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1Usak University, Faculty of Education, Department of Mathematics and Science Education, 64200 Usak, Turkey
2Dumlupinar University, Faculty of Arts and Sciences, Department of Mathematics, 43100 Kutahya, Turkey
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Abstract: In this research, generalized and extended generalized φ -recurrent Sasakian
Finsler structures on horizontal and vertical tangent bundles and their various geometric
properties are studied.

Genelleştirilmiş ve Genişletilmiş Genelleştirilmiş φ -tekrarlı Sasakian Finsler Yapılar Üzerine

Anahtar Kelimeler
Genelleştirilmiş φ -tekrarlı,
Genişletilmiş genelleştirilmiş
φ -tekrarlı,
Sasakian Finsler yapı,
Einstein manifoldu

Özet: Bu araştırmada, yatay ve dikey tanjant demetleri üzerinde genelleştirilmiş ve
genişletilmiş genelleştirilmiş φ -tekrarlı Sasakian Finsler yapılar ve bunların çeşitli ge-
ometrik özellikleri çalışıldı.

1. Introduction

Ruse defined a Riemannian space of the recurrent curva-
ture for which the covariant derivation of the Riemannian
curvature tensor R satisfies the relation:

(∇sR)(p,q)r = A(s)R(p,q)r (1)

at all points for the non-zero 1-form A, in 1949 [13]. In
this relation, if A vanishes so the space is reduced to a lo-
cally symmetric manifold. Besides, generalized recurrent
manifolds take part in the literature with Dubey’s study in
1979 [8]. Dubey weakened the recurrence condition that
defined in (1) in the following way:

(∇sR)(p,q)r = A(s)R(p,q)r+B(s)g(p,q)r (2)

for all vector fields p,q,r,s and non-zero 1-forms A and B
satisfying:

A(s) = g(s, p1),B(s) = g(s, p2) (3)

where p1, p2 are vector fields associated with A and B,
respectively and the Riemannian metric tensor g is defined
as follows:

g(p,q)r = g(q,r)p−g(p,r)q, (4)

The Riemannian space satisfying (2) (so, (3) and (4) ) is
called generalized (Riemann) recurrent manifold. Addi-
tionally, generalized Ricci recurrent and generalized con-
circular recurrent manifolds are defined with the following

relations, respectively:

(∇sS)(p,q)r = A(s)S(p,q)r+B(s)g(p,q)r, (5)

(∇sC)(p,q)r = A(s)C(p,q)r+B(s)g(p,q)r (6)

for all vector fields p,q,r,s where S is Ricci curvature
tensor and C is concircular curvature tensor.
The Sasakian manifold satisfying

φ
2((∇sR)(p,q)r) = 0 (7)

is introduced as locally φ -symmetric manifold by Taka-
hashi, in 1977 [17]. In addition, generalized φ -recurrency
is one type of the weakened extensions of locally φ -
symmetry. φ -recurrency of the spaces introduced by De,
Shaikh and Biswas for Sasakian manifolds in 2003 [6] in
which φ -recurrent Sasakian manifold satisfies the follow-
ing relation:

φ
2((∇sR)(p,q)r) = A(s)(R(p,q)r) (8)

for all vector fields p,q,r,s and if A = 0 it turns to a locally
φ -symmetric manifold. Then generalized φ -recurrency
of Kenmotsu manifolds are studied by Basari and Mu-
rathan [2]. Furthermore, generalized φ -recurrent spaces,
like Sasakian [1], P-Sasakian [15], LP-Sasakian [14], Ken-
motsu [4] and trans-Sasakian [7], are discussed in many
studies. In [1], the generalized φ -recurrent Sasakian mani-
fold is defined with the following relation:

φ
2((∇sR)(p,q)r) = A(s)R(p,q)r+B(s)g(p,q)r (9)
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for all vector fields p,q,r,s. By taking R = C and R = P
in (9) the Sasakian manifold said to be generalized C−φ -
recurrent and generalized P−φ -recurrent where C,P are
concircular and projective curvature tensors, respectively.
Moreover, extended generalized φ -recurrency is one
type of the extensions of φ -recurrency and discussed by
Prakasha [11] and Jaiswal and Yadav [9] for Sasakian and
trans-Sasakian manifolds. In [11], extended generalized
φ -recurrent Sasakian manifold is defined in the following
way:

((∇sR)(p,q)r) = A(s)φ 2(R(p,q)r)

+B(s)φ 2(g(p,q)r) (10)

for all vector fields p,q,r,s. Particularly, substituting R
by C and P respectively, the Sasakian manifold is called
extended generalized C−φ - recurrent and extended gener-
alized P−φ -recurrent respectively.
These studies motivated us to discuss generalized φ -
recurrent and extended generalized φ -recurrent Sasakian
Finsler structures.

