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Abstract 

In this paper, we introduce the concept of 

paracompactness in multiset topological spaces. We 

give some useful results in m-paracompact m-

topological spaces. 
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1. Introduction 

 

Multi-set theory was introduced by Cerf et al. 

(1971) and then Peterson (1976), Yager (1986) and 

Jena (2001) made contribution to the theory 

further. Blizzard (1991) brought multi-set theory a 

new perspective and formalized the theory. Girish 

and Jacob (2012), introduced m-topology for 

multi-sets. El-Sheikh et al. (2015) introduced 

separation axioms for multi-set topological spaces. 

Tantawy et al. (2015) studied the concept of 

connectedness for multi-set topological spaces. 

Mahanta and Samanta (2017) studied the concept 

of compactness for multi-set topological spaces. 

 

2. Preliminaries 

 

We give some basic definitions (Girish and Jacob, 

2012; Sobhy et al., 2015; Mahanta and Samanta, 

2017). 

 

Definition 1. Let 𝐶𝑀 ∶ 𝑋 → ℕ a function where 𝑋 

is a set and ℕ the set of non-negative integers.  

𝑀 ≔ {𝐶𝑀(𝑥)/𝑥 ∶ 𝑥 ∈ 𝑋, 𝐶𝑀(𝑥) > 0} 

is called a multiset (or mset) drawn from 𝑋. 
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A mset 𝑀 drawn from a set 𝑋 is said to be an empty 

mset, denoted by 𝜙, if 𝐶𝑀(𝑥) = 0 for every 𝑥 in 𝑋. 

 

Notation 1. It is denoted by 𝑥 ∈𝑛 𝑀 the fact that 𝑀 

is a mset drawn for a set 𝑋 and 𝑥 appears 𝑛 times 

in 𝑀. 

 

Definition 2. The support set of a mset 𝑀 drawn 

from a set 𝑋, denoted by 𝑀∗, is defined by 

{𝑥 ∈ 𝑋 ∶ 𝐶𝑀(𝑥) > 0}. 
 

Notation 2. [𝑀]𝑥 denotes that 𝑥 belongs to the 𝑀∗, 

and |[𝑀]𝑥| denotes the appearing number of 𝑥 in 

𝑀. 

 

Definition 3. The set 

[𝑋]𝑚 ≔ {𝑀 ∶ 𝑀 is a mset drawn from 𝑋 and ∀𝑥
∈ 𝑋, 𝐶𝑀(𝑥) ≤ 𝑚} 

is called the multiset (or mset) space. 

 

Definition 4. Let 𝑀, 𝑁 ∈ [𝑋]𝑚. 

1. 𝑀 = 𝑁 if, for every 𝑥 in 𝑋, 𝐶𝑀(𝑥) = 𝐶𝑁(𝑥) 

(mset equality condition), 

2. 𝑀 ⊆ 𝑁 if, for every 𝑥 in 𝑋, 𝐶𝑀(𝑥) ≤ 𝐶𝑁(𝑥) 

(submset condition), 

3. 𝑀 ∪ 𝑁 is defined by 𝐶𝑀∪𝑁(𝑥) ≔
max{𝐶𝑀(𝑥), 𝐶𝑁(𝑥)} for every 𝑥 in 𝑋 (mset union), 

4. 𝑀 ∩ 𝑁 is defined by 𝐶𝑀∩𝑁(𝑥) ≔
min{𝐶𝑀(𝑥), 𝐶𝑁(𝑥)} for every 𝑥 in 𝑋 (mset 

intersection), 

5. 𝑀 ⊕ 𝑁 is defined by 𝐶𝑀⊕𝑁(𝑥) ≔
min{𝑚, 𝐶𝑀(𝑥) + 𝐶𝑁(𝑥)} for every 𝑥 in 𝑋 (mset 

addition) 

6. 𝑀 ⊕ 𝑁 is defined by 𝐶𝑀⊖𝑁(𝑥) ≔
max{0, 𝐶𝑀(𝑥) − 𝐶𝑁(𝑥)} for every 𝑥 in 𝑋 (mset 

subtraction). 

 

Definition 5. Let 𝑀 ∈ [𝑋]𝑚. The (absolute) 

complement of 𝑀 is the mset 𝑀𝑐 where 𝐶𝑀𝑐(𝑥) ≔
𝑚 − 𝐶𝑀(𝑥) for every 𝑥 in 𝑋. 

