = 0,1,2 is r-fuzzy 4-T;, ¢« = 0,1,2, and also the preimage
of r-fuzzy 6-T;, i = 0,1,2 is r-fuzzy B-T;, + = 0,1,2. r-fuzzy a-connectedness is
introduced related with the fuzzy operator o on X giving a generalization of many
of fuzzy connectedness notions. It is proved that the image of r-fuzzy a-connected is
r-fuzzy 6-connected, and some particular cases are included. r-fuzzy a-compactness
is introduced using the fuzzy operator o on X giving a generalization of many of
fuzzy compactness notions. It is proved that the image of r-fuzzy r-fuzzy compact
is r-fuzzy #-compact, and many special cases are deduced.

2 Preliminaries

Throughout the paper, X refers to an initial universe, I~ is the set of all fuzzy sets
on X (where I = [0,1],1y = (0,1], A%(z) = 1 — A(z) Vo € X and for all t € I,
t(z) =tV e X).
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(X, 7) is a fuzzy topological space ([14]), if 7 : I* — I satisfies the following
conditions:

(01) 7(0) =7(I) =1,
(02) 7'(>\1 A )\2) 2 T(/\1> N 7'()\2) for all )\1, )\2 € IX,
(03) 7(V \j) > /\ 7(N;) for all {\;}jes C I,

jedJ

By the concept of a fuzzy operator on a set X is meant a map v : I* x Iy — IX.
Assume with respect to a fuzzy topology in Sostak sense defined on X, we have

it (11, 7) < () < cle(p,r) Ve IY, Vr € I,

where int,,cl, : IX x Iy — I are defined in Sostak sense for any 1 € I’ and each
grade r € I as follows:

it (,r) = \/{n € I :n <, 7() = 7}
and
()= Nnel™:n>p r(n°) >r}

Let (X, 1) and (Y, 72) be two fuzzy topological spaces, « and 3 are fuzzy operators
on X, 6 and ¢ are fuzzy operators on Y, respectively. This type of maps « or [ is
called an expansion on X or a fuzzy operator on (X, 1), and the map 6 or J is called
an expansion on Y or a fuzzy operator on (Y, 73) and let us fix that:

(1) B3 is a fuzzy operator on X such that B(u,7) < pu Vu € I, Vr € I.
(2) «a is a fuzzy operator on X such that af(u,7) > p VYu € IX, Vr € I,.

As a special case of fuzzy operators, by the identity fuzzy operator idx on a set
X we mean that idx : I x Iy — I so that idx(v,7) =v Vv e IX,Vr e I,.

Recall that a fuzzy ideal Z on X ([13]) is a map Z : I* — [ that satisfies the
following conditions:

(D) A< = I(N) = Z(w),
(2) ZOAV p) 2 Z(\) ANI(p).

Also, T is called proper if Z(1) = 0 and there exists u € I such that Z(u) > 0.
Define the fuzzy ideal Z° by

1 atpu=0,
0 otherwise

70 = {
Let us define the fuzzy difference between two fuzzy sets as follows:

0 it A <up,
AN pc it otherwise.

A =
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Definition 2.1. [4]

(1) A mapping f: (X, 71) — (Y, 1) is said to be fuzzy («, (3,0, 9, Z)-continuous if
for every p € IY, any fuzzy ideal Z on X,

Zla(f (0 r)),r) A B O, m) )] = 7op); v € .

We can see that the above definition generalizes the concept of fuzzy continuity
([14]) when we choose o = identity operator, # = interior operator, § = identity
operator, 6 = identity operator and Z = Z°.

(2) A mapping f : (X, 71) — (Y, 1) is said to be fuzzy («, 3,60,0,Z%)-open if for
every A\ € IX, any fuzzy ideal Z* on Y,

ZO(F (B 7)), r) Ad(f(e(Ar)),r)] = 7(A); 7 € Lo

We can see that the above definition generalizes the concept of fuzzy openness
([14]) when we choose o = identity operator, 3 = interior operator, § = interior
operator, § = identity operator and Z* = Z°.

3 r-Fuzzy (-1, Separation Axioms

Here, we introduce and study fuzzy separation axioms related with a fuzzy operator
[ on the initial set X.

