h Hacettepe Journal of Mathematics and Statistics Volume 47 (5) (2018), 1240-1247

On *-(σ , τ)-Lie ideals of *-prime rings with derivation

Neşet Aydın^{*†}, Emine Koç[‡] and Öznur Gölbaşı[§]

Abstract

Let R be a *-prime ring with characteristic not 2, U be a nonzero *- (σ, τ) -Lie ideal of R and d be a nonzero derivation of R. Suppose σ, τ be two automorphisms of R such that $\sigma d = d\sigma, \tau d = d\tau$ and * commutes with σ, τ, d . In the present paper it is shown that if $d^2(U) = (0)$, then $U \subseteq Z$.

This study is dedicated to our pioneer in this area, Professor Kazım Kaya.

Keywords: Derivations, (σ, τ) – Lie Ideals, *–prime rings, involution. Mathematics Subject Classification (2010): AMS 16N60, 16W25, 16U80.

Received: 12.01.2017 Accepted: 17.07.2017 Doi: 10.15672/HJMS.2017.501

1. Introduction

Let R will be an associative ring with center Z. Recall that a ring R is prime if xRy = 0 implies x = 0 or y = 0. An additive mapping $*: R \to R$ is called an involution if $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or *-ring. A ring with an involution is said to *-prime if $xRy = xRy^* = 0$ or $xRy = x^*Ry = 0$ implies that x = 0 or y = 0. Every prime ring with an involution is *-prime but the converse need not to hold general. As an example Oukhtite [8] justifies the above statement that is, R is a prime ring, $S = R \times R^o$ where R^o is the opposite ring of R. Define involution * on S as $(x, y)^* = (y, x)$. S

^{*}Ganakkale 18 Mart University, Faculty of Arts and Sciences, Department of Mathematics, Ganakkale, Turkey,

Email : neseta@comu.edu.tr

[†]Corresponding Author.

[‡]Cumhuriyet University, Faculty of Arts, Department of Mathematics, Sivas, Turkey, Email : eminekoc@cumhuriyet.edu.tr

[§]Cumhuriyet University, Faculty of Arts, Department of Mathematics, Sivas, Turkey, Email: ogolbasi@cumhuriyet.edu.tr

is *-prime, but not prime. This example shows that *-prime rings constitute a more general class of prime rings. In all that follows the symbol $S_*(R)$, that was first introduced by Oukhtite, will denote the set of symmetric and skew symmetric elements of R, i.e. $S_*(R) = \{x \in R \mid x^* = \pm x\}$. An ideal M of R is said to be a *-ideal if $M^* = M$.

Let σ and τ two mappings from R into itself. For any $x, y \in R$, we write [x, y] and $[x, y]_{\sigma, \tau}$, for xy - yx and $x\sigma(y) - \tau(y)x$ respectively and make extensive use of basic commutator identities:

[x, yz] = y[x, z] + [x, y]z

[xy, z] = [x, z]y + x[y, z]

 $[xy,z]_{\sigma,\tau}=x[y,z]_{\sigma,\tau}+[x,\tau(z)]y=x[y,\sigma(z)]+[x,z]_{\sigma,\tau}y$

 $[x,yz]_{\sigma,\tau}=\tau(y)[x,z]_{\sigma,\tau}+[x,y]_{\sigma,\tau}\sigma(z).$

We set $C_{\sigma,\tau} = \{c \in R \mid c\sigma(x) = \tau(x)c \text{ for all } x \in R\}$ and call it (σ,τ) -center of R. Note that $C_{1,1} = Z$, where $1: R \longrightarrow R$ is the identity map. Recall that an additive subgroup U of R is said to be a Lie ideal of R if $[U,R] \subseteq U$. Kaya [3] first introduced the (σ,τ) -Lie ideal as: Let U be an additive subgroup of $R, \sigma, \tau: R \longrightarrow R$ be two mappings. Then (i) U is a (σ,τ) -right Lie ideal of R if $[U,R]_{\sigma,\tau} \subseteq U$. (ii) U is a (σ,τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau} \subseteq U$. (iii) U is a (σ,τ) -left Lie ideal of R if R if U is both a (σ,τ) -left Lie ideal of R. Every Lie ideal of R is a (1, 1)-left (and right) Lie ideal of R, where $1: R \longrightarrow R$ is the identity map of R. But there exist (σ,τ) -Lie ideals which are not Lie ideals (Such an example due to [3]). An (σ,τ) -Lie ideal U of R is said to be a $* - (\sigma, \tau)$ -Lie ideal if U is invariant under *, i.e. $U^* = U$.

An additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a: R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation determined by a. The commutativity of prime rings with derivation was initiated by Posner [9]. Over the last five decades, a great deal of work has been done on this subject. The following results have been proved for Lie ideals in [2]: Let R be a prime ring of characteristic different from 2, U is a nonzero Lie ideal of R and d a nonzero derivation. If any one of the following conditions is satisfied, then $U \subseteq Z: (i) \ d(U) = 0 \ (ii) \ d(U)a = 0$ or ad(U) = 0 with $a \neq 0 \ (iii) \ d^2(U) = 0$. In [4], Lee and Lee proved that if R is a prime ring of characteristic different from 2, U is a nonzero Lie ideal of R and d is a nonzero derivation such that $d^2(U) \subseteq Z$ then $U \subseteq Z$. Further, the above results were extended to (σ, τ) – Lie ideals of R in [1]. Oukhtite et al. showed that these results are valid for *-prime rings in [7]. In this work our main goal will be proving the above result for a nonzero $* - (\sigma, \tau)$ -Lie ideal of a *-prime ring with characteristic not two.

2. Results

In the view of the definition of generalized derivation, one can easily notice that the following remark.

2.1. Remark. Let d be a derivation of R. If $d\sigma = \sigma d$, $d\tau = \tau d$, then

$$d([x,y]_{\sigma,\tau}) = [d(x),y]_{\sigma,\tau} + [x,d(y)]_{\sigma,\tau}, \text{ for all } x,y \in R.$$

2.2. Lemma. [5, Theorem 3.2] Let R be a *-prime ring with characteristic not 2, I be a nonzero *-ideal of R and d be a nonzero derivation of R commutes with *. If $a \in S_*(R)$ and [d(I), a] = 0, then $a \in Z$. Furthermore, if $d(I) \subseteq Z$, then R is commutative.

2.3. Lemma. [6, Theorem 2.2] Let R be a *-prime ring and I be a nonzero *-ideal of R. If a, b in R are such that $aIb = aIb^* = (0)$, then a = 0 or b = 0.

2.4. Lemma. [10, Lemma 2.8] Let R be a *-prime ring and U be a nonzero $*-(\sigma, \tau)$ -left Lie ideal of R such that τ commutes with *. If $U \subseteq C_{\sigma,\tau}$, then $U \subseteq Z$.

2.5. Lemma. [10, Lemma 2.9] Let R be a *-prime ring, U be a nonzero $* - (\sigma, \tau)$ -left Lie ideal of R such that τ commutes with * and $a \in R$. If Ua = (0), then a = 0 or $U \subseteq Z$.

2.6. Lemma. [10, Theorem 2.17] Let R be a prime ring with characteristic not 2 and U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $U \notin Z$ and $U \notin C_{\sigma,\tau}$, then there exist a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subseteq U$ and $[R, M]_{\sigma,\tau} \notin C_{\sigma,\tau}$.

2.7. Theorem. Let R be a *-prime ring with characteristic not 2, U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, d be a nonzero derivation of R and * commutes with σ, τ and d. If d(U) = (0), then $U \subseteq Z$.

Proof. Suppose on the contrary that $U \nsubseteq Z$. By Lemma 2.4, we get $U \nsubseteq C_{\sigma,\tau}$. Hence, there exists a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subseteq U$ but $[R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau}$ by Lemma 2.6. For any $x \in R$ and $m \in M$,

 $[x,m]_{\sigma,\tau}\sigma(m) = [x\sigma(m),m]_{\sigma,\tau} \in U.$

By the hypothesis, we have

$$0 = d([x,m]_{\sigma,\tau}\sigma(m)) = d([x,m]_{\sigma,\tau})\sigma(m) + [x,m]_{\sigma,\tau}d(\sigma(m))$$

and so

 $(2.1) \qquad [x,m]_{\sigma,\tau}d(\sigma(m)) = 0, \text{ for all } x \in R, m \in M.$

