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Qualitative study of a higher order rational
di�erence equation
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Abstract

In this paper we study the behavior of the di�erence equation

xn+1 =
αxnxn−l

βxn−m + γxn−l
, n = 0, 1, ...,

where the initial conditions x−r, x−r+1, ..., x0 are arbitrary non zero
real numbers where r = max{l,m} is a non-negative integer and α, β
and γ are constants. Also, we obtain the solutions of some special cases
of this equation. At the end we present some numerical examples to
support our theoretical discussion.

Keywords: di�erence equation, stability, boundedness, global attractivity.

Mathematics Subject Classi�cation (2010): 39A10, 39A11, 39A99, 34C99

Received : 03.01.2017 Accepted : 23.06.2017 Doi : 10.15672/HJMS.2017.512

1. Introduction

In this paper we deal with the behavior of the solutions of the following di�erence
equation

(1.1) xn+1 =
αxnxn−l

βxn−m + γxn−l
, n = 0, 1, ...,

where the initial conditions x−r, x−r+1, ..., x0 are arbitrary non zero real numbers and
where r = max{l,m} is a non-negative integer and α, β and γ are constants. Also,
we obtain the solutions of some special cases of this equation. We trust that nonlinear
rational di�erence equations are of supreme importance in their speci�c righteous, and
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in addition that results about such equations deal with patterns for the development of
the basic theory of the global behavior of nonlinear di�erence equations.

The dynamical characteristics of population system have been modelled, among oth-
ers by di�erential equations in the case of species with overlapping generations and by
di�erence equations in the case of species with non-overlapping generations.

In practice, one can formulate a discrete model directly from experiments and observa-
tions. Sometimes, for numerical purposes one wants to propose a �nite-di�erence scheme
to numerically solved a given di�erential equation model, especially when the di�erential
equation cannot be solved explicitly. For a given di�erential equation, a di�erence equa-
tion approximation would be most acceptable if the solution of the di�erence equation
is the same as the di�erential equation at the discrete points [39]. But unless we can
explicitly solve both equations, it is impossible to satisfy this requirements. Most of the
time, it is desirable that a di�erential equation, when derived from a di�erence equation,
preserves the dynamical features of the corresponding continuous-time model such as
equilibria, their local and global stability characteristics and bifurcation behaviors. If
such discrete models can be derived from continuous-time models and it will preserve
the considered realities; such discrete-time models can be called `dynamically consistent'
with the continuous-time models.

Also, di�erence equations are appropriate models for describing situations where pop-
ulation growth is not continuous but seasonal with overlapping generations.

El-Metwally et al. [14] investigated the asymptotic behavior of the population model:

xn+1 = α+ βxn−1e
−xn ,

where α is the immigration rate and β is the population growth rate.
The generalized Beverton-Holt stock recruitment model has investigated in [5]:

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
.

In recent time nonlinear di�erence equations have fascinated the minds of many re-
searchers. In fact, we have endorsed a swift growth of concern in these types of equations
in the earlier decade. Maybe, the desire was rooted from the evidence that these type
of equations have various applications not only in the �eld of mathematics but also in
relevant sciences, notably in biological sciences, engineering, ecology, discrete time sys-
tems, economics, physics and so on. We trust that this line of research will continue
to appeal to the thoughts of more researchers in coming years as more compelling and
captivating results are obtained and conveyed in recent analysis. The problem of �nding
the closed-form solutions of nonlinear di�erence equations have become a tendency over
this research topic. As a matter of fact, numerous papers negotiate with the problem
of solving nonlinear di�erence equations in any way possible, see, for instance [7]�[15].
Apparently, �nding the solution form of these types of equations is, in general, a very
challenging task. Nevertheless, various methods were o�ered recently to reduce compli-
cated nonlinear di�erence equations into linear forms which have already known solution
forms. For instance, through transforming into linear types, a large class of nonlinear
di�erence equations were resolved in closed-forms (see, e.g., [15]�[29]).

Many researchers have investigated the behavior of the solution of di�erence equations
for example: Cinar [6] has obtained the solutions of the following di�erence equation

xn+1 =
axn−1

1 + bxnxn−1
.
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In [12] Elabbasy et al. studied the global stability, periodicity character and gave the
solution of special case of the following recursive sequence

xn+1 =
axn−lxn−k

bxn−p − cxn−q
.

