
Hacettepe Journal of Mathematics and Statistics
Volume 47 (5) (2018), 1231 � 1239

The growth of generalized Hadamard product of
entire axially monogenic functions
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Abstract

In this article, we estimated upper bounds for the growth order and
growth type of generalized Hadamard product entire axially monogenic
functions. Also, some results concerning the linear substitution are
discussed. The obtained results are the natural generalizations of those
given in complex setting of one variable to higher dimensions of more
than four.
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1. Introduction

The study of asymptotic growth behavior of integral functions is one of the main
topic in complex analysis. Such study for entire functions of one complex variable was
generalized in three directions. The �rst direction is the study of the asymptotic growth
behavior of the entire functions of several complex variables (see e.g. [12, 13, 17, 20]). The
second one is devoted to the integral functions of several complex matrices in di�erent
domains, for which we may mention for examples [15]. The third direction is involved in
Cli�ord analysis to study the asymptotic growth behavior of entire monogenic functions
(for examples, [3, 5, 7, 8, 9, 10, 21]).

In [6, 11], R. Delanghe, F. Sommen and F. Brackx introduced the monogenic func-
tions with values in a real Cli�ord algebra de�ned on a nonempty subset of Rn and
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obtained many important monogenic function theoretic results, such as the Cauchy inte-
gral formula, the Taylor expansion, and the Laurent expansion and so on, which are the
extensions of the well-known classical theorems.

Later on in [2] the notion of growth order and type was introduced for a subclass
of Cli�ord monogenic functions which are generated by a special subclass of monogenic
polynomials, denoted by special monogenic functions (or axially monogenic functions).
These are functions generated by a special subfamily of monogenic polynomials. In the
follow-up papers [3, 4] it was analyzed under which growth conditions the related basic set
of special polynomials form a Cannon set which gave some �rst results on some questions
around the growth of this particular subclass. Also, growth order of Hadamard product
of bases for axially monogenic polynomials and its convergence properties is studied in
[1]. Recently, Abul-Ez and De Almeida are investigated the growth of entire axially
monogenic functions with the help of lower order and type in [5].

In this paper the mode of increase of the generalized Hadamard product of two axially
monogenic functions is determined in terms of the growth order and the growth type
of these axially monogenic functions. The results obtained involve the coe�cients in
the Taylor expansion of the generalized Hadamard product of entire axially monogenic
function, obtaining their order and type. Also, linear substitution of the generalized
Hadamard product of entire axially monogenic function is established.

1.1. The Cli�ord Toolbox. This subsection contains some de�nitions and basic prop-
erties of Cli�ord algebra, which we use throughout of this paper. Let {e1, e2, . . . , em} be
an orthonormal base of the Euclidean vector space Rm with a product according to the
multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . ,m ,

where δkl denotes the Kronecker symbol. This non-commutative product generates the
2m-dimensional Cli�ord algebra Cl0,m over R, and the set {eA : A ⊆ {1, . . . ,m}} with
eA = eh1eh2 . . . ehr , 1 ≤ h1 ≤ . . . ≤ hm, eφ = e0 = 1, forms a basis of Cl0,m. In
this instance Cl0,0 is the �eld of real numbers, Cl0,1 the �eld of complex numbers and
Cl0,2 = H the quaternion skew �eld, respectively. Canonically the real vector space
Rm+1 will be embedded in Cl0,m by identifying (x0, x1, . . . , xm) ∈ Rm+1 with the element
x = x0 +x of the algebra, where x = e1x1 + . . .+emxm. The conjugate of x is x = x0−x,
and the norm |x| of x is de�ned by |x|2 = xx = xx. As Cl0,m is isomorphic to R2m we

may provide it with the R2m -norm |a|, and one easily sees that for any a, b ∈ Cl0,m,

|a.b| ≤ 2
m
2 |a| . |b|, where a =

∑
A⊆M aAeA and M stands for {1, 2, . . . ,m}.