Replacing x by $xy, y \in R$ in (2.1) and using (2.1), we find that

 $[x, \tau(m)]Rd(\sigma(m)) = (0), \text{ for all } x \in R, m \in M.$

Since τ is an automorphism of R, we can rewrite the above equation

(2.2) $\tau([y,m])Rd(\sigma(m)) = (0), \text{ for all } y \in R, m \in M.$

Assume that $m \in M \cap S_*(R)$. In (2.2), replacing y by y^* and using $*\tau = \tau *$, we get

 $\tau^*([y,m])Rd(\sigma(m)) = (0), \text{ for all } y \in R, m \in M \cap S_*(R).$

Thus

$$\tau([y,m])Rd(\sigma(m)) = \tau^*([y,m])Rd(\sigma(m)) = (0), \ \forall y \in R, m \in M \cap S_*(R)$$

is obtained. By the *-primeness of R, we have

[y,m] = 0 or $d(\sigma(m)) = 0$, for all $y \in R, m \in M \cap S_*(R)$.

Since $m - m^* \in M \cap S_*(R)$ for all $m \in M$, we have

 $[y,m] = [y,m^*]$ or $d(\sigma(m)) = d(\sigma(m^*))$, for all $y \in R, m \in M$.

Now, let us define the sets $A = \{m \in M \mid [y,m] = [y,m^*], \forall y \in R\}$ and $B = \{m \in M \mid d(\sigma(m)) = d(\sigma(m^*))\}$. It is clear that, A and B are an additive subgroups of M such that $M = A \cup B$. But a group can not be an union of its proper subgroups. Therefore, it yields either M = A or M = B. In M = A case, $[y,m] = [y,m^*]$, for all $y \in R$. In (2.2) substituting y by y^* , we get

 $\tau^*\left([y,m]\right)Rd\left(\sigma\left(m\right)\right) = (0), \ \forall y \in R, m \in M.$

Since R is $*{\rm -prime},$ we arrive

 $\tau\left([y,m]\right) = 0 \text{ or } d\left(\sigma\left(m\right)\right) = 0, \ \forall y \in R, m \in M.$

In
$$M = B$$
 case, $d(\sigma(m)) = d(\sigma(m^*))$, for all $m \in M$. From (2.2), we have
 $\tau([y,m]) Rd^*(\sigma(m)) = (0), \forall y \in R, m \in M.$

1242

Since R is *-prime, we get

 $\tau\left([y,m]\right) = 0 \text{ or } d\left(\sigma\left(m\right)\right) = 0, \ \forall y \in R, m \in M.$

Expressing that, for both cases the results are the same and this means that

 $m \in Z$ or $d(\sigma(m)) = 0, \forall m \in M$.

Define $K = \{m \in M \mid m \in Z\}$ and $L = \{m \in M \mid d(\sigma(m)) = 0\}$. Clearly each of K and L is additive subgroups of M. Moreover, M is the set-theoretic union of K and L. But a group can not be the set-theoretic union of its two proper subgroups, hence K = M or L = M. In the former case, $M \subseteq Z$, which forces R to be commutative, and so, $U \subseteq Z$, a contradiction. In the latter case, $d(\sigma(M)) = (0)$. Since R is *-prime ring and $\sigma(M)$ is a nonzero *-ideal of R, we find that R is commutative by Lemma 2.2, a contradiction. This completes the proof.

2.8. Theorem. Let R be a *-prime ring with characteristic not 2, U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, $0 \neq a \in R$, d be a nonzero derivation of R and * be commute with σ, τ and d. If ad(U) = (0) (or d(U)a = (0)), then $U \subseteq Z$.

Proof. Assume that $U \nsubseteq Z$ and ad(U) = (0). There exists a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subseteq U$, but $[R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau}$. For any $x \in R, m \in M$ and $[x, m]_{\sigma,\tau}\sigma(m) \in U$, we get

$$ad([x,m]_{\sigma,\tau}\sigma(m)) = 0$$

Expanding this equation and using the hypothesis, we have

(2.3) $a[x,m]_{\sigma,\tau}d(\sigma(m)) = 0$, for all $x \in R, m \in M$.

