Hacettepe Journal of Mathematics and Statistics
Volume 47 (5) (2018), 11721183

Spectral problems for operators with deviating

arguments
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Abstract

The topic of this paper are direct and inverse spectral boundary prob-
lems of the Sturm-Liouville type with two deviating arguments, one
delay and one advance. This type of problem was firstly introduced by
M. Pikula, E. éatrnja7 L. Kal¢o and A. Sarié¢ at the 9th International
Scientific Conference “Science and Higher Education in Function of Sus-
tainable Development — SED 2016” and further developed M. Pikula,
E. Catrnja, I. Kalco at the International Conference “Contemporary
Problems of Mathematical Physics and Computational Mathematics”
dedicated to the 110th anniversary of A. N. Tikhonov. In this paper
we take both delays to have the same value and in its first part solve
the direct boundary problem, construct the corresponding character-
istic function and find the asymptotic behavior of eigenvalues. In the
second part of the paper, we give the necessary and sufficient condi-
tions for the existence of the solution of the inverse problem and give
its solution by the method of Fourier coefficients.
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1. Introduction

Direct and inverse spectral boundary problems of the Sturm-Liouville type are a field
of differential equations to which many mathematicians gave their contribution. We
consider [15] and [11] as good introductory books to this topic. A large contribution
to this area gave M. Pikula with his associates in [8], [9], [13], where they consider
Sturm-Liouville type differential equations with one and more delays of different type.
The problem with a constant delay is also covered by [5]. We also must not forget a
contribution to this area given by papers [3], [2], [1] and [12].

In this paper we consider the following boundary value problem on the interval [0, 7]

(1) —¢"(@) +a@y(@—7)+ g(a)y(z+7) = My(x), A =27,
(1.2)  4'(0) - hy(0) =0,

(1.3) o/ (m) + Hy(m) =0,

(14) ylx—71)=1, z€]0,1],

1.5) ylz+m)=1,z€(r—T1,m.

where ¢1, g2 € L2[0, 7).

For 7 we will assume that
™
2

In the following the boundary value problem (1.1, 1.2, 1.3, 1.4, 1.5) will be denoted
with D%y = 2%y.

The first part of this paper is devoted to the obtaining of solution of the problem
(1.1, 1.2, 1.4, 1.5), construction of the characteristic function and determination of the
asymptotic behavior of eigenvalues. In the paper the operator D* = D*(7, q1, g2, h, H) is
the Sturm-Liouville type operator with deviating arguments. We will also assume that
¢2(z) =0,z € 0,7 — 7).

(1.6) <r<m7

2. Direct problem

2.1. Construction of solutions. Problem (1.1, 1.2) is equivalent to the integral Volterra
equation
h . 1 .
y(z,2z) =coszax + —sinzax + — [ q1(t1)sinz(z — t1)y(t1 — 7, 2) dt1+
z z

(2.1) 0

1 [ ,
+ ;/QQ(tl)San(l’—tl)y(tl + 7, 2)dts.
0

Let us find the solution of (2.1) by the steps method. Divide the interval [0, 7] as
shown

| 1 I L Il |
T L) L]
—T 0 T™—T T ™ T+ T

On interval [0, — 7] is ¢2(t1) = 0, so (2.1) becomes

y(z,z) = coszx+ﬁsinzm+l/ql(tl)sinz(xftl)y(tlfﬂ z)dtr, z € [0,7—T].
z z
0
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Using (1.4) we get the solution

1
(2.2)  y(z,2) =coszz + gsinzx + > /ql(tl) sinz(x — t1) dt1, z € [0, 7 — 7].
0

For x € (m — 7, 7] using (1.5) we have

h 1 1
(2.3) y(z,z) = cos zz:—l—; sinzx—|—;/q1(t1)sin z(:r—tl)dtl—}—; / q2(t1) sin z(z—t1) dty.

0 T—T

For z € (7,7 we have

T

y(z, 2) = cos zx + h sin zx + 1 /q1 (t1)sinz(z — t1) dt1+
z z

(2.4) , ’ .
1 . 1 .
—|—; / qg(t1)smz(a:—t1)dt1—|—;/q1(t1)smz(w—t1)y(t1 —7,2)dt;.