 

Definition 6. Let 𝑀 ∈ [𝑋]𝑚. The power mset of 𝑀 

denoted by 𝑃(𝑀) is defined by 
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𝐶𝑃(𝑀)(𝑁) ≔ {

1 𝑁 = 𝜙

∏ (
|[𝑀]𝑥|

|[𝑁]𝑥|
)

𝑥∈𝑁∗

𝑁 ≠ 𝜙 

where 𝑁 is a submset of 𝑀. 

 

The power set of a mset 𝑀, denoted by 𝑃∗(𝑀) is 

the support set of the power mset 𝑃(𝑀). 

 

Definition 7. Let 𝑀 ⊆ [𝑋]𝑚, that is, ℳ be a 

collection of msets in [𝑋]𝑚, and 𝑀∗ = {𝑀∗ ∶ 𝑀 ∈
ℳ}. 

1. ⋃ℳ is defined by 𝐶⋃ℳ(𝑥) ≔ max{𝐶𝑀(𝑥) ∶
𝑀 ∈ ℳ} for every 𝑥 in 𝑋 (generalized mset union), 

2. ⋂ℳ is defined by 𝐶⋂ℳ(𝑥) ≔ min{𝐶𝑀(𝑥) ∶
𝑀 ∈ ℳ} for every 𝑥 in 𝑋 (generalized mset 

intersection), 

3. ⊕ ℳ is defined by 𝐶⊕ℳ(𝑥) ≔
min{𝑚, ∑ 𝐶𝑀(𝑥)𝑀∈ℳ } for every 𝑥 in 𝑋 

(generalized mset addition). 

 

Definition 8. Let 𝑀 ∈ [𝑋]𝑚 and 𝜏 ⊆ 𝑃∗(𝑀). 𝜏 is 

called a multiset topology (or m-topology) on 𝑀, 

an ordered pair (𝑀, 𝜏) a multiset topological space 

(or m-topological space) if 𝜏 satisfies the following 

conditions: 

1. ∅, 𝑀 ∈ 𝜏, 

2. For every 𝒢 ⊆ 𝜏, ⋃𝒢 ∈ 𝜏, 

3. For every finite 𝒢 ⊆ 𝜏, ⋂𝒢 ∈ 𝜏. 

 

Let (𝑀, 𝜏) be a m-topological space. Each mset 

𝐺 ∈ 𝜏 is called an open mset of 𝑀. 

 

Definition 9. Let 𝑀 ∈ [𝑋]𝑚, (𝑀, 𝜏) be a m-

topological space. A submset 𝑁 of 𝑀 with m-

topology 

𝜏𝑁 ≔ {𝑁 ∩ 𝑈 ∶ 𝑈 ∈ 𝜏} 

is called a subspace of 𝑀. 

 

Definition 10. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. A submset 𝑁 ⊆ 𝑀 is called a 

closed submset if 𝑀 ⊖ 𝑁 is an open mset. 

 

Theorem 1. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. The followings hold: 

1. The msets 𝑀, ∅ are closed msets. 

2. The intersection of arbitrarly many closed 

submsets of 𝑀 is a closed mset. 

3. The union of finitely many closed submsets of 𝑀 

is a closed mset. 

 

Definition 11. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. A neighborhood of a mset 𝐴 ⊆
𝑀 is a submset 𝑁 of 𝑀 such that there exists an 

open mset 𝑈 such that 𝐴 ⊆ 𝑈 ⊆ 𝑁. A 

neighborhood of an element 𝑥 ∈𝑘 𝑀 is a submset 

𝑁 of 𝑀 such that there exists an open mset 𝑈 such 

that 𝑥 ∈𝑘 𝑈 ⊆ 𝑁. 

 

Also, a neighborhood is called an open 

neighborhood if it belongs to 𝜏. 

 

Definition 12. Let 𝑀 ∈ [𝑋]𝑚, 𝐴 ⊆ 𝑀 and (𝑀, 𝜏) 

be a m-topological space. 

1. The interior of 𝐴, denoted by 𝐼𝑛𝑡(𝐴), is defined 

by 

𝐶𝐼𝑛𝑡(𝐴)(𝑥) ≔ max{𝐶𝐺(𝑥) ∶ 𝐺 is open mset and 𝐺

⊆ 𝐴}  for every 𝑥 ∈ 𝑋, 
or equivalently, 

𝐶𝐼𝑛𝑡(𝐴)(𝑥)

≔ 𝐶⋃{𝐶𝐺(𝑥)∶𝐺 is open mset and 𝐺⊆𝐴} for every 𝑥 ∈ 𝑋, 

2. The closure of 𝐴, denoted by 𝐶𝑙(𝐴), is defined 

by 

𝐶𝐶𝑙(𝐴)(𝑥) ≔ min{𝐶𝐾(𝑥)