Substituting d(u)x for x in (2.3) and using this equation, we arrive at

(2.4) $a[d(u), \tau(m)]Rd(\sigma(m)) = (0), \text{ for all } u \in U, m \in M.$

Now, taking m^* instead of $m, m \in M \cap S_*(R)$ in the last equation, we obtain

 $a[d(u), \tau(m^*)]Rd(\sigma(m^*)) = (0).$

Using $m^* = \pm m$ and $\sigma * = *\sigma, *d = d*$, we get

(2.5) $a[d(u), \tau(m)]Rd(\sigma(m))^* = (0), \text{ for all } u \in U, m \in M \cap S_*(R).$

Combining (2.4) and (2.5) and using the *-primeness of R, we have

$$a[d(u), \tau(m)] = 0 \quad \text{or} \quad d(\sigma(m)) = 0, \ \forall u \in U, m \in M \cap S_*(R).$$

Since $m - m^* \in M \cap S_*(R)$ for all $m \in M$, we have

$$a\left[d\left(u\right),\tau\left(m\right)\right] = a\left[d\left(u\right),\tau\left(m^{*}\right)\right] \text{ or } d\left(\sigma\left(m\right)\right) = d\left(\sigma\left(m^{*}\right)\right), \forall u \in U, m \in M.$$

Now, define $A = \{m \in M \mid a [d(u), \tau(m)] = a [d(u), \tau(m^*)], \text{ for all } u \in U\}$ and $B = \{m \in M \mid d(\sigma(m)) = d(\sigma(m^*))\}$. It is clear that, A and B are an additive subgroups of M such that $M = A \cup B$. But a group can not be an union of its proper subgroups. Therefore, it yields M = A or M = B. In M = A case, $a [d(u), \tau(m)] = a [d(u), \tau(m^*)]$, for all $u \in U, m \in M$. In (2.4) substituting m by m^* , we get

 $a\left[d\left(u\right),\tau\left(m\right)\right]Rd^{*}\left(\sigma\left(m\right)\right)=\left(0\right),\;\forall u\in U,m\in M.$

Since R is *-prime, we arrive

$$a[d(u), \tau(m)] = 0 \text{ or } d(\sigma(m)) = 0, \forall u \in U, m \in M$$

In
$$M = B$$
 case, $d(\sigma(m)) = d(\sigma(m^*))$, for all $m \in M$. From (2.4), we have $a[d(u), \tau(m)] Rd^*(\sigma(m)) = (0), \forall u \in U, m \in M$.

Since R is *- prime, we get

$$a[d(u), \tau(m)] = 0 \text{ or } d(\sigma(m)) = 0, \forall u \in U, m \in M$$

Note that, for the both cases the same results are obtained.

Let us define the sets $K = \{m \in M \mid a[d(u), \tau(m)] = 0, \text{ for all } u \in U\}$ and $L = \{m \in M \mid d(\sigma(m)) = 0\}$. By a standard argument one of these must hold for all $m \in M$.

If $a[d(u), \tau(m)] = 0$, for all $u \in U, m \in M$. Expanding this equation and using the hyphotesis, we get

 $a\tau(M)d(u) = (0)$, for all $u \in U$.

Substituting u^* for u in this equation and using *d = d*

$$a\tau(M)d(u)^* = (0)$$

and so

$$a\tau(M)d(u) = a\tau(M)d(u)^* = (0), \text{ for all } u \in U.$$

Since $\sigma(M)$ a nonzero *-ideal of R and by Lemma 2.3, we have

a = 0 or d(U) = (0).

If d(U) = (0), then $U \subseteq Z$ by Theorem 2.7, which is a contradiction.

If $d(\sigma(M)) = 0$, then R is commutative by Lemma 2.2, a contradiction. This completes the proof.

Now, we get d(U)a = (0). Assume that $U \nsubseteq Z$ and using the same arguments in the beginning of the proof, we get $\tau(m)[x,m]_{\sigma,\tau} \in U$ for any $x \in R, m \in M$, and so

$$d(\tau(m)[x,m]_{\sigma,\tau})a = 0.$$

Expanding this equation and using the hypothesis, we arrive at

 $d(\tau(m))[x,m]_{\sigma,\tau}a = 0.$

Replacing xd(u) for x in this equation and applying the same lines above, we get the required result.