From (2.3) follows

y(tr — 7,2) =cosz(t1 — 7) + gsin z(t1 — 1)+
(2.5) 1 BT
=+ / ql(tz) sin Z(tl - T — tg) dt2
0

z
Inserting (2.5) in (2.4) we obtain

T

y(z, z) = cos zz + %sinzx + 1 /ql(tl)sin z(x —t1) dt1+
z

0
1/ _ 1] _
+ 2 / g2(t1) sinz(z — t1) dt1 + ;/ql(tl)smz(m —t1)cosz(t1 — 7)dt1+

h . .
+ 2—2/q1(t1)51nz(w —t1)sinz(t1 — 1) dti+

t1—7

1/ . .
+Z—2/q1(t1)smz(:v7t1) / q1(t2)sinz(t1 — 7 — t2) dta dt1.
T 0



Let us introduce the following functions

(1)

ag ' (Z,x,2) = [ qi(t1)sinz(z — t1) dtq,

aﬁ”(i, z,z) = [ qi(t1) cosz(z — t1) dt1,

/
j

a§2)(x7z): /q2(t1)SiHZ(l’—t1)dt1,

T—T

al?(z,2) = /qg(h)cosz(a:—tl)dtl,

T—T

x

ase(z, z) = /q1 (t1)sin z(x — t1) cos z(t1 — 7) dtq,

T
x

aq2(x,z) = /q1 (t1) cos z(x — t1) cos z(t1 — 7) dtq,

T
x

ag2(x,z) = /q1 (t1) sinz(xz — t1) sin z(¢t1 — 7) dtq,

T
x

acs(z,2) = /ql(tl)cosz(m —t1)sinz(t1 — 7) dtq,

x t1—7

aié‘l)(x, z) = /q1 (t1)sinz(x — t1) / q1(t2)sinz(t1 — 7 — t2) dto diq,

T

x t1—7

allV(z,z) = /ql(tl)cosz(x—tl) / q1(t2)sinz(t1 — 7 — t2) dt2 diq,

T

Now (2.6) we can write in the form

y(z, z) = cos zz + h sin zzx + 1agD(T,aU, z) + 10,22)(1‘, z) + 1asc(as, 2)+
(1,1)

1
+ —<ag(x,2) + 50 (z,2).

22

Herewith we have proved the following.
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2.1. Theorem. If ¢g2(z) = 0 for € [0,7 — 7|, then the solution of the problem (1.1,

1.2, 1.4, 1.5) is given by

e (2.2) forxz € (0,7 — 7],
e (2.3) forz e (m —1,7],
e (2.6) for x € (1, 7.



1176

2.2. Asymptotic behavior of eigenvalues. From (2.7) it follows
dyfi:v, 2) = —zsinzz + heos zz + al (1,2, 2) + a2 (z, 2) + a2 (z, 2)+
(2.8) z
+ ﬁacs(x, z) + 1a<1 Bz, 2).
z

Inserting z = 7 in (2.7) and (2.8) and using (1.3) we obtain the characteristic function
F(z) in the form

(2) (—z + th) sinwz + (h+ H)cosmz + aV (1, 2) + a? (2)+

H
+agz(z)+ ?agm(r

1 hH H
+-al V(D) + Tras(a) + 5l ).

H H h
12) + —al (2) + ane(2) + Caes(2)+

Herewith we have proved the following

2.2. Theorem. The characteristic function of problem D%y = 2%y is a whole function
of the exponential type and unity growth by z

Let us first write the function F'(z) in more convenient form. Introduce the following
functions

ﬁWﬂ=/Mm&1 /m@w,
. z

2
aM(r, / (20) cos z(m — 260) d6 = 2a' (z),
0
P (r / (20) sin z(m — 260) d6 = 2a" (2),
0
(1)
ag2(z) = % 2(T) cosz(m — 1)+ %dc(z),
T—3
alM(z) = G1(0) cos z(m — 26) d6,
3
(1)
asc(z) — jl (T) :