Definition 3.1.

(1) A set X is called r-fuzzy -Tp if for all z # y in X, there exists A € [X,r € I,
with ¢ < B(\,r) (x); t € Iy such that t > A(y) or there exists u € I*,r € I,
with s < B(u,7) (y); s € Iy such that s > p(z).

(2) A set X is called r-fuzzy 3-T if for all x # y in X, there exist \,u € I[X,r € I,
with t < B\, 1) (x), s < B(p,7) (y); t,s € Iy such that ¢ > A(y), s > p(x).

(3) A set X is called r-fuzzy 3-T if for all x # y in X, there exist \,u € [X,r € I,
with t < B\, 7) (x), s < B(w,7) (y); t,s € Iy such that (£ As) > sup(A A p).

Proposition 3.2. Every r-fuzzy (-T; set X is an r-fuzzy 8-T;_1, i =1,2.

Proof. r-tuzzy B-T5 = r-fuzzy p-Ty: Suppose that X is an r-fuzzy g-T5, but it is not
r-fuzzy B-Ty. Then, for all x # y in X and for all A € I* witht < B(\,7) (z),r € Iy,
suppose that A(y) > t;t € Iy. Now, for p € I with s < 8(u,7) (y) < u(y); s € Io,
we get that

sup(AA 1) = (AA ) (y) = (EAs),

which means a contradiction to X is r-fuzzy (-T5. Hence, X is an r-fuzzy (-T;.
r-fuzzy (-11 = r-fuzzy (-Ty: Direct.
Recall that: a fuzzy operator € is finer than a fuzzy operator § on a set X,
denoted by 3 C 0, if B(v,7) < 0(v,7) Vv e IX, Vr € I,.

Proposition 3.3. Let X be an r-fuzzy (-T;, i = 0, 1,2, and 6 a fuzzy operator on
X finer than 3. Then X is also r-fuzzy 6-T; space, i =0,1,2.
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Proof. For all the axioms r-fuzzy 8-T;,i = 0, 1, 2, the proof comes from that 5(v,r) <
O(v,r) Vv € IX, Vr € I.

Example 3.4.

(1)

Let X = {x,y}, r € Iy and
v atrv=0,1
Bv,r) = { o atxy <v<l,
0  otherwise.

Then, we get A = 2y € It = 1 € I with (A, 7) (z) = zy(x) =1 >t and
AMy) = z1(y) = 0 < t. Hence, the set X is an r-fuzzy (-1 set and it is neither
r-fuzzy (B-T1 nor r-fuzzy (-T,.

Let X = {x,y}, r € Iy and

v atv=0,1
v, atr <v<l,
y1 aty <v <1,
0 otherwise.

Then, we get X = y; € I*,t = 1 € Iy with (A7) (y) = yi(y) =1 >t and

AMxz) = yi(z) = 0 < t. Similarly, we get p = z; € I¥,s = 1 € I, with

Blu,r) () =z1(x) =1 > s and p(y) = z1(y) = 0 < s. Hence, the set X is an
r-fuzzy (-1 set.

For/\:xl\/y%, p=yVa e I¥, t,s>%€]0, we get that
BOT) (x) =z (z) =1 >t and B(u,7r)(y) =m(y) =1>s

such that 1
(tAs)> 3= sup(z1 \/y%) = sup(A A ).

Hence, the set X is an r-fuzzy (-T5 set.

Let X = {z,y}, r € Iy and
v at v=0,1
0.2 at 02<v, v<x VYo V<To2VU,
By, r) = T1 VY at 1 Vyge <v <1,
To2V iy at xeaVyr <v<1
0 otherwise.

Then, there exist A = 1 V yo3, p = xo3 V y1 such that S\, 7)(z) =1>1¢ >
0.3 = A(y) for t € Iy and B(u,r) (y) =1 > s> 0.3 = p(z) for s € Iy, and then
X is an r-fuzzy (-T) set.

Now, we study all possible fuzzy sets in I*:

Then
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(a) For any A = 21 Vyp, it = 21 Vy,, p,q > 0.2, we get that: S\, 7)(z) =1>
t, B(p,r) (y) =0.2>s; t,s € [y but (tAs) < 0.2 <sup(AAp), p,qg > 0.2.