Remark. Suppose that U a nonzero $* - (\sigma, \tau)$ -right Lie ideal of R, d a derivation of R and d* = *d. For all $u, v \in U, x \in R$,

$$\begin{aligned} [d(u) + v, x]_{\sigma,\tau} &= [d(u), x]_{\sigma,\tau} + [v, x]_{\sigma,\tau} \\ &= [d(u), x]_{\sigma,\tau} + [u, d(x)]_{\sigma,\tau} - [u, d(x)]_{\sigma,\tau} + [v, x]_{\sigma,\tau} \\ &= d([u, x]_{\sigma,\tau}) - [u, d(x)]_{\sigma,\tau} + [v, x]_{\sigma,\tau} \in d(U) + U. \end{aligned}$$

We conclude that d(U) + U is a (σ, τ) -right Lie ideal of R. Furthermore, $(d(U) + U)^* = d(U)^* + U^* = d(U)^* + U^* = d(U) + U$. Hence d(U) + U is a $* - (\sigma, \tau)$ -right Lie ideal of R. On the other hand, if $d^2(U) = (0)$, then $d(d(U) + U)) \subset d(U) \subset d(U) + U$. Hence, without the loss of generalizing, we can assume that if U is a nonzero $* - (\sigma, \tau)$ -right Lie ideal such that $d^2(U) = (0)$, then $d(U) \subset U$.

2.9. Theorem. Let R be a *-prime ring with characteristic not 2, U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, d be a nonzero derivation of R such that $d\tau = \tau d$, $d\sigma = \sigma d$ and * be commute with σ, τ and d. If $d^2(U) = (0)$, then $d(U) \subseteq Z$.

Proof. For any $x \in R$ and $u \in U$, $\tau(u) [x, u]_{\sigma, \tau} = [\tau(u) x, u]_{\sigma, \tau} \in U$. Taking $\tau(u) [x, u]_{\sigma, \tau}$ instead of u in the hypothesis, we get

$$d^{2}(\tau(u)[x,u]_{\sigma,\tau}) = d^{2}(\tau(u))[x,u]_{\sigma,\tau} + 2d(\tau(u))d([x,u]_{\sigma,\tau}) + \tau(u)d^{2}([x,u]_{\sigma,\tau}).$$

Using $d\tau = \tau d$ and the hypothesis in the above relation, we arrive at

(2.6) $d(\tau(u))d([x, u]_{\sigma\tau}) = 0$, for all $u \in U, x \in R$.

1244

Replacing u by u + d(v) in (2.6) and using (2.6), we have

$$d(\tau(u))d([x, d(v)]_{\sigma\tau}) = 0, \text{ for all } u, v \in U, x \in R.$$

Using that τ is an automorphism and $d\tau = \tau d$, we see that

 $d(u)\tau^{-1}(d([x, d(v)]_{\sigma, \tau})) = 0$, for all $u, v \in U, x \in R$.

By Theorem 2.8, we conclude that

$$U \subseteq Z$$
 or $d([x, d(v)]_{\sigma,\tau}) = 0$, for all $v \in U, x \in R$.

If $U \subseteq Z$, then $d(U) \subseteq Z$, and so the proof is completed.

Now, we have $d([x, d(v)]_{\sigma, \tau}) = 0$, for all $u, v \in U, x \in R$. Applying the hypothesis, we get

(2.7)
$$[d(x), d(v)]_{\sigma,\tau} = 0$$
, for all $v \in U, x \in R$.

Taking xd(u) instead of x in the above equation and using $d^{2}(u) = 0$, we find that

$$\left[d(x)d(u), d(v)\right]_{\sigma \tau} = 0.$$

(2.7) yields that

 $[d(x), \tau(d(U))]d(u) = 0$, for all $u \in U, x \in R$.

By Theorem 2.8, we have

$$U \subseteq Z$$
 or $[d(x), \tau(d(U))] = 0$, for all $x \in R$.