5 sinz(m —7) + —as(z)
aM(z) = G1(0) sin z(m — 26) d0

71 (r) 1
aes(2) = 3 sinz(m —71) — ias(z),
%m>f§%) 1




1177

a® =2 [ ¢2(20)sin z(7 — 260) d6 = 26 (2),

\w\i

T—T

o (z) =2a{V(2), () = ¢2(20).
Let us define the function Q1(6) as follows

0 ,96[0,§)U(ﬂ'7%,7r],
T 20
q1(20—'r) fql(tl)dh — f Q1(2t1 — 20 —T)ql(t1)dt1 ,0 € [%, %] s
Q1(0) = 20 0+%
- q1(2t1—29—7')q1(t1)dt1 ,96 (%,ﬂ'—g].
0+73

‘We now have

.
T3

ag’l)(z) = / Q1(0) sin z(m — 260) d = ag1,1)(z)’
7
T3
ag’l)(z) = — / Q1(0) cosz(m — 20) do = —altV ().
3

The function (2.9) takes the form

F(z) = (_z + g) sinwz + (h+ H)cosmz + 2alM (2) + 2a8? (2)+

(1)

1 2H 2H
L 377 (7) cos 2(m — ) + ~aW (2) + 7(121)(@ + 7a22)(z)+
(2.10) 2 2 - &

H H— hH
+ %JSU(T) sinz(m —7) + h&S(z) - 2521 cos z(m — )+
hH (1) 1 H ()
op2de (2) +—as 7 (z) = a7 (2).

Because F(—z) = F(z), Vz € C, it follows F(z,) =0= F(—z,) =0.

It is known ([4] and [6]) that all complex eigenvalue are located in the complex plane
inside of a certain circle with the center in point z = n. That means that all sufficiently
large values by modulus are near real axes. This is in complete analogy with the classical
Sturm-Liouville problems.

In [7], [10] and [14] we observed the asymptotic behavior of eigenvalues of differential
operators with two constant delays. In the same way it can be proved that the following
theorem holds.

2.3. Theorem. If qi,q2 € L2[0,7], q2(x) = 0, = € [0,m — 7], then eigenvalues of the
operator D? have following asymptotic behavior

2 2, 2
An =1’ + (po +prcosnT + —aly) + Zaon + fafn)) +
™ T T
(2.11) X )
+ - (r1sinnT + rosin2n7) + (E) , M — 00,

J1(1)
2

™ =T
4772

5i(r),
m_ [? o [TF, @ _ [?
as,, = q1(20) cos 2n0 df, azn = 4(0) cos2nb db, a;, = q2(20) cos 2n0 db.
O T

o -
2 T3

2
wherepO:;(h—i—H),pl: ,le—%jl(T)(H-f—h), ro =
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3. Inverse problem
3.1. Definition. Set IT = {7, h, H, q1,q2} is called set of parameters of the operator D?.

3.2. Definition. If \,;, n € Np, j = 1,2 are eigenvalues of operator D? obtained for
Hj, j = 1,2, then the set A = {\,;,n € No,j = 1,2} is called spectral characteristic of
the problem ((1.1, 1.2, 1.3, 1.4, 1.5) ).

3.3. Definition. Solve the inverse problem for D? means to construct set II from known
A and known function gs.

3.1. Determining numbers 7, h, H1, H2, J1(7). We start from assumption that

2 2, 2
An =n?+ (po +preosnT + —al)) + Zaon + faéi)) +
™ ™ ™

(3.1) 1 1
+ = (risinnT + rosin2n7) + (E) , M — 00,
n
where al | aan, aéi) converges to zero as -, 0 < a < land > (a9)? < 00, 3 (a2n)? <
0. n=1 n=1
From Hadamard’s theorem we have

S 22 o 22
3.2 Fi(z)=mxo; || =2 (1- 1— .
82 =m0 (-5 ) (-5

In the following we assume the identities

Fi(z) = (—z + hljj) sinz + (h+ H;)cosmz + 2al (z) + 2al? (2)+

(1
1 2H; 2H;
+ UG cosz(m — 1) + zal (2) + TLaV (2) + TLalP (2)+
(3.3) 2 2 , ’
+ %ng)(r) sinz(m — 7) + —2 hds (2)—
H.9D H; 1 H;
- 2;11 cos z(m — T) + %&21)(2) +- 0V (z) = Fal (),