2. Preliminaries

Assume that Mm=(2n+1), Fm = (M,F) and g be be a
smooth manifold, a Finsler manifold and a Finsler metric
tensor with gi j(x,y) = 1

2 [
∂ 2F2

∂yi∂y j ] coefficients respectively.

Besides, x = (x1, . . . ,xm) are the local coordinates of M,
TxM is an m-dimensional tangent space at x ∈ M and
y = yi ∂

∂xi ∈ TxM. So, T M denotes 2m-dimensional slit
tangent bundle of M and u = (x,y) ∈ T M [10].
Furthermore, TuT M is the tangent space to T M at u and
{ ∂

∂xi ,
∂

∂yi } are the canonical frames for TuT M. The dif-
ferential map π∗ : TuT M→ Tπ(u)M satisfy Xu ∈ π(Xu) =
Xu. Hence, the vertical subbundle T MV is derived from
ker(π). The horizontal subbundle T MH = (N j

i (x,y)) is a
non-linear connection on T M where N j

i =
∂N j

∂yi are obtained

via spray coefficients N j = 1
4 g jk( ∂ 2F2

∂yk∂xh yh− ∂F2

∂xk ).
It enables to define p∈ TuT M with these coefficients in the
following way: p = pi( ∂

∂xi −N j
i (x,y)

∂

∂y j )+ (N j
i (x,y)pi +

p j) ∂

∂y j = pi δ

δxi + p j ∂

∂y j . Here, (dxi,δy j) are the dual

frames of ( δ

δxi ,
∂

∂y j ) where δy j = dy j +N j
i dxi. In this man-

ner, TuT M = T H
u T M⊕ TV

u T M at u ∈ T M gives rise to
complementary distributions T MH =

⋃
u∈T MH

T H
u T M and

T MV =
⋃

u∈T MV
TV

u T M [5].
Furthermore, distributing η = ηidxi +η jδy j ∈ (TuT M)∗

to horizontal and vertical parts, we have ηH ∈ (T H
u T M)∗

and ηV ∈ (TV
u T M)∗ .

The Sasaki-Finsler metric G on T M is defined as follows:

G(p,q) = GH(pH ,qH)+GV (pV ,qV )

So, some warped contact structures with Finsler coeffi-
cients can be constructed like in [12] and [16].

Definition 2.1. Suppose that (φ H ,ξ H ,ηH ,GH) and
(φV ,ξV ,ηV ,GV ) be Sasakian Finsler structures on T MH
and T MV , respectively. Then we have the below relations:

φ .φ =−In +η
H ⊗ξ

H +η
V ⊗ξ

V , (11)

φξ
H = φξ

V = 0, (12)

η
H(ξ H) = η

V (ξV ) = 1, (13)

η
H(φ pH) = 0,ηV (φ pV ) = 0,ηH(φ pV ) = 0, (14)

GH(φ pH ,φqH) = GH(pH ,qH)−η
H(pH)ηH(qH),

GV (φ pV ,φqV ) = GV (pV ,qV )−η
V (pV )ηV (qV ), (15)

GH(pH ,ξ H) = η
H(pH),GV (pV ,ξV ) = η

V (pV ) (16)

where pH ,qH ,rH ∈ T H
u T M and pV ,qV ,rV ∈ TV

u T M, ξ is
the Reeb vector field, η is the 1-form, G is the Finsler
metric structure and the (1,1) tensor field φ denotes the
endomorphism [18].