Elsayed and Khaliq [28] investigated the boundedness, global stability and existence of
periodic solutions of the following di�erence equation

xn+1 = axn−l +
bxn−k + cxn−s
d+ exn−t

.

Amleh et al. [3] investigated the global stability, periodicity character and gave the
solution of some special cases of the di�erence equation

xn+1 =
a+ bxn−1

A+Bxn−2
.

Yan et al. [51] studied the global attractivity for the recursive sequence

xn+1 =
α− βxn
γ − xn−1

.

Dehghan et al. [8] found the invariant intervals, global stability, the character of semi-
cycles, and the boundedness of the equation

xn+1 =
αyn−2

β + γykny
k
n−1y

k
n−2

.

Yang [51] studied the global asymptotic stability of the di�erence equation

xn+1 =
xn−1xn−2 + xn−3 + a

xn−1 + xn−2xn−3 + a
.

See also [1]-[5], [30]-[45]. Other related results on rational di�erence equations can be
found in refs. [46]�[56].

Let us introduce some basic de�nitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

f : Ik+1 → I

be a continuously di�erentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the di�erence equation
(1.2) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k [37].
A point x ∈ I is called an equilibrium point of Eq.(1.2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(1.2), or equivalently, x is a �xed point of
f .

1.1. De�nition. (Stability)

(i) The equilibrium point x of Eq.(1.2) is locally stable if for every ε > 0, there exists
δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have

|xn − x| < ε for all n ≥ −k.
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(ii) The equilibrium point x of Eq.(1.2) is locally asymptotically stable if x is a locally
stable solution of Eq.(1.2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈
I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have

lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq.(1.2) is a global attractor if for all
x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(1.2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of Eq.(1.2).
(v) The equilibrium point x of Eq.(1.2) is unstable if x is not locally stable.

The linearized equation of Eq.(1.2) about the equilibrium x is the linear di�erence
equation

(1.3) yn+1 =

k∑
i=0

∂f(xn, xn−1, ..., xn−k)

∂xn−i

∣∣∣∣
xn=xn−1=...=xn−k=x

yn−i

Theorem A [37]: Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then
|p|+ |q| < 1

is a su�cient condition for the asymptotic stability of the di�erence equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark. Theorem A can be easily extended to a general linear equation of the form

(1.4) xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ...

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then Eq.(1.4) is asymptotically stable provided
that

k∑
i=1

|pi| < 1.

Consider the following equation

(1.5) xn+1 = g(xn, xn−1, xn−2)

The following theorem will be useful for the proof of our results in this paper.

Theorem B [38]: Let [p, q] be an interval of real numbers and assume that

g : [p, q]3 → [p, q]

is a continuous function satisfying the following properties :
(a) g(x, y, z) is non-decreasing in x and y in [p, q] for each z ∈ [p, q], and is non-

increasing in z ∈ [p, q] for each x and y in [p, q];
(b) If (m,M) ∈ [p, q]× [p, q] is a solution of the system

M = g(M,M,m) and m = g(m,m,M)

then m =M .
Then Eq.(1.5) has a unique equilibrium x ∈ [p, q] and every solution of Eq.(1.5) con-

verges to x.
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2. Dynamics and behaviour of solutions of eq.(1.1)

In this section we study some qualitative behavior of Eq. (1.1) such that local stability,
global attractor of the equilibrium point and boundedness character of solutions of Eq.(1.1)
when the initial conditions x−r, x−r+1, ..., x0 and the constants α, β and γ are arbitrary
positive real numbers.

2.1. Local stability of eq.(1.1). In this section we investigate the local stability char-
acter of the solutions of Eq.(1.1). It has a unique equilibrium point and is given by the
equation

x =
αx2

βx+ γx
,

or,

x2(β + γ) = αx2,

if (β + γ) 6= α, then the unique equilibrium point is x = 0.
Let f : (0,∞)3 −→ (0,∞) be a function de�ned by

(2.1) f(u,w, t) =
αuw

βt+ γw
.