(b) For any A =z, Vy; or 1 Vy,, p =2,V y; or 21 Vy, p,q < 0.2, we get
that: B(A,r) (z) = 0(x) = 0=0(y) = B(n,7) ().

(c) Forany A =zp,p=xz40r A=y,,p =y, or A\ =2, L = y,, p,q € I, we
get that: B(A,r) (z) = 0(x) = 0 = 0(y) = B, 1) ().

Hence, for every \,u € I* with 3(\,r) (z) >t and B(u,7) (y) > s; t,s € Iy,
we have (t A's) < sup(A A ), and thus X is not an r-fuzzy (-T5 set.

Proposition 3.5. Let f : X — Y be an injective mapping. Assume that § is a
fuzzy operator on Y such that

7)) < BFHN),r) YA eTY, Vr e .
Then, Y is an r-fuzzy 6-T; implies that X is an r-fuzzy 6-7;, i =0,1,2.
Proof. Since x # y in X implies that f(z) # f(y) in Y and Y is an r-fuzzy 6-11,
then there exists A € IV with ¢t < §(\,7)(f(x));t € Iy so that t > A(f(y)), that is,
t < [N )@) < [B(f(N),m)](@) and ¢ > (F71(N) (1),

which means that there exists p = f~'(\) € I* with ¢t < 8(u,r)(z); t € Iy so that
t > u(y). Hence, X is an r-fuzzy (-T}, and consequently X is an r-fuzzy 3-Tp.
Now, for x # y in X implies that f(z) # f(y) in Y and Y is an r-fuzzy 6-T5,
then there exist A\, u € IV with ¢t < 5\, 7)(f(x)),s < 6(u,7)(f(y)); s,t € Iy so that
(tAs) > sup(AAp).
Since sup(A A p) > sup(f7H(A) A f7H(u)), then (t A s) > sup(f~H(A) A f7H(u)).

Also,
t < [N )() < B, 1))
and

s < [F7HO( )y < 1B (), 1)) (y)-

Hence, there exist v = f~1(\), p = f~ () € I* witht < B(v,7)(x),s < B(p,7)(y); s,t €
Iy so that (t As) > sup(v A p), and thus X is an r-fuzzy (-Ts.

Proposition 3.6. Let f : X — Y be a surjective mapping. Assume that ¢§ is a
fuzzy operator on Y such that

FBAT)) < 8(f(N),r) VAETY, Vre .
Then, X is an r-fuzzy (-7; implies that Y is an r-fuzzy 6-7;, i =0,1,2.

Proof. Since p # ¢ in Y implies that x # y where z = f~(p),y = f~*(¢) in X, and
X is an r-fuzzy (8-T}, then there exists A € IX with ¢t < B\, 7)(f~(p));t € Iy so
that t > A(f~!(q)), that is,

t < [fBA)Ip) < [0(F(A),r)l(p) and ¢ > (F(N)(q),

which means that there exists u = f(\) € IV with ¢ < &(u,7)(p); t € Iy so that
t > u(q). Hence, Y is an r-fuzzy 0-T}, and consequently Y is an r-fuzzy 0-Tp.
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Now, for p # ¢ in Y implies that f~1(p) # f~(¢) in X and X is an r-fuzzy (-Ts,
then there exist A, pu € I with ¢ < S\, 7)(f~1(p)),s < B(u,7)(f(q)); s,t € Iy so
that (t A's) > sup(A A p).

Since sup(A A ) > sup(f(A) A f(u)), then (¢ A's) > sup(f(A) A f(p)). Also,

t < [f(BA ) < [0, )I(p) and s < [f(Brr)@) < [6(f(n),m)I(9).

Hence, there exist v = f(A\),p = f(n) € IV with t < d(v,7r)(p),s < d(p,7)(q); s,t €
Iy so that (t As) > sup(v A p), and thus Y is an r-fuzzy §-T5.

Remark 3.7.