In the Sasakian Finsler manifolds T MH and T MV follow-
ing relations hold:

GH(φ pH ,qH) =−GH(pH ,φqH)

GV (φ pV ,qV ) =−GV (pV ,φqV ) (17)

∇
H
p ξ

H =−1
2

φ pH ,∇V
p ξ

V =−1
2

φ pV (18)

R(pH ,qH)ξ H =
1
4
[ηH(qH)pH −η

H(pH)qH ],

R(pV ,qV )ξV =
1
4
[ηV (qV )pV −η

V (pV )qV ] (19)

R(pH ,ξ H)qH =
1
4
[ηH(Y H)pH −GH(p,q)ξ H ],

R(pV ,ξV )qV =
1
4
[ηV (YV )pV −GV (p,q)ξV ] (20)

R(pH ,qH)rH =
1
4
[G(rH ,qH)pH −G(rH , pH)qH ],

R(pV ,qV )rV =
1
4
[G(rV ,qV )pV −G(rV , pV )qV ] (21)

S(pH ,ξ H)+S(pH ,ξ H) =
n
2
(ηH(pH)+η

V (pV )) (22)

S(φ p,φq) = S(pH ,qH)− n
2

η
H(pH)ηH(qH),

S(φ p,φq) = S(pV ,qV )− n
2

η
V (pV )ηV (qV ) (23)

for all vector fields and where R is the Riemann curvature
tensor field, S is the Ricci tensor field and ∇ is the Finsler
connection on T M [18].
However Sasakian Finsler structures can be constructed
both on horizontal and vertical tangent subbundles, in this
paper; it is studied for T MH , for briefness.
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3. Generalized φ -recurrent Sasakian Finsler struc-
tures on T MH

Definition 3.1. The Sasakian Finsler structure
(φ H ,ξ H ,ηH ,GH) on T MH is called generalized φ -
recurrent if the following relation holds:

φ
2((∇H

s R)(pH ,qH)rH) = AH(sH)(R(pH ,qH)rH)

+BH(sH)(G(pH ,qH)rH) (24)

for pH ,qH ,rH ,sH ∈ T H
u T M where AH and BH are the non-

zero 1-forms defined by

AH(sH) = GH(sH , pH
1 ),B

H(sH) = GH(sH , pH
2 ) (25)

and pH
1 , pH

2 are vector fields associated with 1-forms AH

and BH , respectively and G is defined as follows:

G(pH ,qH)rH =
1
4
[GH(qH ,rH)pH −GH(pH ,qH)rH ]. (26)

Lemma 3.2. In a generalized φ -recurrent Sasakian
Finsler manifold T MH , the relation AH +BH = 0 is satis-
fied.

Theorem 3.3. A generalized φ -recurrent Sasakian Finsler
manifold T MH with the quadruple (φ H ,ξ H ,ηH ,GH) is of
constant curvature 1

4 .

Proof. Due to the manifold is generalized φ -recurrent
then (24) is satisfied. Applying φ both sides of (24), and
replacing rH with ξ H , by using (11) we have

−((∇H
s R)(pH ,qH)ξ H)+η

H((∇H
s R)(pH ,qH)ξ H)ξ H =

AH(sH)[−R(pH ,qH)ξ H +η
H(R(pH ,qH)ξ H)ξ H ]

+BH(sH)[G(pH ,qH)rH −η
H(G(pH ,qH)ξ H)ξ H ]. (27)

By the use of (19) and (26) the following relation holds:

(∇H
s R)(pH ,qH)ξ H = η

H((∇H
s R)(pH ,qH)ξ H)ξ H

+
1
4
[ηH(qH)pH −η

H(pH)qH ][AH(sH)+BH(sH)]. (28)

With the help of (17) and (18), we get

(∇H
s R)(pH ,qH)ξ H =

1
8
[GH(sH ,φqH)ηH(pH)

−GH(sH ,φ pH)ηH(qH)]+
1
2
(R(pH ,qH)φsH). (29)

On the other hand, by applying ηH to the (29) and using
(20), it is found that ηH((∇H

s R)(pH ,qH)ξ H) = 0 and so
(29) takes the following form:

(∇H
s R)(pH ,qH)ξ H =

1
4
[ηH(qH)pH

−η
H(pH)qH ][AH(sH)+BH(sH)] (30)