Therefore it follows that

fu(u,w, t) =
αw

(βt+ γw)
, fw(u,w, t) =

αβut

(βt+ γw)2
,

and ft(u,w, t) =
−αβuw

(βt+ γw)2
,

we see that

fu(x, x, x) =
α

(β + γ)
, fw(x, x, x) =

αβ

(β + γ)2
,

and ft(x, x, x) =
−αβ

(β + γ)2
.

The linearized equation of Eq.(1.1) about x is

(2.2) yn+1 −
α

(β + γ)
yn −

αβ

(β + γ)2
yn−l +

αβ

(β + γ)2
yn−m = 0.

2.1. Theorem. Assume that

3β + γ

(β + γ)2
<

1

α
.

Then the equilibrium point of Eq.(1.1) is locally asymptotically stable.

Proof. It follows by Theorem A that Eq.(2.2) is asymptotically stable if∣∣∣∣ α

(β + γ)

∣∣∣∣+ ∣∣∣∣ αβ

(β + γ)2

∣∣∣∣+ ∣∣∣∣ αβ

(β + γ)2

∣∣∣∣ < 1,

or,

α(β + γ) + αβ + αβ < (β + γ)2.

Thus

3β + γ

(β + γ)2
<

1

α
.

The proof is complete. �
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2.2. Global attractor of the equilibrium point of eq.(1.1). In this section we
investigate the global attractivity character of solutions of Eq.(1.1).

2.2. Theorem. The equilibrium point x of Eq.(1.1) is global attractor if α 6= γ.

Proof. Let p, q be real numbers and assume that g : [p, q]3 −→ [p, q] is a function de�ned

by g(u,w, t) =
αuw

βt+ γw
. Then we can easily see that the function g(u,w, t) increasing

in u,w and decreasing in t.
Suppose that (m,M) is a solution of the system

M = g(M,M,m) and m = g(m,m,M).

Then from Eq.(1.1), we see that

M =
αM2

βm+ γM
, m =

αm2

βM + γm
,

or,

Mmβ =M2(α− γ), Mmb = m2(α− γ).

Then subtracting we obtain

(α− γ)(M2 −m2) = 0, α 6= γ.

Thus

M = m.

It follows by Theorem B that x is a global attractor of Eq.(1.1) and then the proof is
complete. �

2.3. Boundedness of solutions of Eq.(1.1). In this section we study the boundedness
of solutions of Eq.(1.1).

2.3. Theorem. Every solution of Eq.(1.1) is bounded if
α

γ
< 1.

Proof. Let {xn}∞n=−r where r = max{l,m} be a solution of Eq.(1.1). It follows from
Eq.(1.1) that

xn+1 =
αxnxn−l

βxn−m + γxn−l
≤ αxnxn−l

γxn−l
= (

α

γ
)xn.

Then when
α

γ
< 1, we see that

xn+1 ≤ xn for all n ≥ 0.

Then the subsequences {xn}∞n=0 are decreasing and so are bounded from above by M =
max{x−r+1, x−r+1, x−r+2, ..., x0}. �

3. Special cases of eq.(1.1)

Our goal in this section is to obtain the form of the solutions of some special cases
of Eq.(1.1) when the initial conditions x−r, x−r+1, ..., x0 are arbitrary non zero real
numbers and the constants α, β and γ are integer numbers.
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3.1. First Case. In this section we study the following special case of Eq.(1.1)

(3.1) xn+1 =
xnxn−4

xn−4 + xn−3
, n = 0, 1, ...,

where the initial conditions x−4, x−3, x−2, x−1, x0 are arbitrary non zero real numbers.

