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On ∗-(σ, τ)-Lie ideals of ∗-prime rings with
derivation
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Abstract

Let R be a ∗−prime ring with characteristic not 2, U be a nonzero
∗ − (σ, τ)−Lie ideal of R and d be a nonzero derivation of R. Suppose
σ, τ be two automorphisms of R such that σd = dσ, τd = dτ and
∗ commutes with σ, τ, d. In the present paper it is shown that if
d2(U) = (0), then U ⊆ Z.
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1. Introduction

Let R will be an associative ring with center Z. Recall that a ring R is prime if
xRy = 0 implies x = 0 or y = 0. An additive mapping ∗ : R→ R is called an involution
if (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A ring equipped with an involution is
called a ring with involution or ∗−ring. A ring with an involution is said to ∗−prime
if xRy = xRy∗ = 0 or xRy = x∗Ry = 0 implies that x = 0 or y = 0. Every prime
ring with an involution is ∗−prime but the converse need not to hold general. As an
example Oukhtite [8] justi�es the above statement that is, R is a prime ring, S = R×Ro
where Ro is the opposite ring of R. De�ne involution ∗ on S as (x, y)∗ = (y, x). S
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is ∗−prime, but not prime. This example shows that ∗−prime rings constitute a more
general class of prime rings. In all that follows the symbol S∗(R), that was �rst introduced
by Oukhtite, will denote the set of symmetric and skew symmetric elements of R, i.e.
S∗(R) = {x ∈ R | x∗ = ±x}. An ideal M of R is said to be a ∗−ideal if M∗ =M.

Let σ and τ two mappings from R into itself. For any x, y ∈ R, we write [x, y] and
[x, y]σ,τ , for xy − yx and xσ(y) − τ(y)x respectively and make extensive use of basic
commutator identities:

[x, yz] = y[x, z] + [x, y]z
[xy, z] = [x, z]y + x[y, z]
[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy
[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z).
We set Cσ,τ = {c ∈ R | cσ(x) = τ(x)c for all x ∈ R} and call it (σ, τ)−center of

R. Note that C1,1 = Z, where 1 : R −→ R is the identity map. Recall that an additive
subgroup U of R is said to be a Lie ideal of R if [U,R] ⊆ U . Kaya [3] �rst introduced the
(σ, τ)−Lie ideal as: Let U be an additive subgroup of R, σ, τ : R −→ R be two mappings.
Then (i) U is a (σ, τ)−right Lie ideal of R if [U,R]σ,τ ⊆ U . (ii) U is a (σ, τ)−left Lie
ideal of R if [R,U ]σ,τ ⊆ U . (iii) U is a (σ, τ)−Lie ideal of R if U is both a (σ, τ)−right
Lie ideal and (σ, τ)−left Lie ideal of R. Every Lie ideal of R is a (1, 1)−left (and right)
Lie ideal of R, where 1 : R −→ R is the identity map of R. But there exist (σ, τ)−Lie
ideals which are not Lie ideals (Such an example due to [3]). An (σ, τ)−Lie ideal U of R
is said to be a ∗ − (σ, τ)−Lie ideal if U is invariant under ∗, i.e. U∗ = U.

An additive mapping d : R→ R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. For a �xed a ∈ R, the mapping Ia : R → R given by Ia(x) = [a, x] is a
derivation which is said to be an inner derivation determined by a. The commutativity
of prime rings with derivation was initiated by Posner [9]. Over the last �ve decades, a
great deal of work has been done on this subject. The following results have been proved
for Lie ideals in [2]: Let R be a prime ring of characteristic di�erent from 2, U is a
nonzero Lie ideal of R and d a nonzero derivation. If any one of the following conditions
is satis�ed, then U ⊆ Z : (i) d(U) = 0 (ii) d(U)a = 0 or ad(U) = 0 with a 6= 0 (iii)
d2(U) = 0. In [4], Lee and Lee proved that if R is a prime ring of characteristic di�erent
from 2, U is a nonzero Lie ideal of R and d is a nonzero derivation such that d2(U) ⊆ Z
then U ⊆ Z. Further, the above results were extended to (σ, τ)− Lie ideals of R in [1].
Oukhtite et al. showed that these results are valid for ∗−prime rings in [7]. In this work
our main goal will be proving the above result for a nonzero ∗ − (σ, τ)−Lie ideal of a
∗−prime ring with characteristic not two.