∶ 𝐾 is closed mset and 𝐴
⊆ 𝐾}  for every 𝑥 ∈ 𝑋, 

or equivalently, 

𝐶𝐶𝑙(𝐴)(𝑥)

≔ 𝐶⋂{𝐶𝐾(𝑥)∶𝐾 is closed mset and 𝐴⊆𝐾} for every 𝑥 ∈ 𝑋, 

3. An element of 𝑘/𝑥 ∈ 𝑀 is called a limit point of 

an mset 𝐴 if every neighborhood of 𝑘/𝑥 intersects 

𝐴 in some point with non-zero multiplicity other 

than 𝑘/𝑥 itself. We denote the mset of all limit 

points of 𝐴 by 𝐴′. 

 

Theorem 2. Let 𝑀 ∈ [𝑋]𝑚, 𝐴 ⊆ 𝑀, 𝑥 ∈𝑘 𝑀 and 

(𝑀, 𝜏) be a m-topological space. Then 𝑥 ∈𝑘 𝐶𝑙(𝐴) 

if and only if every open mset 𝑈 containing 𝑘/𝑥 

intersects 𝐴. 

 

Theorem 3. Let 𝑀 ∈ [𝑋]𝑚, 𝐴, 𝐵 ⊆ 𝑀 and (𝑀, 𝜏) 

be a m-topological space. Then the following 

properties hold: ∀𝑥 ∈ 𝑋, 

1. 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑥) ⇒ 𝐶𝐼𝑛𝑡(𝐴)(𝑥) ≤ 𝐶𝐼𝑛𝑡(𝐵)(𝑥), 

2. 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑥) ⇒ 𝐶𝐶𝑙(𝐴)(𝑥) ≤ 𝐶𝐶𝑙(𝐵)(𝑥), 

3. 𝐶𝐼𝑛𝑡(𝐴∩𝐵)(𝑥) = min{𝐶𝐼𝑛𝑡(𝐴)(𝑥), 𝐶𝐼𝑛𝑡(𝐵)(𝑥)}, 

4. 𝐶𝐶𝑙(𝐴∪𝐵)(𝑥) = max{𝐶𝐶𝑙(𝐴)(𝑥), 𝐶𝐶𝑙(𝐵)(𝑥)}. 

 

Definition 13. Let 𝑀 ∈ [𝑋]𝑚. A collection 𝒞 ⊆
𝑃∗(𝑀) is said to cover 𝑀, or to be a cover of M if, 

∀𝑥 ∈ 𝑋, 

𝐶𝑀(𝑥) ≤ 𝐶⋃𝒞(𝑥). 
 

Definition 14. Let 𝑀 ∈ [𝑋]𝑚, 𝒞 be a cover of 𝑀. A 

subcollection 𝒞∗ of 𝒞 is called a subcover of 𝒞 for 

𝑀 that covers 𝑀 if it is a cover of 𝑀. 

 

Definition 15. Let 𝑀 ∈ [𝑋]𝑚, 𝒞 be a cover of 𝑀 

and 𝜏 a multiset topology on 𝑀. A cover 𝒞 is called 

an open cover of 𝑀 if 𝒞 ⊆ 𝜏. 
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Definition 16. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. Then 𝑀 is called m-compact if, 

for every open cover 𝒰 of 𝑀, there exists a finite 

subcover 𝒱 of 𝒰 for 𝑀. 

 

Definition 17. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. 

1. (𝑀, 𝜏) is called m-𝑇1 space if, for every 

𝑥1 ∈𝑘1 𝑀, 𝑥2 ∈𝑘2 𝑀 such that 𝑥1 ≠ 𝑥2, there exists 

open sets 𝐺, 𝐻 such that 𝑥1 ∈𝑘1 𝐺 ∌𝑘2 𝑥2 and 

𝑥1 ∉𝑘1 𝐻 ∋𝑘2 𝑥2. 

2. (𝑀, 𝜏) is called m-𝑇2 space or Hausdorff space 

if, for every 𝑥1 ∈𝑘1 𝑀, 𝑥2 ∈𝑘2 𝑀 such that 𝑥1 ≠
𝑥2, there exists open sets 𝐺, 𝐻 such that 𝑥1 ∈𝑘1 𝐺, 

𝑥2 ∈𝑘2 𝐻 and 𝐺 ∩ 𝐻 = ∅. 