3.1. Theorem. Let {xn}∞n=−4 be a solution of Eq.(3.1). Then for n = 0, 1, 2, ...

x4n−4 =
abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)(Fn−1d+ Fn−2e)
,

x4n−3 =
abcde

(Fna+ Fn−1b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)(Fn−1d+ Fn−2e)
,

x4n−2 =
abcde

(Fna+ Fn−1b)(Fnb+ Fn−1c)(Fn−1c+ Fn−2d)(Fn−1d+ Fn−2e)
,

x4n−1 =
abcde

(Fna+ Fn−1b)(Fnb+ Fn−1c)(Fnc+ Fn−1d)(Fn−1d+ Fn−2e)
,

where x−4 = a, x−3 = b, x−2 = c, x−1 = d, x0 = e. {Fm}∞m=0 = {1, 1, 2, 3, 5, 8.....},
F−1 = 0, F−2 = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1, n− 2. That is:

x4n−9 =
abcde

(Fn−2a+ Fn−3b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−3d+ Fn−4e)
,

x4n−8 =
abcde

(Fn−2a+ Fn−3b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−2d+ Fn−3e)
,

x4n−7 =
abcde

(Fn−1a+ Fn−2b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−2d+ Fn−3e)
,

x4n−6 =
abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−2c+ Fn−3d)(Fn−2d+ Fn−3e)
,

x4n−5 =
abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)(Fn−2d+ Fn−3e)
,
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Now, it follows from Eq.(3.1) that

x4n−4 =
x4n−5x4n−9

x4n−9 + x4n−8

=

(
abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)(Fn−2d+ Fn−3e)

)
×(

abcde

(Fn−2a+ Fn−3b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−3d+ Fn−4e)

)


abcde

(Fn−2a+ Fn−3b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−3d+ Fn−4e)
+

abcde

(Fn−2a+ Fn−3b)(Fn−2b+ Fn−3c)(Fn−2c+ Fn−3d)(Fn−2d+ Fn−3e)


=

abcde
(Fn−1a+Fn−2b)(Fn−1b+Fn−2c)(Fn−1c+Fn−2d)(Fn−2d+Fn−3e)

1
(Fn−3d+Fn−4e)(

1
(Fn−3d+Fn−4e)

+ 1
(Fn−2d+Fn−3e)

)

=

abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)

(Fn−2d+ Fn−3e)(Fn−3d+ Fn−4e)

(
1

(Fn−3d+ Fn−4e)
+

1

(Fn−2d+ Fn−3e)

)

=

abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)

(Fn−2d+ Fn−3e+ Fn−3d+ Fn−4e)

=
abcde

(Fn−1a+ Fn−2b)(Fn−1b+ Fn−2c)(Fn−1c+ Fn−2d)(Fn−1d+ Fn−2e)
.

Also, we can prove the other relations. �

3.2. Second Case. In this section we give a speci�c form of the solutions of the di�er-
ence equation

(3.2) xn+1 =
xnxn−3

xn − xn−4
, n = 0, 1, ...,

where the initial conditions x−4, x−3, x−2, x−1, x0 are arbitrary non zero real numbers
with 4x0 6= x−4, x−4 6= x0, 2x0 6= x−4, 3x0 6= x−4.

3.2. Theorem. Let {xn}∞n=−4 be a solution of Eq.(3.2). Then for n = 0, 1, 2, ...

x4n−4 =
en

an−1
, x4n−3 =

ben

(e− a)n , x4n−2 =
cen

an
, x4n−1 =

den

(e− a)n ,

where x−4 = a, x−3 = b, x−2 = c, x−1 = d, x0 = e.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1, n− 2. That is,

x4n−9 =
den−2

(e− a)n−2
, x4n−8 =

en−1

an−2
, x4n−7 =

ben−1

(e− a)n−1
,

x4n−6 =
cen−1

an−1
, x4n−5 =

den−1

(e− a)n−1
.
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From Eq.(3.2), it follows that

x4n−4 =
x4n−5x4n−8

x4n−5 − x4n−9
=

(
den−1

(e−a)n−1

)(
en−1

an−2

)
(

den−1

(e−a)n−1

)
−
(

den−2

(e−a)n−2

)

=
en−1

(
en−1

an−2

)
en−1 − en−2(e− a) =

(
en

an−2

)
e− (e− a) =

en

an−1
.

The remaining relations can be found in similar way, therefore left to reader. Thus the
proof is completed. �

3.3. Third Case. In this section we obtain the solution of the following special case of
Eq.(1.1)

(3.3) xn+1 =
xnxn−3

xn−3 + xn−4
, n = 0, 1, ...,

where the initial conditions x−4, x−3, x−2, x−1, x0 are arbitrary non zero real numbers
with x0 6= x−1, x−1 6= x−2, x−2 6= x−3.