In the sequel, we consider Cl0,m-valued functions de�ned in some open subset Ω ⊂
Rm+1, i.e. functions of the form f(x) =

∑
A fA(x)eA, where fA(x) are real-valued

functions. Suggested by the case m = 1, call an Cl0,m-valued function f in Rm+1

left-monogenic, which is annihilated by the generalized Cauchy-Riemann operator D :=∑m
j=0 ej

(
∂
∂xj

)
, i.e. Df = 0. Since the operator D can be applied either from the left-

and from the right-hand side, it is usual to refer to a left- and right monogenic function,
respectively. For simplicity, from now on we only deal with left monogenic functions that
for simplicity we call axially monogenic. The case of right monogenic functions may be
treated analogously.

2. Axially monogenic functions

In [2, 3] Abul-Ez and Constales were the �rst who introduced the study of the as-
ymptotic growth behavior of axially monogenic functions, which generalizes in a natural
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way the analogue study for holomorphic functions of one complex variable to (m+1)-
dimensional Euclidean space. Their de�nition of the axially monogenic functions pro-
ceeds as follows:

The right Cl0,m-module Cl0,m [x], de�ned by

Am = spanCl0,m{zn(x) : n ∈ N}

is called the space of axially monogenic polynomials, if the polynomial zn(x) is given by
(see [1]).

zn(x) =
∑
i+j=n

(
m−1

2

)
i

(
m+1

2

)
j

i!j!
xixj ,

where for b ∈ R, (b)l = b(b + 1)...(b + l − 1) and x is the conjugate of x, and Rm+1 is
identi�ed with a subset of Cl0,m. If Pn(x) is a homogeneous axially monogenic polynomial
of degree n in x then (see [2]) Pn(x) = zn(x)α, where α is some constant in Cl0,m, and

(2.1) ‖zn(x)‖r = sup
|x|=r

|zn(x)| =

(
m+ n− 1

n

)
rn =

(m)n
n!

rn,

where
(m)n
n!

= (m+n−1)!
n!(m−1)!

.

2.1. De�nition. (Axially monogenic function). Let Ω be a connected open subset
of Rm+1 containing 0, then a monogenic function in Ω is said to be axially monogenic in
Ω i� its Taylor series near zero (which is known to exist) has the form

(2.2) f(x) =

∞∑
n=0

zn(x)cn, cn ∈ Cl0,m.

A function f is said to be axially monogenic function (or special monogenic function)

on the closed ball B(r) if it is axially monogenic on some connected open neighborhood

Ωf of B(r).

The fundamental references for axially monogenic functions see for instance [16, 19].

2.2. De�nition. The radius of regularity Rf of axially monogenic function is de�ned
by

Rf =
1

lim supn→∞ ‖c‖
1
n

.

Then the axially monogenic function (2.2) is entire if Rf =∞.

2.3. Proposition. (Cauchy's inequality)
Let f(x) =

∑∞
0 zn(x)cn be an axially monogenic function de�ned on a neighborhood

of the closed ball B(0, r). Then (see [2, 3] ).

‖cn‖ ≤

√
n!

(m)n

(
M(r, f)

rn

)
,

where M(r, f) = sup‖x‖=r ‖f(x)‖ is the maximum modulus of f .

In [2, 3] the following main result was given:
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2.4. Theorem. Suppose that f be an entire axially monogenic function. Then the order
ρ of f is given by

(2.3) ρ = lim sup
n→∞

(n logn)

log(‖cn‖−1)

and if 0 < ρ <∞, then its type τ is given by

(2.4) τ =
1

eρ
lim sup
n→∞

n ‖cn‖ρ/n.