3. (𝑀, 𝜏) is called m-regular space if, for every 

𝑥 ∈𝑘 𝑀 and every closed mset 𝐹 such that 𝑥 ∉𝑘 𝐹, 

there exists open sets 𝐺, 𝐻 such that 𝐹 ⊆ 𝐺, 

𝑥 ∈𝑘 𝐻 and 𝐺 ∩ 𝐻 = ∅. 

4. (𝑀, 𝜏) is called m-𝑇3 space if it is m-regular and 

m-𝑇1 space. 

5. (𝑀, 𝜏) is called m-normal space if, for every pair 

of disjoint closed msets 𝐹1, 𝐹2, there exists open 

sets 𝐺, 𝐻 such that 𝐹1 ⊆ 𝐺, 𝐹2 ⊆ 𝐻 and 𝐺 ∩ 𝐻 =
∅. 

6. (𝑀, 𝜏) is called m-𝑇4 space if it is m-normal and 

m-𝑇1 space. 

 

3. M-Paracompact Multiset Topologies 

 

Definition 18. Let 𝑀 ∈ [𝑋]𝑚, 𝒲 be a cover of 𝑀. 

A cover 𝒯 of 𝑀 is called a refinement of 𝒲 if, for 

every mset 𝑇 in 𝒯 , there exists some mset 𝑊 in 𝒲 

such that 

𝐶𝑇(𝑥) ≤ 𝐶𝑊(𝑥), ∀𝑥 ∈ 𝑋. 
𝒯 is called an open refinement of 𝒲 if 𝒯 ⊆ 𝜏. We 

call 𝒯 a closed refinement of 𝒲 if 𝒯 is a collection 

of closed msets. 

 

Definition 19. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. A collection 𝒲 ⊆ 𝑃∗(𝑀) is 

called locally finite if each 𝑘/𝑥 ∈ 𝑀 has an 𝑈 open 

neighborhood (which intersects only finitely many 

msets in 𝒲) such that, for every mset 𝑉 in only a 

finite subcollection 𝒱 of 𝒲, 

𝐶𝑈∩𝑉(𝑦) > 0, ∃𝑦 ∈ 𝑋. 
 

Proposition 1. Let 𝑀 ∈ [𝑋]𝑚, (𝑀, 𝜏) be a m-

topological space and 𝒲 ⊆ 𝑃∗(𝑀). If 𝒲 is locally 

finite, then  

⋃𝐶𝑙(𝒲) = 𝐶𝑙(⋃𝒲) 

where 𝐶𝑙(𝒲) ≔ {𝐶𝑙(𝑊) ∶ 𝑊 ∈ 𝒲}. 

 

Proof. Let 𝑀 ∈ [𝑋]𝑚 be a mset, (𝑀, 𝜏) a m-

topological space and 𝒲 ⊆ 𝑃∗(𝑀) locally finite. 

From Definition 7(1), for each 𝑊 ∈ 𝒲, 𝐶𝑊(𝑥) ≤

𝐶⋃𝒲(𝑥), ∀𝑥 ∈ 𝑋. Then, from Definition 3(2), for 

each 𝑊 ∈ 𝒲, we have 𝐶𝐶𝑙(𝑊)(𝑥) ≤ 𝐶⋃ 𝐶𝑙(𝒲)(𝑥), 

∀𝑥 ∈ 𝑋. Then max{𝐶𝐶𝑙(𝑊) ∶ 𝑊 ∈ 𝒲} is not 

greater than 𝐶𝐶𝑙(⋃ 𝒲) for every 𝑥 ∈ 𝑋. Thus, from 

Definition 7(1) and Definition 4(2), ⋃ 𝐶𝑙(𝒲) ⊆
𝐶𝑙(⋃ 𝒲). 

 

Conversely, assume 𝑥 ∈𝑘 𝐶𝑙(⋃ 𝒲). Then, from 

the definition of multiset, 𝐶𝐶𝑙(⋃ 𝒲)(𝑥) = 𝑘. Since 

𝒲 is locally finite, we find an open mset 𝑈 of 𝑘/𝑥 

such that for every mset 𝑇 in only a finite 

subcollection 𝒯 of 𝒲, there exists some 𝑦 ∈ 𝑋 

such that 𝐶𝑈∩𝑇(𝑦) > 0. Assume 𝐶⋃ 𝐶𝑙(𝒲)(𝑥) < 𝑘 

which implies 𝑥 ∉𝑘 ⋃ 𝐶𝑙(𝒲). Then, from 

Definition 7(1), for every 𝑊 ∈ 𝒲, 𝐶𝐶𝑙(𝑊)(𝑥) < 𝑘 

and so 𝑥 ∉𝑘 𝐶𝑙(𝑊). Set 𝑉 ≔ 𝑈 ⊖ ⋃ 𝐶𝑙(𝒯) where 

𝐶𝑙(𝒯) ≔ {𝐶𝑙(𝑇) ∶ 𝑇 ∈ 𝒯}. From Definition 12(2) 

and Theorem 1(2), ⋃ 𝐶𝑙(𝒯) is a closed mset. 

