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Solutions of the Maximum of Difference Equations
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Abstract: The behaviour of the solutions of the following system of difference equations is examined.
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where the initial conditions are positive real numbers.
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Maksimumlu Fark Denkleminin C6ziimleri

Ozet: Asagidaki Maksimumlu fark denklemin sisteminin ¢oziimlerinin davramslart incelendi.
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burada baslangi¢ sartlar reel sayilardir.
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INTRODUCTION

Investigations on the recent studies show that researches on the periodic nature of nonlinear
difference equations have been an object of great interest. Although difference equations are
relatively simple in form, it is, unfortunately, extremely difficult to understand thoroughly the
periodic behavior of their solutions. The periodic nature of nonlinear difference equations of the

max type has been investigated by many authors (see 1-30).

Definition 1.1. A sequence &nln=—1 is said to be eventually periodic with period p if there is
ng € -k, .....,—1,0,1} sych that *n+r = *n forall ® = 7 If ns = —k | then we say that the

sequence ndn=-r is periodic with p.

Definition 1.2. Let | be an interval of real numbers and let f:1°* — 1 be a continuously
differentiable function, where s is a non-negative integer. Consider the difference equation

Xy = F (X Xy g0ee X ) fOr n=0,1,2,... )

with the initial values X_g,...,X, € | . A point x called an equilibrium point of Eq.(2) if

x= f(X,...,X).

Definition 1.3. A positive semicycle of a solutions {Xn }:,O:_s of Eq.(2) consists of a string of
terms {X, s Xjagseees Xm}, all greater than or equal to equilibrium x with 1 >—s and m<oo such

as that either | =—s or | >-s ve X,_; <X and either m=o00 or m<oo and X, <X.

Definition 1.4. A negative semicycle of a solutions {Xn }:]O:_S of EQ.(2) consists of a string of
terms {X, D IV } all less than or equal to equilibrium X with | >—s and m < oo such that

either | =—s or 1 >-s and X,_; > X and either m=o00 or m<oo and X, 4 >X.

MAIN RESULTS

Let xand 9 be the unique positive equilibrium of Eq.(1), then clearly
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- {1 9}_— . {1 i}
X=MaX<{=,=pnYy=MN{=,=
X X y y

x=1ox c1s X=landx=Loxi =,
X X

y=1oy c1oy=tandy=2=y =X,
y y

From which we can obtain X =landy =1.

Lemma 2.1. Assume that, 1<X; <X, <X, <X <Y, <Y, <Y<Y,
1<X—3<X—2<X—1<Xo<y_1<y—3<yo<y_211<X—3<X—2<X—1<Xo<y_2<y—3<yo<y_1’
1<X 3 <X, <Xy <X <Y3<VY <Y<V, 1<Xy <X, <Xy <X<Y,<Y;<Y3<Y,
1<X—3<X—2<X—1<Xo<y—3<yo<y_1<y_zv1<X—3<X—2<X—1<Xo<yo<y_2<y—3<y_1,’
1< Xy <X, <X <X <Y <VYa<VY,<VY, ,1<X3<X,<X, <X <Y <Y, <Ys<VY,,
1<X 3 <X, <X <X <Ya<VY,<Y <V, 1<X<X, <X, <X <VY,a<Y,<Y,<VY,,
1< X g <X, <X <X <Y,<Ya<Y <V 1<X,3<X,<X,<X<Y,<Y,<Ys<VY,,
1<X 3 <X, <X, <X <Y, <Ya<VY,<VY , 1<X,<X, <X, <X <VYy<Ys<Y,<VY,,
1< Xy <X, <X <X <Y <Y <Y,<VY , 1<X3<X,<X, <X <Ya<Y,<Y,<VY,

Then the following statements are true for the solutions of Eq.(1) :

a) (x,.y,) is the solution, solution x,, for n>1and solution y,, for n>0; every positive
semicycle consists of six terms, every negative semicycle consists of two terms;

b) (x,.y,) is the solution, solution x,,, for n>1and solution y,, for n>0; every positive
semicycle of length six is followed by a negative semicycle of length two;

c) (x,.y,) is the solution, solution x,, for n>1and solution y,, for n>0; every negative
semicycle of length two is followed by a positive semicycle of length six.