By virtue of the right parts of (28) and (29),

(R(pH ,qH)φsH) =

1
4
[GH(sH ,φqH)ηH(pH)−GH(sH ,φXH)ηH(Y H)]

+
1
2
[ηH(qH)pH −η

H(pH)qH ][AH(sH)+BH(sH)] (31)

Using Lemma 3.2, (31) takes the following form:

R(pH ,qH)φsH =
1
4
[GH(sH ,φqH)ηH(pH)

−GH(sH ,φ pH)ηH(qH)] (32)

By applying φ both sides of (32) and via (11) and (19), the
below equation is satisfied:

R(pH ,qH)sH =
1
4
[GH(qH ,sH)pH −GH(pH ,sH)qH ]. (33)

So, the generalized φ -recurrent Sasakian Finsler structure
on T MH is of the constant curvature 1

4 .

Theorem 3.4. Assume that T MH be a (2n+1)-dimensional
generalized φ -recurrent Sasakian Finsler manifold with
the structure (φ H ,ξ H ,ηH ,GH) and pH

1 be the associated
vector field of 1-form AH given in (25). Then the Eigen
value of the Ricci tensor corresponding to the Eigen vector
pH

1 is n
2 .

Proof. By virtue of (24) and (11), the following relation
holds:

((∇H
s R)(pH ,qH)rH) = η

H((∇H
s R)(pH ,qH)rH)ξ H

−AH(sH)R(pH ,qH)rH

−1
4

BH(sH)[G(qH ,rH)pH −η
H(G(pH ,rH)qH)] (34)

Substituting sH , pH ,rH cyclically in (34), three equations
are found from which it follows that

((∇H
s R)(pH ,qH)rH)+((∇H

s R)(qH ,sH)pH)

+((∇H
s R)(sH , pH)rH) =

η
H((∇H

s R)(pH ,qH)rH)ξ H +η
H((∇H

s R)(qH ,sH)rH)ξ H

+η
H((∇H

s R)(sH , pH)rH)ξ H −AH(sH)R(pH ,qH)rH

−AH(pH)R(qH ,sH)rH −AH(qH)R(sH , pH)rH

−1
4
{BH(sH)[G(qH ,rH)pH −η

H(G(pH ,rH)qH)]

−BH(pH)[G(sH ,rH)qH −η
H(G(qH ,rH)sH)]

−BH(qH)[G(pH ,rH)sH −η
H(G(sH ,rH)pH)]} (35)

Using Second Bianchi identity and applying Lemma 3.2,

AH(sH)[R(pH ,qH)rH +AH(pH)[R(qH ,sH)rH

+
1
4
[G(qH ,rH)pH −η

H(G(pH ,rH)qH)]]

+
1
4
[G(qH ,rH)pH −η

H(G(pH ,rH)qH)]]

+AH(qH)[R(sH , pH)rH

+
1
4
[G(qH ,rH)pH −η

H(G(pH ,rH)qH)]] = 0. (36)

Setting qH = rH = eH
i in (36),

AH(sH)[S(pH , tH)rH − 2n−1
4

G(pH , tH)]

+AH(pH)[−S(sH , tH)+
2n−1

4
G(pH , tH)]

−AH(R(sH , pH)tH)−G(R(sH , pH)tH , pH
1 ) = 0. (37)

By the use of (23) and contracting (37), below relation is
satisfied:

S(sH , pH
1 ) =

n
2

AH(sH). (38)
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4. Extended generalized φ -recurrent Sasakian Finsler
structures on T MH

Definition 4.1. The Sasakian Finsler manifold T MH ad-
mitting the quadruple (φ H ,ξ H ,ηH ,GH) is called extended
generalized φ -recurrent if the following relation holds:

φ
2((∇H

s R)(pH ,qH)rH) = AH(sH)φ 2(R(pH ,qH)rH)

+BH(sH)φ 2(G(pH ,qH)rH) (39)

for pH ,qH ,rH ,sH ∈ T H
u T M.