3. Statement of results

Relying on [3], suppose that

Gs(x) =
∞∑
n=0

zn(x)an,s, s = 1, 2

are two entire axially monogenic functions of the growth orders ρs and the growth types
τs, then

(3.1) ρs = lim sup
n→∞

(n logn)

log(‖an,s‖−1)
= lim sup

r→∞

log logMs(r)

log r

If 0 < ρ <∞, then

(3.2) τs =
1

eρs
lim sup
n→∞

n ‖an,s‖ρs/n = lim sup
r→∞

logMs(r)

rρs
,

where Ms(r) = max‖x‖=r ‖Gs(x)‖, s = 1, 2.
In analogy with the complex setting [14, 18], we de�ne the generalized Hadamard

product of two axially monogenic functions denoted H(x) as follows

(3.3) H(x) = (G14G2)(x;α, β) =

∞∑
n=0

zn(x)cn,

where cn = aαn,1a
β
n,2 and α, β are any real numbers and aαn,1, a

β
n,2 are the αth and βth

powers of aαn,1 and aβn,2 respectively.

In the special case, if we take α = β = 1 we get the Hadamard product (G14G2)(x; 1, 1) =
(G1 ? G2)(x).

Next, we present an estimation of the growth order ρ and the growth type τ of the
generalized Hadamard product of entire axially monogenic functions by the following
theorems:

3.1. Theorem. Suppose that Gs(x); s = 1, 2 are two entire axially monogenic functions
of positive and �nite growth orders ρs, s = 1, 2 Then the growth order ρ (0 < ρ <
∞) of the generalized Hadamard product function H(x) is characterized by the following
inequality

ρ ≤ ρ1ρ2
α ρ2 + βρ1

.(3.4)

3.2. Theorem. Let H(x) be the generalized Hadamard product of entire axially mono-
genic functions whose its constituents are the two axially monogenic functions G1(x) and
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G2(x), of respective growth orders ρ1 and ρ2. If ρ is the growth order of H(x) such that
ρ = ρ1ρ2

βρ1+αρ2
then the growth type τ of H(x) is estimated by the following inequality

τ ≤ 1

ρ
(ρ1τ1)α(ρ/ρ1) (ρ2τ2)β(ρ/ρ2),(3.5)

where τ1 and τ2 are the growth types of G1(x) and G2(x), respectively.

Proof of Theorem 3.1. Since Gs(x), s = 1, 2 are two entire axially monogenic functions
then relying to [2, 3] we have

lim sup
n→∞

‖an,s‖
1
n = 0, s = 1, 2.

Also, since cn ∈ Cl0,m which gives |cn| ≤ 2
n
2 |an,1||an,2|, thus

lim sup
n→∞

‖cn‖
1
n ≤ 2

1
2 lim sup

n→∞
‖an,1‖

1
n lim sup

n→∞
‖an,2‖

1
n .

Hence H(x) is an entire axially monogenic function.
Owing to (3.1) we have for the two orders ρ1 and ρ2 of the respective entire axially

monogenic functions G1(x) and G2(x) that

n logn

− log(‖an,s‖)
= ρs, s = 1, 2.

Therefore, for an arbitrary ε > 0 and constants N1 and N2, we get

− log(‖an,1‖) > (
1

ρ1
− 1

ε
)n logn, for n > N1

and

− log(‖an,2‖) > (
1

ρ2
− 1

ε
)n logn, for n > N2.

Let n > N > max (N1, N2), we obtain

− log(‖an,1‖‖an,2‖) > (
1

ρ1
+

1

ρ2
− ε )n logn for n > N2.

or,

lim inf
n→∞

− log(‖an,1‖‖an,2‖)
n logn

>
1

ρ1
+

1

ρ2
.

Thus, we can be reduced to

lim inf
n→∞

− log(‖aαn,1‖‖aβn,2‖)
n logn

>
α

ρ1
+

β

ρ2
.

Since
||cn|| ≤ 2

n
2 ||aαn,1||||aβn,2||,

then

− log ||cn|| ≥ −n log
√

2− log( ||aαn,1||||aβn,2||).
From which we have

lim sup
n→∞

− log ||cn||
n logn

≥ lim inf
n→∞

−n log
√

2− log( ||aαn,1||||aβn,2||)
n logn

≥ α

ρ1
+

β

ρ2
.