Proof. a)
X = max{iﬁ} Yo o
X, Xa X
o L 515 5
Ys Y Y,

yzzmax{i’_xl }:max{i' Yo }: Yo <§/
yo y_2 yo X_3 Yo, X—Sy—z
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X3=max{£,£ =max{& Yo }—&>)_(
X Xy Yo X5X,Y., Yo
y3=ma><{i,—2}=max{_3, % }:h>g
yl y—l Xo y73y71X72 X0
X, = max{i,i}: max{ye»x2 y_g}: YaXo |
X2 XO X0 X0 XO
Y. = maX{i,X—}z max{x?’yZ 1_2}: X3y, >)_/
y2 yO yo yO yO
2 f—
Xs :max{i,ﬁ}:max{ﬁ’ X4 32/2}_ Yo S ¥
50X X3 Yo X3
2 2 _
Ys = max{i,ﬁ}: max{ﬁ, L 52}— Vs 225y
Ys Y1 Y Xy X,
y X2

X, = max{i,_ﬁ} = max{ﬁ’ yoy_z}: YoYoo > X
X5 X; Yo X X

2 2y, 2 2, 2 _
y; = max i,ﬁ = Mmax XS , Vs )2‘2 = Yoa )2—2 >y
YaX, X X,

3 —_—
X8=max{i’_7}=max{ );0 Z’y—3X_2}=y1>X
Xs X4 Y3 X, X,
X

Consequently, we have obtained,

X > X, Xg <X, Xg <X, Xy >X, X5 > X, X >X, X, >X, Xg>X, ...

Vi<V, Vo<V, Ya> Y, Ya>Y, Y5> Y, Yo >V, V2>V, Vs>V, ....
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Hence, the solution x,, forn >1and the solution y,, for n>0; every positive semicycle consists of
six terms, every negative semicycle consists of two terms. The proof is:

a) The solution is x,, for N >1and solution y, for N 0, every positive semicycle consists of
six terms, every negative semicycle consists of two terms;
b) Using the proof a);

Therefore, the solution x,, forn>1and solution y, for n>0; every positive semicycle of length
six is followed by a negative semicycle of length two.

c) Using the proof a).

Therefore, the solution x,, for n>1and solution y,, for n>0; every negative semicycle of length
two is followed by a positive semicycle of length six.

Lemma 2.2. Assume that,

LI<X g <X, <X <X <Y,<Y, <Y<V 1<X, <X, <X, <X <Y, <Y,<Y,<VYs,
1<X 3 <X, <X, <X <Y <Yo<Y,<VY,s,l<X,<X,<X,<X<VY,;<VY,<Y,<VY,,
1<X 3 <X, <X <X <Y<Y, <Y,<VYo,1<X,<X,<X,<X<Y,<Y,<Y,<VY,

Then the following statements are true for the solutions of Eq.(1) :

a) (x,.yn) is the solution, solution x, for n2>land solution yn for n=0, every positive
semicycle consists of six terms, every negative semicycle consists of two terms;

b) (xn.yn) is the solution, solution x, for N2>1and solution yn for n=0; every positive
semicycle of length six is followed by a negative semicycle of length two;

) (xpn.yn) is the solution, solution x, for "=land solution y, for N=0: every negative
semicycle of length two is followed by a positive semicycle of length six.

Proof. Similarly, we can obtain the proof of Lemma 2.2 as in the proof of Lemma 2.1.
Lemma 2.3. Assume that,

1<y, <Y, <Y <Yy<X <X;<X,<X5, 1l<y,<VYy,<VY,;<VY,<X <X,<X,;<X,

1<y <Y, <Y <VYo<X, <X <X;<X; 1<y, ,<Yy,<Y,;<VY,<X,<X,;<X <X,

1<y, <Y, <Y <Y <X ;<X <X,<X; 1<y,,<Yy,<Yy,<VY,<X;<X,<X <X,

Then the following statements are true for the solutions of Eq.(1) :

d) (x,.y,) is the solution, solution x,, for n>0and solution y, for n>1; every positive
semicycle consists of six terms, every negative semicycle consists of two terms;