(1) For a fuzzy topological space (X, 7), by choosing 5 = fuzzy interior operator,
you can deduce the equivalence between the graded fuzzy separation axioms
(t,8)-T;, i = 0,1,2; t,s € Iy introduced in [5, 6] and the axioms r-fuzzy (-
T,i=0,1,2.

(2) For two fuzzy topological spaces (X,7), (Y,0), and f : X — Y a mapping,
by choosing 3 = fuzzy interior operator, we get that (X,7) is (¢,s)-T;, i =
0,1,2; t,s € Iy whenever (Y,o0) is (¢,$)-T;, i = 0,1,2; t,s € Iy and f is
injective fuzzy continuous (when § = fuzzy interior operator in Proposition
3.5) as shown in [5]. This is equivalent to f is injective and o = identity
operator, [ = interior operator, § = interior operator, § = identity operator
and Z = Z° in Definition 2.1 (1).

(3) For two fuzzy topological spaces (X,7), (Y,0), and f : X — Y a mapping,
by choosing 6 = fuzzy interior operator, we get that (Y,o) is (t,s)-T;, i =
0,1,2; t,s € Iy whenever (X,7) is (t,s)-1;, i = 0,1,2; t,s € Iy and f is
surjective fuzzy open (when [ = fuzzy interior operator in Proposition 3.6) as
shown in [5]. This is equivalent to f is surjective and « = identity operator,
[ = interior operator, § = interior operator, § = identity operator and Z = Z°
in Definition 2.1 (2).

4 r-Fuzzy a-Connected Spaces

Here, we introduce the r-fuzzy connectedness of a space X relative to a fuzzy operator
a. Assume (with respect to any fuzzy topology 7 defined on X)) that:

A< al\r) < (N r) YAETS; rel.
Also, assume that « is a monotone operator, that is,
p <v implies a(p,r) < a(v,r) Yu,veI*; r el
Definition 4.1. Let X be a non-empty set. Then,
(1) the fuzzy sets A, € I* are called r-fuzzy a-separated sets if

aMr)Ap = ANa(p,r)=0; r € I.
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(2)

X is called r-fuzzy a-connected space if it could not be found A\, pu € I,
A # 0, # 0 such that \, u are r-fuzzy a-separated and AV = 1. That is,
there are no r-fuzzy a-separated sets \, u € I* except A =0 or u = 0.

Definition 4.2. Let A\, u € I, X # 0, 1 # 0 such that:

(1)

(2)

(3)

A, v are r-fuzzy a-separated and AV g = 1. Then X is called r-fuzzy o-
disconnected space.

A, pare r-fuzzy a-separated and AV u = v. Then v is called r-fuzzy a-
disconnected fuzzy set in 1.

A, p are r-fuzzy a-separated and AV = x4, A C X. Then A is called r-fuzzy
a-disconnected crisp set in IX.

Remark 4.3. For a fuzzy topological space (X, 7)

Taking o = fuzzy closure operator on (X, 7), then we have the r-fuzzy con-
nectedness as given in [7].

Taking o = fuzzy preclosure operator on (X, 7), then we have the r-fuzzy
preconnectedness as given in [2].

Taking o = fuzzy strongly semi-closure operator on (X, 7), then we have the
r-fuzzy strongly connectedness as given in [10].

Taking « = fuzzy semi-closure operator on (X, 7), then we have the 1-type of
r-fuzzy strongly connectedness as given in [10].

Taking o = fuzzy semi-preclosure operator on (X, 7), then we have the r-fuzzy
semi-preconnectedness as given in [2].

Taking a = fuzzy strongly preclosure operator on (X, 7), then we have the
r-fuzzy strongly preconnectedness as given in [2].

Example 4.4. Let X = {x,y}, r € Iy,

v at v=0,1

r1 at 0<v<a,
vy at 0<v <y,
1 otherwise,

alv,r) =

Now,at A £ 0, XN <2y, u#0,pu <y, r < }1, then we have a(\, 7)Ap = 1 Ap =0
and a(u,7) AX =y AX =0, and thus A\, p are r-fuzzy a-separated sets for \ #
0, A<, u#0,u<y.

At X = x; and p =y, we get r-fuzzy a-separated sets with 1 = AV p. Hence, X
is an r-fuzzy a-disconnected space.