This immediately given

ρ ≤ ρ1ρ2
βρ1 + αρ2

.
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Thus the proof of the Theorem 3.1 is complete. �

Proof of Theorem 3.2. Since ρs; s = 1, 2 are positive and �nite, then for �nite numbers
γs and �nite positive integers Ns and using (3.2), we have

‖an,s‖ < (
eρsγs
n

)n/ρs , n > Ns, s = 1, 2.

Letτ be the growth type of the generalized Hadamard product of entire axially mono-
genic functions H(x), then it follows from the de�nition of the growth type that

τ =
1

eρ
lim sup
n→∞

n‖cn‖ρ/n

≤ 1

eρ
lim sup
n→∞

n

(
(
eρ1γ1
n

)αn/ρ1 (
eρ2γ2
n

)βn/ρ2

)ρ/n
=

1

ρ

[
(ρ1γ1)α/ρ1 (ρ2γ2)β/ρ2

]ρ
.

Since γs, s = 1, 2 can be chosen as near to τs as possible we infer that

τ ≤ 1

ρ

[
(ρ1τ1)α/ρ1 (ρ2τ2)β/ρ2

]ρ
,

yields the assertion (3.5) of Theorem 3.2. �

The above two theorems allow us to obtain directly the precise growth order and
growth type of each the generalized Hadamard product of entire axially monogenic func-
tions when knowing its Taylor coe�cients explicitly without determining the exact value
of M(r) which is usually di�cult to �ned and even impossible in most of the cases.

The following example shows that the upper bounds of (3.4) and (3.5) are attainable.

3.3. Example. Suppose that G(x) =
∑+∞
n z2n(x) 1

n!
and G(x) =

∑+∞
n z2n(x) 3n

n!
are

two entire axially monogenic functions of common order 2 and of respective type 1, 3.
Consider the generalized Hadamard product of entire axially monogenic function

H(x) =

+∞∑
n

z2n(x)(
1

n!
)5 (

3n

n!
)4,

then the Taylor coe�cient of H(x) is c2n = ( 1
n!

)9 34n.
Evaluating the growth order and growth type of H(x), we get

ρ = lim sup
n→∞

2n log 2n

log(‖cn‖−1)

= lim sup
n→∞

2n log 2n

9
[
(1/2) log(2nπ) + n log(n)− n log e− ((4n log 3)/9)

]
= lim supn→∞

2n log 2n

9n log(n)

[
(1/2 log(n)) log(2nπ)+1−log e/ log(n)−((4 log 3)/(9 log(n)))

] = 2
9

and

τ =
1

eρ
lim sup
n→∞

(
2n‖cn‖ρ/(2n)

)

=
9

2e
lim sup
n→∞

2n

(
(

1

n!
)9 34n

)1/(9n)

= 9
9
√

81.
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Applying Theorem 3.1 and Theorem 3.2 lead immediately to

ρ =
ρ1ρ2

αρ2 + βρ1
=

2× 2

5× 2 + 4× 2
=

2

9

and

τ =
1

ρ
(ρ1τ1)αρ/ρ1 (ρ2τ2)βρ/ρ2 =

9

2
× 25×(2/(18)) × 64×(2/18) = 9

9
√

81.

Setting α = β = 1 in (3.4) and (3.5) we get the following corollary concerning the
Hadamard product of entire axially monogenic function.

3.4. Corollary. The Hadamard product of entire axially monogenic function H(x) =
(G14G2)(x; 1, 1) is of growth order ρ does not exceed ρ1ρ2

ρ2+ρ1
and in the case of equality it

is of growth type τ does not exceed 1
ρ
(ρ1τ1)ρ/ρ1 (ρ2τ2)ρ/ρ2 .