2. Results

In the view of the de�nition of generalized derivation, one can easily notice that the
following remark.

2.1. Remark. Let d be a derivation of R. If dσ = σd, dτ = τd, then

d([x, y]σ,τ ) = [d(x), y]σ,τ + [x, d(y)]σ,τ , for all x, y ∈ R.

2.2. Lemma. [5, Theorem 3.2] Let R be a ∗−prime ring with characteristic not 2, I be a
nonzero ∗−ideal of R and d be a nonzero derivation of R commutes with ∗. If a ∈ S∗(R)
and [d(I), a] = 0, then a ∈ Z. Furthermore, if d(I) ⊆ Z, then R is commutative.

2.3. Lemma. [6, Theorem 2.2] Let R be a ∗−prime ring and I be a nonzero ∗−ideal of
R. If a, b in R are such that aIb = aIb∗ = (0), then a = 0 or b = 0.

2.4. Lemma. [10, Lemma 2.8] Let R be a ∗−prime ring and U be a nonzero ∗−(σ, τ)−left
Lie ideal of R such that τ commutes with ∗. If U ⊆ Cσ,τ , then U ⊆ Z.
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2.5. Lemma. [10, Lemma 2.9] Let R be a ∗−prime ring, U be a nonzero ∗− (σ, τ)−left
Lie ideal of R such that τ commutes with ∗ and a ∈ R. If Ua = (0), then a = 0 or U ⊆ Z.

2.6. Lemma. [10, Theorem 2.17] Let R be a prime ring with characteristic not 2 and
U be a nonzero ∗ − (σ, τ)−Lie ideal of R such that τ commutes with ∗. If U * Z and
U * Cσ,τ , then there exist a nonzero ∗−ideal M of R such that [R,M ]σ,τ ⊆ U and

[R,M ]σ,τ * Cσ,τ .

2.7. Theorem. Let R be a ∗−prime ring with characteristic not 2, U be a nonzero
∗ − (σ, τ)−Lie ideal of R, d be a nonzero derivation of R and ∗ commutes with σ, τ and
d. If d(U) = (0), then U ⊆ Z.

Proof. Suppose on the contrary that U * Z. By Lemma 2.4, we get U * Cσ,τ . Hence,
there exists a nonzero ∗−ideal M of R such that [R,M ]σ,τ ⊆ U but [R,M ]σ,τ * Cσ,τ by
Lemma 2.6. For any x ∈ R and m ∈M,

[x,m]σ,τσ(m) = [xσ(m),m]σ,τ ∈ U.

By the hypothesis, we have

0 = d([x,m]σ,τσ(m)) = d([x,m]σ,τ )σ(m) + [x,m]σ,τd(σ(m))

and so

(2.1) [x,m]σ,τd(σ(m)) = 0, for all x ∈ R,m ∈M.

Replacing x by xy, y ∈ R in (2.1) and using (2.1), we �nd that

[x, τ(m)]Rd(σ(m)) = (0), for all x ∈ R,m ∈M.

Since τ is an automorphism of R, we can rewrite the above equation

(2.2) τ([y,m])Rd(σ(m)) = (0), for all y ∈ R,m ∈M.

Assume that m ∈M ∩ S∗(R). In (2.2), replacing y by y∗ and using ∗τ = τ∗, we get

τ∗([y,m])Rd(σ(m)) = (0), for all y ∈ R,m ∈M ∩ S∗(R).

Thus

τ([y,m])Rd(σ(m)) = τ∗([y,m])Rd(σ(m)) = (0), ∀y ∈ R,m ∈M ∩ S∗(R)

is obtained. By the ∗−primeness of R, we have

[y,m] = 0 or d(σ(m)) = 0, for all y ∈ R,m ∈M ∩ S∗(R).