From (3.3) we have
(34) Hz— Hi = lim [F>(2m) — F1(2m)].

n—o0
If the sequence \,; — n? is not null sequence, then J;(7) # 0 and we consider
oy = Dt = (422 = A+ (0= 2)°
Y Anrrgk — (012 = Xasrgn + (= 1)

It is easily shown that

Unj =2cosm +o(l), n = o0, j=1,2.
Herewith we have determined 7 € [g, 7r) with
1
(3.5) T =arccos —pj, pj = lHm fin;.
2 n—oo
Let 7 € [Z,7].
Let ng) and n§€2> are subsequences for which holds
cosn,(f)T #0, i=1,2

and
’cos nl(f)T — cos nil)r >46>0,VEk.
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From (3.1) it follows

2 2
(Mo, = (1)) osn = (a0, = (1)) cosnf?
nk 5
(36) Poj = lim
k—o0

cos n}e )7 — cos ni )'r

and

. 2
A @) (";(c”) — Poj
3.7 1V =T fim : L i=1,2,7=1,2.
2 k—oo ('”>7—

From (3.3) we have

1 1 1\?
Fj(2k+=)(2k+ = 2%+ ) =
J(k+2)(k+2>+<k+2)
1 1 1\ 1 1
=(26+=) |22 (2k+ =) +2a? (2k+ =) +=al” (26 + 2 )]
<k+2>{ac(k+2>+ac k+2 —i—2aC k+2

Finally,

) 2k + 1 1 J1(7) 1
(3.8) h = kl;n;o{m [Fz (2k+ 5) + Fy (2k+ 5)} - cos (2k+ 5) T}.

So we have proved

3.4. Theorem.

Spectral characteristics A uniquely determines numbers 7, h, Hy, Ho
and J1(1).

3.2. Determining potential ¢;. Let

= %[H’QP& (2) — HiF2(2)] + zsinmz — hcos mz,
y —

B(z) = 7[F2( ) — Fi(2)] — hsinmz — zcosmz.
Hy —
From (3.3) we have

1)

Az) = 2a¢" (2) + 23 (= )+'¥§*DSZ“T_7?*'%&9sz+
(3.9¢)
L) " a0 () + Lo
5, sma(m—7) = 56 (2) + Jas (),
(1)
B(z) = 2a{"(z) 4+ 2a{? (2) + 317 sin z(m — 1) 3 A(l ()=
(3.95) B hjgl)(T) cos 2(m —7) + i&(l)(z) _ la(u)(z)
2z 22" 2 |

~(1) a(l’l) d(l) a(Ll)
In the following we will do integration by parts on ——, —= = =
z

’ 3
z z z
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Let
T—% 0
a cl2) = q1 1 1 CObZ ™ —
(IWaM).(2) / / (61)do 20) d,
z
T3
a s(#Z) = da ( 1 1 | sinz(m —
(IWaMY,(2) / (01) do ( — 20) o,
B
T3
a7 )elz) = 1(01 1cosz7r—
(WD) (2) / /Q (61)do 26) d,
Bl
T—3
(a1 (2) = 1(01) dO: | sin z(m — 20) d6.
Bl
Now we can write
(1) (1)
hy (7) sinz(m — 1) — i&gl)( )= h3y (r) () sinz(m — 1) — h(J(l)d<1))c(z),
2z 2z
h3i (7) h oy g a®
TCOSZ(W—T)-%%GC (2) = —=h(T"a"")s(2),
3.10 agl‘l)(z) " sinz(m — 1) D (11
(3.10) ——| [ @@as | D 4 (50000 (o),
z z c
3
@ 1)(z) T cosz(m — 1)
c — _ _ (1) ,(1,1)
- / 01(0)do . 2(3 a )S(z).
3

1
From (3.9s) we have lim —a{""(z) = 0, so from [15] we have /

z—00 2

7
Using (3.10) we can write (3.9¢) and (3.9s) in the following form

20 (2) + 282 (2) + 50 () — bV (=) + 20V ). (2) =

(3.11¢) 1 ()

hatt ()