If $U \subseteq Z$, then $d(U) \subseteq Z$. This implies that $[d(x), \tau(d(U))] = 0$, for all $x \in R$. So, we must have $[d(x), \tau(d(U))] = 0$, for all $x \in R$ for any cases. Since $U \cap S_*(R) \subseteq U$, we get

 $[d(R), \tau (d(U \cap S_*(R)))] = (0).$

From Lemma 2.2, it implies that $\tau (d (U \cap S_* (R))) \subseteq Z$ and so $d (U \cap S_* (R)) \subseteq Z$. Since $u - u^*, u + u^* \in U \cap S_* (R)$ for all $u \in U$, we have $d (u) - d (u^*), d (u) + d (u^*) \in Z$. Therefore $2d (u) \in Z$, for all $u \in U$. Since $charR \neq 2$, it is implies that $d (u) \in Z$, for all $u \in U$. Namely, $d (U) \subseteq Z$. This completes the proof.

2.10. Theorem. Let R be a *-prime ring with characteristic not 2, U be a nonzero $* - (\sigma, \tau) - Lie$ ideal of R, d be a nonzero derivation of R such that $d\tau = \tau d, \sigma d = d\sigma$ and * be commute with σ, τ and d. If $d^2(U) = (0)$, then $U \subseteq Z$.

Proof. Applying the same arguments that are used in the proof of Theorem 2.9, we get

(2.8) $d(\tau(u))d([x,u]_{\sigma,\tau}) = 0$, for all $u \in U, x \in R$.

Replacing u by u + v in (2.8) and using this, we have

(2.9) $d(\tau(u))d([x,v]_{\sigma,\tau}) + d(\tau(v))d([x,u]_{\sigma,\tau}) = 0$, for all $u, v \in U, x \in R$.

Multiplying (2.9) from the left by $d(\tau(u))$ and using $d(\tau(u)) = \tau(d(u)) \in Z$ by Theorem 2.9, we find that

$$\begin{split} 0 &= d(\tau \,(u)) d(\tau \,(u)) d([x,v]_{\sigma,\tau}) + d(\tau \,(u)) d(\tau \,(v)) d([x,u]_{\sigma,\tau}) \\ &= d(\tau \,(u))^2 d([x,v]_{\sigma,\tau}) + d(\tau \,(v)) d(\tau \,(u)) d([x,u]_{\sigma,\tau}). \end{split}$$

By (2.8) it holds that

(2.10) $d(\tau(u))^2 d([x,v]_{\sigma,\tau}) = 0$, for all $u, v \in U, x \in R$.

For any $u \in U, x \in R$, $[x\sigma(u), u]_{\sigma,\tau} = [x, u]_{\sigma,\tau} \sigma(u) \in [R, U]_{\sigma,\tau}$. Taking $[x, u]_{\sigma,\tau} \sigma(u)$ instead of $[x, v]_{\sigma,\tau}$ in (2.10) and using this, we obtain

(2.11) $d(\tau(u))^2 [x, v]_{\sigma \tau} d(\sigma(v)) = 0$, for all $u, v \in U, x \in R$.

Writing v by v + w in (2.11) and using this, we have

$$d(\tau(u))^{2} [x, v]_{\sigma,\tau} d(\sigma(w)) + d(\tau(u))^{2} [x, w]_{\sigma,\tau} d(\sigma(v)) = 0, \ \forall u, v, w \in U, x \in R.$$

Multiplying the last equation from the right by $d(\sigma(v))$ and using $d(\sigma(v)) = \sigma(d(v)) \in Z$ by Theorem 2.9, we get

$$\begin{split} 0 &= d(\tau \,(u))^2 \,[x,v]_{\sigma,\tau} \,d(\sigma(w))d(\sigma \,(v)) + d(\tau \,(u))^2 \,[x,w]_{\sigma,\tau} \,d(\sigma(v))d(\sigma \,(v)) \\ &= d(\tau \,(u))^2 \,[x,v]_{\sigma,\tau} \,d(\sigma(v))d(\sigma \,(w)) + d(\tau \,(u))^2 \,[x,w]_{\sigma,\tau} \,d(\sigma(v))^2. \end{split}$$

From (2.11), we conclude that

 $d(\tau\left(u\right))^{2}\left[x,w\right]_{\sigma,\tau}d(\sigma(v))^{2}=0,\text{ for all }u,v,w\in U,x\in R.$

Using $d(\sigma(v)) \in Z$, we obtain that

(2.12) $d(\tau(u))^2 [x, w]_{\sigma,\tau} R d(\sigma(v))^2 = (0)$, for all $u, v, w \in U, x \in R$.