Since m−m∗ ∈M ∩ S∗ (R) for all m ∈M, we have

[y,m] = [y,m∗] or d (σ (m)) = d (σ (m∗)) , for all y ∈ R,m ∈M.

Now, let us de�ne the sets A = {m ∈M | [y,m] = [y,m∗] , ∀y ∈ R} and
B = {m ∈M | d (σ (m)) = d (σ (m∗))}. It is clear that, A and B are an additive sub-
groups of M such that M = A ∪ B. But a group can not be an union of its proper sub-
groups. Therefore, it yields either M = A or M = B. In M = A case, [y,m] = [y,m∗] ,
for all y ∈ R. In (2.2) substituting y by y∗, we get

τ∗ ([y,m])Rd (σ (m)) = (0) , ∀y ∈ R,m ∈M.

Since R is ∗−prime, we arrive

τ ([y,m]) = 0 or d (σ (m)) = 0, ∀y ∈ R,m ∈M.

In M = B case, d (σ (m)) = d (σ (m∗)) , for all m ∈M. From (2.2), we have

τ ([y,m])Rd∗ (σ (m)) = (0) , ∀y ∈ R,m ∈M.
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Since R is ∗−prime, we get

τ ([y,m]) = 0 or d (σ (m)) = 0, ∀y ∈ R,m ∈M.

Expressing that, for both cases the results are the same and this means that

m ∈ Z or d (σ (m)) = 0, ∀m ∈M.

De�ne K = {m ∈M | m ∈ Z } and L = {m ∈M | d(σ(m)) = 0}. Clearly each of K and
L is additive subgroups of M. Moreover, M is the set-theoretic union of K and L. But a
group can not be the set-theoretic union of its two proper subgroups, hence K = M or
L =M. In the former case, M ⊆ Z, which forces R to be commutative, and so, U ⊆ Z, a
contradiction. In the latter case, d(σ(M)) = (0). Since R is ∗−prime ring and σ(M) is
a nonzero ∗−ideal of R, we �nd that R is commutative by Lemma 2.2, a contradiction.
This completes the proof. �

2.8. Theorem. Let R be a ∗−prime ring with characteristic not 2, U be a nonzero
∗ − (σ, τ)−Lie ideal of R, 0 6= a ∈ R, d be a nonzero derivation of R and ∗ be commute
with σ, τ and d. If ad(U) = (0) (or d(U)a = (0)), then U ⊆ Z.

Proof. Assume that U * Z and ad(U) = (0). There exists a nonzero ∗−idealM of R such
that [R,M ]σ,τ ⊆ U, but [R,M ]σ,τ * Cσ,τ . For any x ∈ R,m ∈M and [x,m]σ,τσ(m) ∈ U,
we get

ad([x,m]σ,τσ(m)) = 0

Expanding this equation and using the hypothesis, we have

(2.3) a[x,m]σ,τd(σ(m)) = 0, for all x ∈ R,m ∈M.

Substituting d(u)x for x in (2.3) and using this equation, we arrive at

(2.4) a[d(u), τ(m)]Rd(σ(m)) = (0), for all u ∈ U,m ∈M.

Now, taking m∗ instead of m,m ∈M ∩ S∗(R) in the last equation, we obtain

a[d(u), τ(m∗)]Rd(σ(m∗)) = (0).

Using m∗ = ±m and σ∗ = ∗σ, ∗d = d∗, we get

(2.5) a[d(u), τ(m)]Rd(σ(m))∗ = (0), for all u ∈ U,m ∈M ∩ S∗(R).

Combining (2.4) and (2.5) and using the ∗−primeness of R, we have

a[d(u), τ(m)] = 0 or d(σ(m)) = 0, ∀u ∈ U,m ∈M ∩ S∗(R).

Since m−m∗ ∈M ∩ S∗ (R) for all m ∈M, we have

a [d (u) , τ (m)] = a [d (u) , τ (m∗)] or d (σ (m)) = d (σ (m∗)) , ∀u ∈ U,m ∈M.