18
MANAS Journal of Engineering, Volume 5 (Issue 1) © 2017  www.journals.manas.edu.kg




Simsek D., Ogul B.,Solutions of the Maximum of Difference Equations...

e) (x,.y,) is the solution, solution x,, for n>0and solution y, for n>1; every positive
semicycle of length six is followed by a negative semicycle of length two;

f) (xn.y) is the solution, solution x,, for n>0and solution y, for n>1; every negative
semicycle of length two is followed by a positive semicycle of length six.

Proof. Similarly, we can obtain the proof of Lemma 2.3 as in the proof of Lemma 2.1.
Lemma 2.4. Assume that,

1<y73<y72<y71<y0<x73<x72<x71<x0’1<y73<y72<yfl<y0<x73<xfl<x72<x0

1<y, <Y, <Y <Yy <X3<X,;<X <X, 1<Yy,<Vy,<Yy,<Y,<X <X3<X,;<X,

1<y73<y72<y71<y0<x0<x73<x72<x71’1<y73<y72<yfl<y0<x71<x0<x73<x72

1<y_3<y_2<y_1<y0<x_l<x_2<x_3<x0,1<y_3<y_2<y_1<y0<x_l<x_3<x0<x_2

1<y, <Y, <Y <Y <X,<X3<X<X,; 1<y,<y,<Vy, <Y, <Xz<X,<X <X,

1<y, <Yy, <Y <Y, <Xg<X <X,<X, 1<y73<y72<y71<y0<x72<x0<x73<x71,

1<y <Y, <Y <VYp<X <X, <Xz<X; 1<ys<y,<y,;<Y,<Xz<X<X;<X,

l<y—3<y—2<y—l<y0<XO<Xfl<X73<X72 1<y—3<y—2<y—l<y0<x—2<xf3<xfl<xo’

1<y73<y72<y71<yo<X72<X71<X73<X0’ 1<y, <Y, <Y <Y <X;<Xj<X,<X

Then, the following statements are true for the solutions of Eq.(1) :

a) (x,.yy) is the solution, solution x,, for n>0and solution y, for n>1; every positive
semicycle consists of six terms and every negative semicycle consists of two terms;

b) (x,.y,) is the solution, solution x,, for n>0and solution y, for n>1; every positive
semicycle of length six is followed by a negative semicycle of length two;

c) (x,.yy) is the solution, solution x,, for n>0and solution y, for n>1; every negative
semicycle of length two is followed by a positive semicycle of length six.

Proof. Similarly, we can obtain the proof of Lemma 2.4 as in the proof of Lemma 2.1.

Theorem 2.1. Let (x,.y,) be the solution of Eq.(1) for

1<X 3 <X, <X <X <Y, <Y,<VYo<VY , 1<X,<X,<X;<X<Y,;<Y,<Y,<VY,,
1<X <X, <X <X <Y,<VYa<VYo<VY, ., ,1<X,3<X,<X,;<X<Y3<Y,<Y,<VY,,
1<x73<x72<x71<x0<y72<y71<y73<y0’1<x73<x72<x71<x0<y73<y0<y71<y72,
1<X 3 <X, <X <X <Yo<Y,<VYo<VY,,1<X,<X,<X,<X<Y,<Y3<VY,<VY,,
1< X <X, <X <X <Y <VYo<VYa<VY,,1<X,3<X,<X,;<X<Ys<VY,<VY,;<VY,

19
MANAS Journal of Engineering, Volume 5 (Issue 1) © 2017  www.journals.manas.edu.kg




Simsek D., Ogul B.,Solutions of the Maximum of Difference Equations...

1<X <X, <X <X <Y3<Yy<VY,<Y,,1<X,<X,<X,;<X<VY,<Y3<VY,<VYy,
1<X <X, <X <X <Y, <VYo<VYoa<VY,,1<X;<X,<X, <X <Y, <Y,<VY,<VYy,
1<X <X, <X <X <Yo<VYs<VY,<VY,,1<X,<X,<X, <X <VY,<Y,<Y,<VYy,

1<X 3 <X, <Xg <X <Ya<Y,<Y<Y,

Then every (x,.y, )is periodic with period eight.