=A(z) — cosz(m—1T) — sin z(m — 1)
201 (2) + 282 (2) + 22 () — hIDa),(2) +20Va V), () =
(3.11s)
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Identities (3.11c) and (3.11s) are equivalent to the system of equations obtained by
inserting z = m, m € Ng. We have

7
2- %/61(9) cos2m0d9+2-% 0) cos 2m@ d6+
0
% 0
1 2 T, N
+5-—/7rf§q1(0)c052m0d97h / /ql(ﬂl)dﬁl cos 2m0 do+
T
7 7 7

3
|

T
2

6
10.2 /Ql(el)de1 c0s 2m0 df = Ay,
™
i\
where
. gD (. 1), \sinm7| 2
(312¢) s = [(—1) Am) ~ 2 cosmr gy 21T |2
and
2 ; 2
2. - /cjl (0)sin2mb df + 2 - p G2 (0) sin 2m# do+
0
T—% 0
1 2 T, - ;
+5.,/ — Z01(6)sin2m0d9 — h / / G1(01) 4, | sin2mo do-+
T
2 3 2
T—% 0
2 / (61) d6; | sin2m6 df = Bam,
™
where
: 21" (r) 2
(3.125) Bom = |(=1)""'B(m) — = 5 sinmr |-~

Let us extend the function ¢i(0) from the interval [0, Z] on the interval (Z,7| and
the function ¢2(#) from the interval [”’T, 7] on the interval [0, 757) U (Z, 7| with zeros.

0
Also, let us extend the functions [ §(6:) d6: and f Q(61) b, from the interval [Z,m — T ]
z

and [0, %) U (7 — Z, 7| with zeros.

From (3.1) and (3.2) easily follows Az, — 01 Bam — 0 (m — o) and . A3, < oo,

m=1
S p2
> Bj, < oo.
m=1
Hence, sequences As,, and Bs,, are the Fourier coefficients of some function f €

Lo [07 7T].
Therefore from (3.12c) and (3.12s) we obtain the equation

(3.13) %Q1(9) + 2(11(9) - 2q2 / 01 d6, — 2/Q1 01 d6, + f( )

Sl
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Thus we have proved the following result.

3.5. Theorem. In order to functions q1 and g2 be functions of operator D? it is necessary
and sufficient that they satisfy the equation (3.13).

1), 0
fl(e){f(mz@(e), 0

Now, for 6 € [0, 2] from (3.13) follows

(314) @1(6) = 5510).

In the following, we consider the three cases

Let

(1) T = 3,16 ﬂ—T—%:%,W—g:%’T,
(2) [% 2") 7 <m-—T,
(3) (2 m),ie. m—T<73
For 0 € ( 7] equation (3. 13) for 7 € [3, ) is already solved. Hence, let us solve
the equation for 0 c (2, 2] From (2.2) we have
T 201
Ql(el) = Q1(291 - T) / ql(tl) dtl - / q1 (2t1 - 291 - T)Q1 (t1) dtl.
26, 01+%

Because ¢1(201 — 7) = ¢1 (91 — g), qi1(2t1 — 201 — ) = ¢a (t1 —6— %) and qi(t1) =

¢ (t1 — g) equation (3.13) takes the form

) -z
@:(0) = 211(0) +/ 2hq1(0) — 4q1 (91 - %) / G1(t1) dt1+
7 20,—%
(3.15) s
+4 / qi(t — Ol)ql(tl)dtl] de.
01

The function ¢; is defined on the interval [0, %] and since 01 — 3 € [07 53— %] - [0, %}

and t; — 01 € [07 5= %] C [0, g] the equation (3.15) is linear Volterra equation by
function . Suppose that ¢ is solution of (3.15).

Thus we have proved the result.

3.6. Theorem. The equation (3.14) has one and only one solution §(z), = € [0, 7] and

we have the relation
_Ja (%), z €[0,7]
a(x) =4, .
a1 (1’— 5), z € (1,7 .
3.7. Corollary. In order to set Il = {7, h, H1, H2,q1} by given function g2 be the set of
parameters of the operator D* with the spectral characteristic A = {Anj,n € No,j =1,2}

it is necessary and sufficient to q1 be the solution of the equation (3.13) and T determined
by (3.5), J1(7) by (3.7), h by (3.8) and h+ H; by (3.6).
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