Now, de�ne A = {m ∈M | a [d (u) , τ (m)] = a [d (u) , τ (m∗)] , for all u ∈ U} and B =
{m ∈M | d (σ (m)) = d (σ (m∗))}. It is clear that, A and B are an additive subgroups
of M such that M = A ∪ B. But a group can not be an union of its proper subgroups.
Therefore, it yieldsM = A orM = B. InM = A case, a [d (u) , τ (m)] = a [d (u) , τ (m∗)] ,
for all u ∈ U,m ∈M. In (2.4) substituting m by m∗, we get

a [d (u) , τ (m)]Rd∗ (σ (m)) = (0) , ∀u ∈ U,m ∈M.

Since R is ∗−prime, we arrive

a [d (u) , τ (m)] = 0 or d (σ (m)) = 0, ∀u ∈ U,m ∈M.

In M = B case, d (σ (m)) = d (σ (m∗)) , for all m ∈M. From (2.4), we have

a [d (u) , τ (m)]Rd∗ (σ (m)) = (0) , ∀u ∈ U,m ∈M.
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Since R is ∗−prime, we get

a [d (u) , τ (m)] = 0 or d (σ (m)) = 0, ∀u ∈ U,m ∈M.

Note that, for the both cases the same results are obtained.
Let us de�ne the sets K = {m ∈M | a[d(u), τ(m)] = 0, for all u ∈ U} and L = {m ∈

M | d(σ(m)) = 0}. By a standard argument one of these must hold for all m ∈M.
If a[d(u), τ(m)] = 0, for all u ∈ U,m ∈ M. Expanding this equation and using the

hyphotesis, we get

aτ(M)d(u) = (0), for all u ∈ U.
Substituting u∗ for u in this equation and using ∗d = d∗

aτ(M)d(u)∗ = (0)

and so

aτ(M)d(u) = aτ(M)d(u)∗ = (0), for all u ∈ U.
Since σ(M) a nonzero ∗−ideal of R and by Lemma 2.3, we have

a = 0 or d(U) = (0).

If d(U) = (0), then U ⊆ Z by Theorem 2.7, which is a contradiction.
If d(σ(M)) = 0, then R is commutative by Lemma 2.2, a contradiction. This completes

the proof.
Now, we get d(U)a = (0). Assume that U * Z and using the same arguments in the

beginning of the proof, we get τ(m)[x,m]σ,τ ∈ U for any x ∈ R,m ∈M, and so

d(τ(m)[x,m]σ,τ )a = 0.

Expanding this equation and using the hypothesis, we arrive at

d(τ(m))[x,m]σ,τa = 0.

Replacing xd(u) for x in this equation and applying the same lines above, we get the
required result. �

Remark. Suppose that U a nonzero ∗ − (σ, τ)−right Lie ideal of R, d a derivation of R
and d∗ = ∗d. For all u, v ∈ U, x ∈ R,

[d(u) + v, x]σ,τ = [d(u), x]σ,τ + [v, x]σ,τ

= [d(u), x]σ,τ + [u, d(x)]σ,τ − [u, d(x)]σ,τ + [v, x]σ,τ

= d([u, x]σ,τ )− [u, d(x)]σ,τ + [v, x]σ,τ ∈ d(U) + U.

We conclude that d(U) +U is a (σ, τ)−right Lie ideal of R. Furthermore, (d(U) +U)∗ =
d(U)∗ + U∗ = d(U∗) + U∗ = d(U) + U. Hence d(U) + U is a ∗ − (σ, τ)−right Lie ideal
of R. On the other hand, if d2(U) = (0), then d(d(U) + U)) ⊂ d(U) ⊂ d(U) + U. Hence,
without the loss of generalizing, we can assume that if U is a nonzero ∗ − (σ, τ)−right
Lie ideal such that d2(U) = (0), then d(U) ⊂ U.