3 2
y =[h X X YaXo Yo YaXih YoV YoXs j
n 1 b 1 b b 3 1 1 e
X3 YiX, Yo X X 3 X X 3 X

2 2, 2 2
y _( X Yo Yo Xu¥, YaX, o VXS Y )
n — ’ 1 1 ’ 2 y )2 2 1 2 1
Y X5Y, X, Yo X Xo X3

Proof.

2
stmax{l,ﬁ}zmax{&, Yo }_&
X Xy Yo X3X4Yo, Yo
y3:max{i,ﬁ}:max{_3, X9 }:_3
yl y—l Xo y73 yle—Z X0
X, = max {i , ﬁ} = max{ ELS _g} Y_3X,
XZ XO XO XO XO
Y, = max {i,é} = max {—XSyZ 1X_2} _X3Y,
Y2 Yo Yo Yo Yo

20

MANAS Journal of Engineering, Volume 5 (Issue 1) © 2017  www.journals.manas.edu.kg




Simsek D., Ogul B.,Solutions of the Maximum of Difference Equations...

Y, = max {i ﬁ} - max{ XO2 y,32x722 } _ y,32X722
7 ' y
YA yigz X, on on

1 y7} { X ygxz}
Xg = Max< —, =L b =max , =y
{XG X4 y—33X—22 XO '

If n>0, then

3 2
N :[ Yo X Xs ¥YXo Yo YuXoh YoV Yoo j
n 1 1 1 ) 1 3 1 1 g
X -3 y—3 X -2 yO XO X73 XO X—3 XO

R y y y_ y yuus
y—3 X73 y—Z XO yO XO2 ’ XO2 X732 ] .

y :[ X Yo Y Xa¥o YK, o YD W

Theorem 2.2.

Let (*n-¥n ) be the solution of the system of difference equations (1) for

1<X 3 <X, <X <X <Y<Y, <VYo<VYs, 1<X<X, <X, <X <Yy<VY,<Y,;<VYg;,
1< X g <X, <X <X <Y <VYo<VY,<Vs,1<X,<X,<X,<X<Y,;<Y,<Y,<VY,,
1<X 3 <X, <X <X <Y<Y, <Y,<VY,,1<X,<X,<X,<X<Y,<Y,<Y,<VY,

Thenevery (x,,y,) is periodic with period eight.
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Yo 1 X5 Yo YoYoo
X, = 1_1_1X!_1 ,Xi 1X!-'-
[ X 0 X y3 0 X 0 j

o Yo -3 3

2
yn:(ﬁlLablM!yS'y2’X02’yL2’.“]
Yi X3¥Yo % Yo Xs

Proof. Similarly, we can obtain the proof of Theorem 2.2 as in the proof of Theorem 2.1. which
completes the proofs of the given theorems.

Theorem 2.3.

Let (*n-¥n ) be the solution of the system of difference equations (1) for

1<y_3<y_2<y_l<y0<xo<x_1<x_2<x_3,1<y_3<y_2<y_l<y0<x0<x_2<x_l<x_3
1<y <Y, <Y <Yy <X, <X <X;<X,3 1<Y,<Y,<Y,;<Y,<X,<X,;<X <X,

1<y73<y72<y71<y0<x71<x0<x72<x731 1<y <Y, <Y, <Yy <X, <X,<X <X,

Then every (x,,Y,) is periodic with period eight.

2
X X X X
Xn :[yo ) - ' 731y73 = IX_3)X_21y021 021"']
X3 Xo¥s Yo % Ys

X, 1 X XX
Y, :(_0,_,&,yO’_O’X_syO,M,yO,“_J
Ys Yo %o Y, Y

Proof. Similarly, we can obtain the proof of Theorem 2.3 as the in the proof of Theorem 2.1.
which completes the proofs of the given theorems.

Theorem 2.4.