3.3. Theorem. Let {xn}∞n=−4 be a solution of Eq.(3.3). Then for n = 0, 1, 2, ...

x4n−3 =
bn+1cndnen

n−1∏
i=0

(a+ (i+ 1)b)(b+ ic)(c+ id)(d+ ie)

,

x4n−2 =
bncn+1dnen

n−1∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ id)(d+ ie)

x4n−1 =
bncndn+1en

n−1∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ ie)

,

x4n =
bncndnen+1

n−1∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ (i+ 1)e)

.

Where x−4 = a, x−3 = b, x−2 = c, x−1 = d, x0 = e and
−1∏
i=0

Ai = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1, n− 2. That is;

x4n−7 =
bncn−1dn−1en−1

n−2∏
i=0

(a+ (i+ 1)b)(b+ ic)(c+ id)(d+ ie)

,

x4n−6 =
bn−1cndn−1en−1

n−2∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ id)(d+ ie)

,

x4n−5 =
bn−1cn−1dnen−1

n−2∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ ie)

,
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x4n−4 =
bn−1cn−1dn−1en

n−2∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ (i+ 1)e)

,

x4n−8 =
bn−2cn−2dn−2en−1

n−3∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ (i+ 1)e)

,

x4n−9 =
bn−2cn−2dn−1en−2

n−3∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ (i+ 1)d)(d+ ie)

.

Now, it follows from Eq.(3.3) that

x4n−2 =
x4n−3x4n−6

x4n−6 + x4n−7

=

 bn+1cndnen

n−1∏
i=0

(a+(i+1)b)(b+ic)(c+id)(d+ie)

 bn−1cndn−1en−1

n−2∏
i=0

(a+(i+1)b)(b+(i+1)c)(c+id)(d+ie)


 bn−1cndn−1en−1

n−2∏
i=0

(a+(i+1)b)(b+(i+1)c)(c+id)(d+ie)

+

 bncn−1dn−1en−1

n−2∏
i=0

(a+(i+1)b)(b+ic)(c+id)(d+ie)



=

 bn+1cndnen

n−1∏
i=0

(a+(i+1)b)(b+ic)(c+id)(d+ie)

 c
n−2∏
i=0

(b+(i+1)c)


 c

n−2∏
i=0

(b+(i+1)c)

+

 b
n−2∏
i=0

(b+ic)



=

 bn+1cn+1dnen

n−1∏
i=0

(a+(i+1)b)(b+ic)(c+id)(d+ie)


c+

 b
n−2∏
i=0

(b+(i+1)c)

n−2∏
i=0

(b+ic)



=

 bn+1cn+1dnen

n−1∏
i=0

(a+(i+1)b)(b+ic)(c+id)(d+ie)


c+ (b+ (n− 1)c)

=
bn+1cn+1dnen

(b+ (n)c)
n−1∏
i=0

(a+ (i+ 1)b)(b+ ic)(c+ id)(d+ ie)

.

Since (b+ (n)c)
n−1∏
i=0

(b+ ic) = b
n−1∏
i=0

(b+ (i+ 1)c). Therefore

x4n−2 =
bncn+1dnen

n−1∏
i=0

(a+ (i+ 1)b)(b+ (i+ 1)c)(c+ id)(d+ ie)

.
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Other relations can be found similarly. The proof is completed. �

3.4. Fourth Case. In this section we obtain the solution of the following special case
of Eq.(1.1)

(3.4) xn+1 =
xnxn−3

xn + xn−3
, n = 0, 1, ...,

where the initial conditions x−3, x−2, x−1, x0 are arbitrary non zero real numbers with
x0 6= −x−3.