2.9. Theorem. Let R be a ∗−prime ring with characteristic not 2, U be a nonzero
∗ − (σ, τ)−Lie ideal of R, d be a nonzero derivation of R such that dτ = τd, dσ = σd
and ∗ be commute with σ, τ and d. If d2(U) = (0), then d(U) ⊆ Z.

Proof. For any x ∈ R and u ∈ U, τ (u) [x, u]σ,τ = [τ (u)x, u]σ,τ ∈ U. Taking τ (u) [x, u]σ,τ
instead of u in the hypothesis, we get

d2(τ (u) [x, u]σ,τ ) = d2(τ (u)) [x, u]σ,τ + 2d(τ (u))d([x, u]σ,τ ) + τ(u)d2([x, u]σ,τ ).

Using dτ = τd and the hypothesis in the above relation, we arrive at

(2.6) d(τ (u))d([x, u]σ,τ ) = 0, for all u ∈ U, x ∈ R.
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Replacing u by u+ d(v) in (2.6) and using (2.6), we have

d(τ (u))d([x, d(v)]σ,τ ) = 0, for all u, v ∈ U, x ∈ R.

Using that τ is an automorphism and dτ = τd, we see that

d(u)τ−1(d([x, d(v)]σ,τ )) = 0, for all u, v ∈ U, x ∈ R.

By Theorem 2.8, we conclude that

U ⊆ Z or d([x, d(v)]σ,τ ) = 0, for all v ∈ U, x ∈ R.

If U ⊆ Z, then d(U) ⊆ Z, and so the proof is completed.
Now, we have d([x, d(v)]σ,τ ) = 0, for all u, v ∈ U, x ∈ R. Applying the hypothesis, we

get

(2.7) [d(x), d(v)]σ,τ = 0, for all v ∈ U, x ∈ R.

Taking xd(u) instead of x in the above equation and using d2(u) = 0, we �nd that

[d(x)d(u), d(v)]σ,τ = 0.

(2.7) yields that

[d(x), τ(d(U))]d(u) = 0, for all u ∈ U, x ∈ R.
By Theorem 2.8, we have

U ⊆ Z or [d(x), τ(d(U))] = 0, for all x ∈ R.
If U ⊆ Z, then d(U) ⊆ Z. This implies that [d(x), τ(d(U))] = 0, for all x ∈ R. So, we
must have [d(x), τ(d(U))] = 0, for all x ∈ R for any cases. Since U ∩ S∗ (R) ⊆ U, we get

[d (R) , τ (d (U ∩ S∗ (R)))] = (0) .

From Lemma 2.2, it implies that τ (d (U ∩ S∗ (R))) ⊆ Z and so d (U ∩ S∗ (R)) ⊆ Z. Since
u − u∗, u + u∗ ∈ U ∩ S∗ (R) for all u ∈ U, we have d (u) − d (u∗) , d (u) + d (u∗) ∈ Z.
Therefore 2d (u) ∈ Z, for all u ∈ U. Since charR 6= 2, it is implies that d (u) ∈ Z, for all
u ∈ U. Namely, d (U) ⊆ Z. This completes the proof. �

2.10. Theorem. Let R be a ∗−prime ring with characteristic not 2, U be a nonzero
∗− (σ, τ)−Lie ideal of R, d be a nonzero derivation of R such that dτ = τd, σd = dσ and
∗ be commute with σ, τ and d. If d2(U) = (0), then U ⊆ Z.

Proof. Applying the same arguments that are used in the proof of Theorem 2.9, we get

(2.8) d(τ (u))d([x, u]σ,τ ) = 0, for all u ∈ U, x ∈ R.

Replacing u by u+ v in (2.8) and using this, we have

(2.9) d(τ (u))d([x, v]σ,τ ) + d(τ (v))d([x, u]σ,τ ) = 0, for all u, v ∈ U, x ∈ R.

Multiplying (2.9) from the left by d(τ (u)) and using d(τ (u)) = τ(d (u)) ∈ Z by Theorem
2.9, we �nd that

0 = d(τ (u))d(τ (u))d([x, v]σ,τ ) + d(τ (u))d(τ (v))d([x, u]σ,τ )

= d(τ (u))2d([x, v]σ,τ ) + d(τ (v))d(τ (u))d([x, u]σ,τ ).