Proposition 4.5. Let (X, 7) be a fuzzy topological space. Then the following are
equivalent.

(1)

(X, 7) is r-fuzzy a-connected.
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2) AApu=0,7(\) >r,7(u) >r; rely,and 1L=AVpu imply A=0or u=0.
B) A pu=0, 1.\ >r1.(u)>r; re€ly,and 1=AVpu imply A=0or pu=0.
Proof. (1) = (2): Let A\, p € I with 7(A\) > r,7(u) > r; r € Iy such that A\Apu =0
and 1 = AV pu. Then, A = p° and p = A°, and then
0=AApu=p AN =cl (ur) AN > a(u’r) AN and
0= AApu=p AN =p ANcl,(\ 1) > uSAa(Xr); r e I,

which means that \°, u¢ are fuzzy a-separated so that A\*V p¢ = p VvV A = 1. But
(X, 7) is r-fuzzy a-connected implies that A = 0 or u¢ = 0, and thus A = 0 or p = 0.

(2) = (3): Clear.

(3) = (1): Let \,p € I, A # 0, pu # 0 such that AV u = 1. Taking v = cl.(\,r)
and p = cl.(u,r); 7 € Ip, then vV p =1 and 7.(v) > r,7.(p) > r; 1 € Io.
Now, suppose that (3) is not satisfied. That is, v # 0, p # 0 and v A p = 0.
Then,
a\r)Ap < c,(Ar)Acl(u,r) = vAp = 0 and

alp,r) AN < e\ Ac(ur) = vAp = 0,

which means that )\, u are r-fuzzy a-separated sets, X\ # 0, p # 0 with AV pu = 1.
Hence, (X, 7) is not r-fuzzy a-connected space.

Proposition 4.6. Let X be a non-empty set and A € IX. Then the following are
equivalent.

(1) M\ is r-fuzzy a-connected.
(2) If p, p are r-fuzzy a-separated sets with A < 'V p, then AAp =0o0r AAp = 0.

(3) If p, p are r-fuzzy a-separated sets with A < VvV p, then A < por A < p.

Proof. (1) = (2): Let u, p be r-fuzzy a-separated with A < pV p, that is,
alp,r) Np = alp,r) Ap=0; r € Iy so that A < uV p. Then, from that « is a
monotone fuzzy operator, we get that

a((MpR), YAAAP) < a(X,m)Aa((i, r)AAAP) = (a(X, ) ANA(a((i, 7)Ap) = AAD = 0
and
a((AAP), ) AAA L) < (a\r) AN A (alp,r) Ap) =AAN0=0; r € I.

That is, A A p and A A p are r-fuzzy a-separated sets so that A = (A A p) V (A A p).
But \ is r-fuzzy a-connected implies that (A A p) =0 or (AA p) = 0.

(2) = (3): fAAu=0,then A\=XA (uV p) =AAp, and thus A < p. Also, if
AAp=0,then A\ = XA pu, and then \ < pu.

(3) = (1): Let u, p be r-fuzzy a-separated sets such that A = 'V p. Then, from
By A<porAX<p IHAX<p thenp=AAp<uAp < alu,r)Ap=0. Also, if
A< p thenu=AApu<pAp < a(p,7) Au=0. Hence, \ is r-fuzzy a-connected.
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Theorem 4.7. Let f: X — Y be a mapping such that
a(fHw),r) < fHO(v,r)) Yvel”, rcl,

where « is a fuzzy operator on X and 6 is a fuzzy operator on Y. Then, f(\) € IV
is r-fuzzy O-connected if \ € I is r-fuzzy a-connected.

Proof. Let p,p € IV, u # 0, p # 0 be r-fuzzy 0-separated sets in IY with f()\) =
p\ p. That is, O(u,7) Ap = 0(p,7) App=0; 7€ L. Then, X < f~H(u) Vv f'(p),
and

a(f~Hw),r) N p) < O, ) A fH(p)
= 710, 7) A p)
= f71(0) =0,

a(fHp),r) A m) < O, ) A FH ()
= fH0(p,7) A )
= f7'0) =0

Hence, f~'(u) and f~1(p) are r-fuzzy a-separated sets in X so that A < f~(u) Vv
f~Yp). But X is r-fuzzy a-connected means, from (3) in Proposition 4.6, that
A< f7H(w) or A < f7Y(p), which means that f(A\) < p or f(A) < p. Thus, again
from (3) in Proposition 4.6, we get that f(\) is r-fuzzy #-connected.