3.4. Theorem. Let {xn}∞n=−3 be a solution of Eq.(3.4). Then x1 =
ad

(a+ d)
. For n =

1, 2, ...

xn+1 =
abcd

gnabc+ gn−3abd+ gn−2acd+ gn−1bcd
,

where x−3 = a, x−2 = b, x−1 = c, x0 = d, {gm}∞m=0 = {1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, ...},
i.e. gm+1 = gm + gm−3, m ≥ 0, g−3 = 0, g−2 = 0, g−1 = 1 and g0 = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1, n− 4. That is;

xn−3 =
abcd

gn−4abc+ gn−7abd+ gn−6acd+ gn−5bcd
,

xn =
abcd

gn−1abc+ gn−4abd+ gn−3acd+ gn−2bcd
.

Now it follows from Eq.(3.4) that

xn+1 =
xnxn−3

xn + xn−3

=

(
abcd

gn−1abc+gn−4abd+gn−3acd+gn−2bcd

)(
abcd

gn−4abc+gn−7abd+gn−6acd+gn−5bcd

)
abcd

gn−1abc+gn−4abd+gn−3acd+gn−2bcd
+ abcd

gn−4abc+gn−7abd+gn−6acd+gn−5bcd

=
abcd

gn−1abc+ gn−4abd+ gn−3acd+ gn−2bcd+ gn−4abc+ gn−7abd+ gn−6acd+ gn−5bcd

=
abcd

gnabc+ gn−3abd+ gn−2acd+ gn−1bcd
.

Hence the proof is completed. �

4. Numerical examples

In order to explain and support the results of the previous discussion we present several
interesting numerical examples in this section. These examples represent di�erent types
of qualitative behavior of solutions to special cases of Eq.(1.1).

In this section, to observe numerical results clearly, we present graphs of solutions that
were carried out using MATLAB. We choose di�erent values for the parameters α, β and
γ. It should be noted that x0, x−1, x−2, x−3 are also di�erent initial values.

4.1. Example. Consider the di�erence equation (1.1) when m = 3, l = 4, α = 0.9, β =
0.3, γ = 0.6, with x−4 = 7, x−3 = 3, x−2 = 2, x−1 = 1, x0 = 0.9. [See Fig. 1].



1139

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

n

x(
n)

plot of x(n+1)=(ax(n)x(n−4))/(bx(n−4)+cx(n−3))

Figure 1. This �gure shows the stability of the solutions of Eq. (1.1) when m = 3, l = 4,
α = 0.9, β = 0.3, γ = 0.6, x−4 = 7, x−3 = 3, x−2 = 2, x−1 = 1, x0 = 0.9.

4.2. Example. Put x−3 = 5, x−2 = 3, x−1 = 2, x0 = 9, m = 3, l = 2, α = 1.1, β =
0.9, γ = 0.2 in the di�erence equation (1.1). See Fig. 2.
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plot of x(n+1)=(ax(n)x(n−2))/(bx(n−3)+cx(n−2))

Figure 2. This �gure shows the behavior for Eq. (1.1) with x−3 = 5, x−2 = 3, x−1 = 2,
x0 = 9, m = 3, l = 2, α = 1.1, β = 0.9, γ = 0.2

4.3. Example. Consider Eq.(1.1), where m = 3, l = 2, α = 1.2, β = 0.54, γ = 0.65,
x−3 = 5, x−2 = 3, x−1 = 2, x0 = 9. [See Fig. 3].
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Figure 3. This �gure shows the unboundedness solutions for Eq.(1.1) since m = 3,
l = 2, α = 1.2, β = 0.54, γ = 0.65, x−3 = 5, x−2 = 3, x−1 = 2, x0 = 9.

4.4. Example. Consider Eq. (3.1), when x−4 = 0.5, x−3 = 0.3, x−2 = 0.2, x−1 =
0.9, x0 = 0.7. [See Fig. 4].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

x(
n)
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Figure 4. This �gures shows the solutions of xn+1 =
xnxn−4

xn−4 + xn−3
, when x−4 = .5,

x−3 = 0.3, x−2 = 0.2, x−1 = 0.9, x0 = 0.7.

4.5. Example. See Fig. 5 when we consider the di�erence equation (3.2) with x−4 =
5, x−3 = 3, x−2 = 0.2, x−1 = 9, x0 = 7.
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Figure 5. This �gure shows the solution of Eq.(3.2) with x−4 = 5, x−3 = 3, x−2 = 0.2,
x−1 = 9, x0 = 7.
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