Let (*n-¥n ) be the solution of the system of difference equations (1) for

1<y <Y, <Y <Yy <Xg<X, <X ;<X 1<y ,<y,<y, <Y, <X3<X,;<X,<X
1<y <Y, <Y <Yy <X3<X ;<X <X, 1<y, ,<Vy,<Yy, <Y,<X <Xz;<X,;<X,

1<y—3<y—2<y—l<yO<XO<X73<X72<X—1 1<y—3<y—2<y—1<y0<x—l<X0<X73<X72
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1<y 3 <Y, <Y <Y <X <X, <X3<X 1<y <y,<y,<Y,<X;<Xz<X <X,

1<y—3<y—2<y—l<y0<x—2<xf3<X0<X—l’1<y—3<y—2<y—l<y0<x—3<X72<XO<Xfl

1<y, <Y, <Y <Yy <Xg<X <X,<X; 1<y,<Yy,<Y,<VY,<X,<X <Xz;<X,

1<y73<y72<yfl<y0<x0<x72<x73<xfl’ 1<y73<y72<yfl<y0<x73<x0<x71<x72’

1<y73<y72<yfl<y0<x0<x71<x73<x72’ 1<y73<y72<yfl<y0<x72<x73<xfl<xo’

1<y, <Y, <Y <Yy <X, <X,;<X3<X, 1<y,,<y,<Yy,<VY,<X,;<X3<X,<X

Then every (x,,Y,) is periodic with period eight.

2 12 2 1 2!"'

2 2 2 2
. :[yo X Xs Xo¥s YoX5T XSV % ]
n ’ ’ ’ ’
X -3 X -2 y—3 yO XO yO yO y—3

3 H

y =(ﬁ L & y—2X—3 ﬁ y_22X_33
n Yi YoX3 X, Yo Y3 Yo Y, Yo

Proof. Similarly, we can obtain the proof of Theorem 2.4 as in the proof of Theorem 2.1. which
completes the proofs of the shown theorems.

EXAMPLES

EXAMPLE 3.1: If the initial conditions are selected as follows:

x[=3]72; x[-2]=3; x[-1]=4; x[0]=5; y[-3]=8; y[-2]=7; y[-1]=6; y[0]=9;
then the following solutions are obtained:
x(n) = { 4.5, 0.208333, 0.222222, 4. 8, 4.5, 36.864, 31.5, 4.8, 4.5, 0.208333, 0.222222, 4.8, 4.5,
36.864,31.5,4.8, ...}
y(n) = {0.625, 0.642857, 1.6, 1.55556, 7.68, 7., 23.04, 20.25, 0.625, 0.642857, 1.6, 1.55556,
7.68,7.,23.04, 20.25,...}

The graph of the solutions is given below.
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XN,
35+¢
30|
25|
20¢
15+
10+
Al /
IX[‘li‘u‘\HHu‘H\“H\““\H“\H‘u_;n
i 5 10 15 20 25 30 35
Figure 3.1. x(n) graph of the solutions
y.n,
20|
15]
10!
50
;y:‘ 1“ L L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L \’\-\. n
: 5 10 15 20 25 30 35

Figure 3.2. y(n) graph of the solutions
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EXAMPLE 3.2: If the initial conditions are selected as follows:
x[—3]=9; x[-2]=8; x[-1]=7; x[0]=6; y[-3]=2; y[-2]=3; y[—1]=4; y[0]=5;

then the following solutions are obtained:
x(n) = { 0.555556, 0.375, 1.8, 2.66667, 9, 8, 25,9, 0.555556, 0.375, 1.8, 2.66667, 9, 8, 25,9, ...}
y(n) ={3,0.2,0.333333, 5, 3,45, 24, 5, 3,0.2, 0.333333, 5, 3, 45, 24, 5,...}

The graph of the solutions is given below.

X.N,
25

20|
15/

10|

L L L L L | L L L | L L L L L L L L L L L n
10 15 20
Figure 3.3. x(n) graph of the solutions
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yinl

20
15
.
;
Y > S ' S S S S TS
. 5 10 15 20 25 30 35

Figure 3.4. y(n) graph of the solutions
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