Corollary 4.8. (Theorem 2.12 in [7]) Let (X, 7), (Y, 72) be two fuzzy topological
spaces. If f: X — Y is a fuzzy continuous mapping and A € IX is r-fuzzy connected
in X, then f(\) is an r-fuzzy connected in Y.

Proof. Let o = fuzzy closure operator and 6 = fuzzy closure operator. Then, the
result follows from Theorem 4.7.

Corollary 4.9. (Theorems 2.12, 3.11 in [10]) Let (X, ), (Y, 72) be two fuzzy topo-
logical spaces. Let f: (X, 1) — (Y, 72) be S-irresolute (resp. irresolute). If A € IX
is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in X, then
f(A) is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in Y.

Proof. Let « = fuzzy strongly semi-closure (resp. semi-closure) operator and 6 =
fuzzy strongly semi-closure (resp. semi-closure) operator. Then, the result follows
from Theorem 4.7.

Corollary 4.10. Let (X,7),(Y,72) be two fuzzy topological spaces. Let f :
(X, 1) — (Y, T2) be fuzzy semi-pre-irresolute. If A € I is r-fuzzy semi-preconnected
in X, then f(\) is r-fuzzy semi-preconnected in Y.

Proof. Let « = fuzzy semi-preclosure operator and 6 = fuzzy semi-preclosure oper-
ator. Then, the result follows from Theorem 4.7.

Corollary 4.11. (Theorem 5.10 in [2]) Let (X, m), (Y, 72) be two fuzzy topolog-
ical spaces. Let f : (X,7) — (Y, 72) be fuzzy strongly pre-irresolute (resp. pre-
irresolute). If A € I¥ is r-fuzzy spreconnected (resp. preconnected) in X, then
f(A) is r-fuzzy s preconnected (preconnected) in Y.
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Proof. Let «a = fuzzy strongly preclosure (resp. preclosure) operator and 6 =
fuzzy strongly preclosure (resp. preclosure) operator. Then, the result follows from
Theorem 4.7.

Corollary 4.12. Let (X,7),(Y,72) be two fuzzy topological spaces. Let f :
(X,71) — (Y,7) be fuzzy semi-continuous (resp. precontinuous, strongly semi-
continuous, strongly precontinuous and semi-precontinuous) mapping. If A € I¥ is
1-type of r-fuzzy strongly connected (resp. r-fuzzy preconnected, r-fuzzy strongly
connected, r-fuzzy strongly preconnected and r-fuzzy semi-preconnected) in X, then
f(A) is r-fuzzy connected in Y.

Proof. Let a = fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly
preclosure and semi-preclosure) operator and 6 = fuzzy closure operator. Then, the
result follows from Theorem 4.7.

Proposition 4.13. Any fuzzy point x;,t € Iy is r-fuzzy a-connected, and conse-
quently x1Vz € X is r-fuzzy a-connected.

Proof. Clear.

Definition 4.14. Let X be a non-empty set and A\ € IX. Then, ) is r-fuzzy a-
component if A is maximal r-fuzzy a-connected set in X, that is, if u > A and p is
r-fuzzy a-connected set, then A = p.

Proposition 4.15. Let X # 0 be r-fuzzy a-connected in X and A < u < a(\,r); r €
Iy. Then, pu is r-fuzzy a-connected.

Proof. Let v, p be r-fuzzy a-separated sets such that u = vV p. That is, a(v,7)Ap =
a(p,r)A\v =0; r € Iy. Since A < p, then A < (vVp). From A is r-fuzzy a-connected,
and from (3) in Proposition 4.6, we have A < v or A < p. If A <v, then

p=puNip<ar)Ap<av,r)Ap=0.
If A < p, then
v=pAv<aAr)Av<alpr)Av=0.

Hence, pu is r-fuzzy a-connected.