Replacing v by v^* in this equation, we get

 $d(\tau(u))^{2} [x, w]_{\sigma, \tau} R d(\sigma(v^{*}))^{2} = (0).$

Since * commutes with σ, τ and d, we get

(2.13) $d(\tau(u))^2 [x,w]_{\sigma\tau} R(d(\sigma(v))^2)^* = (0), \text{ for all } u, v, w \in U, x \in R.$

Equations (2.12) and (2.13) yields that

$$d(\tau(u))^2 [x,w]_{\sigma\tau} = 0$$
 or $d(\sigma(v))^2 = 0$, for all $u, v, w \in U, x \in R$.

If $d(\sigma(v))^2 = 0$ for all $v \in U$, then it implies that $d(u)^2 = 0$, and so, we get $d(\tau(u))^2 [x, w]_{\sigma,\tau} = 0$ for all $u, w \in U, x \in R$. Again using $d(\tau(u)) = \tau(d(u)) \in Z$, we have

(2.14) $d(\tau(u))^2 R[x,w]_{\sigma\tau} = (0)$, for all $u, w \in U, x \in R$.

Writing u by u^* in this equation, we get

(2.15)
$$d(\tau(u^*))^2 R[x,w]_{\sigma,\tau} = (0)$$
, for all $u, w \in U, x \in R$.

Combining (2.14) and (2.15) equations and using the *-primeness of R, we arrive at

$$d(\tau(u)) = 0$$
 or $[x, w]_{\sigma\tau} = 0$, for all $u, w \in U, x \in R$

If $d(\tau(u)) = 0$, for all $u \in U$, then d(U) = (0), and so $U \subseteq Z$ by Theorem 2.7.

Now, we get $[x, w]_{\sigma, \tau} = 0$ for all $w \in U, x \in R$. Replacing x by vx and using this, we get

$$\begin{split} 0 &= \left[vx, w \right]_{\sigma, \tau} = v[x, \sigma(w)] + \left[v, w \right]_{\sigma, \tau} x \\ &= v[x, \sigma(w)] \end{split}$$

and so

$$U[x, \sigma(w)] = 0$$
, for all $w \in U, x \in R$.

According to Lemma 2.5, we obtain that $U \subseteq Z$. This completes the proof.

2.11. Remark. Our assumption that *d = d* implies that both the symmetric and skew-symmetric elements are stable under d. This assumption is commonly used in the literature and it would be interesting to see which of these results hold without this assumption.

Acknowledgment This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-514.

1246

References

- [1] Aydın, N. and Soytürk, M., (σ, τ) Lie ideals in prime rings with derivation, Doğa- Tr. J. Of Math., 19, 239-244, 1995.
- [2] Bergen, J., Herstein, I.N. and Kerr, J.W., Lie ideals and derivations of prime rings, J. Algebra, 71, 259-267, 1981.
- [3] Kaya, K., (σ, τ)- Lie ideals in prime rings, An. Üniv. Timisoara, Stiinte Mat., 30 (2-3), 251-255, 1992.
- [4] Lee, P. H. and Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin., 11, 75-80, 1983.
- [5] Oukhtite, L. and Salhi, S., On commutativity of σ-prime rings, Glasnik Math., 41, no. 61, 57-64, 2006.
- [6] Oukhtite, L. and Salhi, S., σ-prime rings with a special kind of automorphism, Int. J. Contemp. Math. Sci. Vol. 2, no.3, 127-133, 2007.
- [7] Oukhtite, L. and Salhi, S., Lie ideals and derivations of σ-prime rings, Int. J. Algebra, Vol.1, no. 1, 25-30, 2007.
- [8] Oukhtite, L. and Salhi, S., Centralizing automorphisms and Jordan left derivations on *-prime rings, Adv. Algebra Vol. 1, no. 1, 19-26, 2008.
- [9] Posner, E. C., Derivations in prime rings, Proc. Amer. Soc., 8, 1093-1100, 1957.
- [10] Türkmen, S. and Aydın, N., Generalized *-Lie Ideal of *-Prime Ring, Turkish J. Math. 41 (4), 841-853, 2017.