By (2.8) it holds that

(2.10) d(τ (u))2d([x, v]σ,τ ) = 0, for all u, v ∈ U, x ∈ R.

For any u ∈ U, x ∈ R, [xσ(u), u]σ,τ = [x, u]σ,τ σ(u) ∈ [R,U ]σ,τ . Taking [x, u]σ,τ σ(u)

instead of [x, v]σ,τ in (2.10) and using this, we obtain

(2.11) d(τ (u))2 [x, v]σ,τ d(σ(v)) = 0, for all u, v ∈ U, x ∈ R.
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Writing v by v + w in (2.11) and using this, we have

d(τ (u))2 [x, v]σ,τ d(σ(w)) + d(τ (u))2 [x,w]σ,τ d(σ(v)) = 0, ∀u, v, w ∈ U, x ∈ R.

Multiplying the last equation from the right by d(σ (v)) and using d(σ (v)) = σ(d (v)) ∈ Z
by Theorem 2.9, we get

0 = d(τ (u))2 [x, v]σ,τ d(σ(w))d(σ (v)) + d(τ (u))2 [x,w]σ,τ d(σ(v))d(σ (v))

= d(τ (u))2 [x, v]σ,τ d(σ(v))d(σ (w)) + d(τ (u))2 [x,w]σ,τ d(σ(v))
2.

From (2.11), we conclude that

d(τ (u))2 [x,w]σ,τ d(σ(v))
2 = 0, for all u, v, w ∈ U, x ∈ R.

Using d(σ(v)) ∈ Z, we obtain that

(2.12) d(τ (u))2 [x,w]σ,τ Rd(σ(v))
2 = (0), for all u, v, w ∈ U, x ∈ R.

Replacing v by v∗ in this equation, we get

d(τ (u))2 [x,w]σ,τ Rd(σ(v
∗))2 = (0).

Since ∗ commutes with σ, τ and d, we get

(2.13) d(τ (u))2 [x,w]σ,τ R(d(σ(v))
2)∗ = (0), for all u, v, w ∈ U, x ∈ R.

Equations (2.12) and (2.13) yields that

d(τ (u))2 [x,w]σ,τ = 0 or d(σ(v))2 = 0, for all u, v, w ∈ U, x ∈ R.

If d(σ(v))2 = 0 for all v ∈ U, then it implies that d(u)2 = 0, and so, we get
d(τ (u))2 [x,w]σ,τ = 0 for all u,w ∈ U, x ∈ R. Again using d(τ (u)) = τ(d (u)) ∈ Z, we
have

(2.14) d(τ (u))2R [x,w]σ,τ = (0), for all u,w ∈ U, x ∈ R.

Writing u by u∗ in this equation, we get

(2.15) d(τ (u∗))2R [x,w]σ,τ = (0), for all u,w ∈ U, x ∈ R.

Combining (2.14) and (2.15) equations and using the ∗−primeness of R, we arrive at

d(τ (u)) = 0 or [x,w]σ,τ = 0, for all u,w ∈ U, x ∈ R.

If d(τ (u)) = 0, for all u ∈ U, then d(U) = (0), and so U ⊆ Z by Theorem 2.7.
Now, we get [x,w]σ,τ = 0 for all w ∈ U, x ∈ R. Replacing x by vx and using this, we

get

0 = [vx,w]σ,τ = v[x, σ(w)] + [v, w]σ,τ x

= v[x, σ(w)]

and so

U [x, σ(w)] = 0, for all w ∈ U, x ∈ R.

According to Lemma 2.5, we obtain that U ⊆ Z. This completes the proof. �

2.11. Remark. Our assumption that ∗d = d∗ implies that both the symmetric and
skew-symmetric elements are stable under d. This assumption is commonly used in the
literature and it would be interesting to see which of these results hold without this
assumption.
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