5 Fuzzy a-Compact Spaces

This section is devoted to introduce the notion of r-fuzzy a-compact spaces.

Definition 5.1. Let (X, 7) be a fuzzy topological space, « a fuzzy operator on X,

and p € I*, r € Iy. Then, p is called r-fuzzy a-compact if for each family

{Njer*:r(\j)>r jeJ} withu < \ )\, there exists a finite subset Jy C J
jed

such that p© < \/ a(Aj,7).

Jj€Jdo

Remark 5.2. For a fuzzy topological space (X, 7):

(1) if a = fuzzy identity operator, we get the r-fuzzy compactness as given in [1].
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(2) if o = fuzzy closure operator, we get the r-fuzzy almost compactness as given
in [1].

(3) if o = fuzzy interior closure operator, we get the r-fuzzy near compactness as
given in [1].

(4) if a = fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly
preclosure and semi-preclosure) operator, we get the r-fuzzy semi-compactness
(resp. precompactness, strongly semi-compactness, strongly precompactness
and semi-precompactness [11]).

Theorem 5.3. Let (X, 7) and (Y, 0) be two fuzzy topological spaces, « a fuzzy
operator on X, #1is a fuzzy operatorson Y. If f : X — Y isfuzzy (o, int,, 0, idy,Z°)-
continuous and p € IX is r-fuzzy compact in X, then f(u) is r-fuzzy f-compact in

Y.
Proof. Let {\; € IV : a(\;) > r, j € J} be a family with f(u) < \/ A;. Since f is

jeJ
fuzzy («, int,, 6, idy,Z°)-continuous, we get that there exists p; = int, (f~1(0(\;,7)),7) €
I with 7(u;) > r Vj € J such that

alf 1)) <y < FHO(N, 7).
Also, since f7H(\;) < a(f~1())),r), then

FHN) <y < U0 ),

which means that

p< VO < Vi) < 1V o0y

JjeJ jeJ jeJ
that is, p < \/ (p;). By r-fuzzy compactness of y, there exists a finite set Jy C J
jeJ
such that © < \/ (i;), and thus

<V Fl) <\ 00,

J€Jo J€Jo

and therefore f(u) is r-fuzzy 6-compact.

Corollary 5.4. ([11]) Let (X,7) and (Y, 0) be two fuzzy topological spaces. Let
f: X — Y be a fuzzy continuous mapping and p € I an r-fuzzy compact set in
X, then f(p) is r-fuzzy compact in Y.

Proof. Let «a = fuzzy identity operator on X, 6 = fuzzy identity operator and
7 =1T°, then the result follows from Theorem 5.3.

Corollary 5.5. ([11]) Let (X,7) and (Y, 0) be two fuzzy topological spaces. Let
f: X — Y be a fuzzy weakly continuous mapping ([8]) and u € IX an r-fuzzy
compact set in X, then f(u) is r-fuzzy almost compact in Y.
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Proof. Let a = fuzzy identity operator on X, 8 = fuzzy closure operator and Z = Z°,
then the result follows from Theorem 5.3.

Corollary 5.6. ([11]) Let (X,7) and (Y,0) be two fuzzy topological spaces. Let
f: X — Y be a fuzzy almost continuous mapping ([9]) and u € IX an r-fuzzy
compact set in X, then f(u) is r-fuzzy nearly compact in Y.

Proof. Let « = fuzzy identity operator on X, 6 = fuzzy interior closure operator
and Z = Z°, then the result follows from Theorem 5.3.

Corollary 5.7. Let (X, 7) and (Y, o) be two fuzzy topological spaces. Let f: X —
Y be a fuzzy semi-continuous [12] (resp. precontinuous [8], strongly semi-continuous
[3], strongly precontinuous [2] and semi-precontinuous [8]) mapping, and p € IX an
r-fuzzy compact set in X, then f(u) is r-fuzzy semi-compact (resp. precompact,
strongly semi-compact, strongly precompact and semi-precompact) in Y.

Proof. Let « = fuzzy identity operator on X, § = fuzzy semi-closure (resp. pre-
closure, strongly semi-closure, strongly preclosure and semi-preclosure) operator and
7 = 1°, then the result follows from Theorem 5.3.
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