Moreover, if α+ β = 1, we obtain the following result

3.5. Corollary. The generalized Hadamard product of entire axially monogenic function
H(x) = (G14G2)(x;α, 1− α) is of growth order

ρ ≤ ρ1ρ2
α(ρ2 − ρ1) + ρ1

; 0 ≤ α ≤ 1,

and of growth type

τ ≤ 1

ρ
(ρ1τ1)αρ/ρ1 (ρ2τ2)(1−α)ρ/ρ2 .

Under condition that

ρ =
ρ1ρ2

α(ρ2 − ρ1) + ρ1
; 0 ≤ α ≤ 1.

4. Linear substitution

Let Gs(x) =
∑∞
n=0 zn(x)an,s, s = 1, 2 are two entire axially monogenic functions of

�nite positive growth orders ρs and growth types τs, then the axially monogenic functions
G∗s(x) = Gs(x+ b), where b is any constant, of the same orders ρ∗s = ρs and τ

∗
s = τs (see

[3]). So that

(4.1) ρ∗s = lim sup
n→∞

(n logn)

log(‖an,s‖−1)

and

(4.2) τ∗s =
1

eρs
lim sup
n→∞

n ‖an,s‖ρs/n.

For any positive arbitrary small number εs > ρs, s = 1, 2 there exist positive integers
Ns, s = 1, 2 such that

‖an,1‖α < n−αn/ε1 for n > N1 and ‖an,2‖β < n−βn/ε2 for n > N2.

If the generalized Hadamard product of entire axially monogenic function H(x) =
(G14G2)(x;α, β) =

∑∞
n=0 zn(x) cn is of growth order ρ and growth type τ and the gen-

eralized Hadamard product of entire axially monogenic functionH∗(x+b) = (G14G2)(x+
b;α, β) =

∑∞
n=0 zn(x + b) cn is of growth order ρ∗ and growth type τ∗, then for

N > max (N1, N2) we have

‖cn‖ < n−n(α/ε1+β/ε2) for n > N,
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that is

log(‖cn‖)−1 > n
(
α/ε1 + β/ε2

)
log(n)

and

ρ∗ = lim sup
n→∞

n log(n)

log(‖cn‖)−1
≤

(
α/ε1 + β/ε2

)−1

.

Since εs can be shown vert near to ρs then

ρ∗ ≤

(
α/ρ1 + β/ρ2

)−1

,

it shows that growth orders of the two generalized Hadamard product of entire axially
monogenic functions H(x) and H∗(x + b) have the same upper bound, in the case that
ρ = ρ1ρ2

αρ2+βρ1
, gives that ρ∗ ≤ ρ. On the other hand since H(x) = H∗(x− b), then ρ ≤ ρ∗

therefore ρ = ρ∗.
Similarly for the growth type τ∗ of the generalized Hadamard product of entire axially

monogenic function H∗(x+ b), it follows that

‖an,1‖α <
(eρ1ε1

n

)nα/ρ1
and

‖an,2‖β <
(eρ2ε2

n

)nβ/ρ2
.

Then

‖cn‖1/n < (
e

n
)β/ρ1+β/ρ2 (ρ1ε1)α/ρ1 (ρ2ε2)β/ρ2

and

τ∗ =
1

eρ∗
lim sup
n→∞

(
n‖cn‖ρ

∗/n
)

≤ 1

eρ
lim sup
n→∞

n(
e

n
) (ρ1ε1)αρ/ρ1 (ρ2ε2)βρ/ρ2 ,

since εs can be chosen very close to τs, then

τ∗ ≤ 1

ρ
(ρ1τ1)αρ/ρ1 (ρ2τ2)βρ/ρ2 .

In the case that

τ =
1

ρ
(ρ1τ1)αρ/ρ1 (ρ2τ2)βρ/ρ2 ,

we �nd that τ∗ ≤ τ . Again since H(x) = H∗(x − b), then τ ≤ τ∗ and thus τ∗ = τ.
Therefore the following result follows:

4.1. Theorem. The two generalized Hadamard product of entire axially monogenic func-
tions H(x) and H∗(x+ b) have the same upper bound for its growth orders and its growth
types and satis�es the same inequalities.
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