Theorem 4.2. An extended generalized φ -recurrent
Sasakian Finsler manifold T MH is Einstein. Also the 1-
forms AH and BH are related as

AH =−BH . (40)

Proof. Accept that T MH be a φ -recurrent Sasakian Finsler
manifold. Then using (11) and (24), we obtain

φ
2(∇H

s R)(pH ,qH)rH = η
H((∇H

s R)(pH ,qH)rH)ξ H

+AH(sH)[R(pH ,qH)rH −η
H(R(pH ,qH)rH)ξ H ]

+BH(sH)[G(pH ,qH)rH −η
H(G(pH ,qH)rH)ξ H ] (41)

From the above relation it can be seen that;

G((∇H
s R)(pH ,qH)rH , tH) =

η
H((∇H

s R)(pH ,qH)rH)ηH(tH)

+AH(sH)[G(R(pH ,qH)rH , tH)

−η
H(R(pH ,qH)rH)ηH(tH)

+BH(sH)[G(G(pH ,qH)rH , tH)

−η
H(R(pH ,qH)rH)ηH(tH)] (42)

Let {eH
i } i = 1,2, . . . ,2n+1, be the orthonormal basis of

T H
u T M. Then putting pH = tH = eH

i and taking summation
over i, 1≤ i≤ 2n+1, we get

∑G((∇H
s R)(eH

i ,q
H)rH ,eH

i ) =

∑{ηH((∇H
s R)(eH

i ,q
H)rH)ηH(eH

i )

+G(R(eH
i ,q

H)rH ,eH
i )

+AH(sH)[−η
H(R(eH

i ,q
H)rH)ηH(eH

i )]

+BH(sH)[(G(eH
i ,q

H)rH ,eH
i )

−η
H(G(eH

i ,q
H)rH)ηH(eH

i )]}
(43)

If the relations ηH((∇H
W R)(eH

i ,Y
H)ZH)ηH(eH

i ) = 0 and
∑G(R(eH

i ,q
H)rH ,eH

i )= S(qH ,rH) are considered we have
the following

(∇H
s S)(qH ,rH) = AH(sH)S(qH ,rH)

−AH(sH)ηH(R(ξ H ,qH)rH)

+
1
4

BH(sH)[2nG(qH ,rH)eH
i

−G(qH ,rH)+η
H(qH)ηH(rH)]. (44)

By using (21) in (44), we have

(∇H
s S)(qH ,rH) = AH(sH)S(qH ,rH)

−1
4

AH(sH)[G(rH ,qH)

−η
H(qH)ηH(rH)]

+
1
4

BH(sH)[(2n−1)G(qH ,rH)+η
H(qH)ηH(rH)] (45)

By putting rH = ξ H in (45), we have the following;

(∇H
s S)(qH ,ξ H) = AH(sH)S(qH ,ξ H)

+
n
2

BH(sH)ηH(qH) (46)

By virtue of (22)

(∇H
s S)(qH ,ξ H) =

n
2
[AH(sH)+BH(sH)]ηH(qH) (47)

On the other hand, due to the relation between
(∇H

s S)(qH ,ξ H) and (∇H
s )(S(q

H ,ξ H)) and by the use of
(18) and (22) the below equation is satisfied:

(∇H
s S)(qH ,ξ H) =

n
4

G(sH ,φqH)+
1
2

S(qH ,φsH). (48)

Substituting φqH with qH in (48) with the help of (23) we
have

(∇H
s S)(φqH ,ξ H) =

n
4

G(sH ,qH)+
1
2

S(qH ,sH). (49)

Plugging qH = φqH in (42) with the help of (14) we get

(∇H
s S)(φqH ,ξ H) = 0. (50)

It follows from (49) and (50),

S(qH ,sH) =
n
2

G(sH ,qH). (51)

So, manifold is Einstein [3].
Further, contracting (48) by the use of (12) and (14) we
get the relation (∇H

s S)(qH ,ξ H) = 0. In the same sence,
contracting (47), we have (40).

Theorem 4.3. Assume that T MH be a (2n+1)-dimensional
extended generalized φ -recurrent Sasakian Finsler mani-
fold, then the following relation holds:

(∇H
s R)(pH ,qH)rH =

1
2
{1

4
[−G(Y H ,sH)G(φ pH ,rH)

+G(XH ,sH)G(φqH ,rH)+G(φR(pH ,qH)sH ,rH)]ξ H

−AH(sH)(R(pH ,qH)rH)}. (52)
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