Therefore, 𝑉 is an open neighborhood of 𝑘/𝑥 since 

𝑉 = 𝑈 ⊖ ⋃ 𝐶𝑙(𝒯) = 𝑈 ∩ (⋃ 𝐶𝑙(𝒯))𝑐. 

 

On the other hand, the intersection of 𝑉 with each 

mset 𝑊 in 𝒲 is an empty mset. Therefore 𝑉 does 

not intersect ⋃ 𝒲, contrary to 𝑥 ∈𝑘 𝐶𝑙(⋃ 𝒲). 

Then we have reached this contradiction because of 

the assumption that 𝑥 ∉𝑘 𝐶𝑙(⋃ 𝒲). So 

𝑥 ∈𝑘 ⋃ 𝐶𝑙(𝒲). Thus 𝐶𝑙(⋃ 𝒲) ⊆ ⋃ 𝐶𝑙(𝒲). 

 

Definition 20. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. 𝑀 is called m-paracompact if 

every open cover of 𝑀 has a locally finite 

refinement that covers 𝑀. 

 

Proposition 2. Let 𝑀 ∈ [𝑋]𝑚, 𝒲, 𝒯 be covers of 

𝑀. If 𝒯 is a subcover of 𝒲 then 𝒯 is also a 

refinement of 𝒲. 

 

Proof. Let 𝑀 ∈ [𝑋]𝑚, 𝒲 be a cover of 𝑀 and 𝒯 a 

subcover of 𝒲. Then, 𝒯 ⊆ 𝒲, that is, every mset 

𝑇 in 𝒯 is also in 𝒲. If we take the mset 𝑊 as 𝑇, 

then we say that for every mset 𝑇 ∈ 𝒯, there exists 

𝑊 ∈ 𝒲 such that 𝑇 ⊆ 𝑊. Thus, 𝒯 is a refinement 

of 𝒲. 

 

Conclusion 1. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. If 𝑀 is m-compact then 𝑀 is also 

m-paracompact. 

 

Theorem 4. Let 𝑀 ∈ [𝑋]𝑚, 𝐴 ⊆ 𝑀 and (𝑀, 𝜏) be 

a m-paracompact m-topological space. If 𝐴 is 

closed then 𝐴 is m-paracompact as a subspace of 

𝑀. 

 

Proof. 𝑀 ∈ [𝑋]𝑚 be a mset, (𝑀, 𝜏) be a m-

topological space, 𝐴 ⊆ 𝑀 and 𝒰 be an open cover 
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of 𝐴. Since 𝐴 is a subspace of 𝑀, from Definition 

9, for every 𝑈 ∈ 𝒰, there exists a 𝜏-open mset 𝑉𝑈 

such that 𝑈 = 𝑉𝑈 ∩ 𝐴. Let 𝒱 be a collection which 

consists of the mset 𝐴𝑐 and these msets 𝑉𝑈. 

 

𝒱 is an open cover of 𝑀 since these msets 𝑉𝑈 are 

𝜏-open msets and 𝐴 is an 𝜏-closed mset. Then 𝒱 has 

a locally finite refinement, we say 𝒲, because 𝑀 is 

m-paracompact. Let 𝑎 ∈ 𝐴. Since 𝒲 is locally 

finite, 𝑎 ∈ 𝑋 has an open neighborhood 𝐺 whose 

intersection with each msets 𝑊 in only a finite 

subcollection 𝒮 of 𝒲 is non-empty, that is, there 

exists an open neighborhood 𝐺 of 𝑎 ∈ 𝑋 such that 

𝐺 ∩ 𝑊 ≠ ∅ for every msets 𝑊 in only a finite 

subcollection 𝒮 of 𝒲. 

 

Set 𝒲𝐴 ≔ {𝑊 ∩ 𝐴 ∶ 𝑊 ∈ 𝒲, 𝑊 ∩ 𝐴 ≠ ∅} and 

𝒮𝐴 ≔ {𝑊 ∩ 𝐴 ∶  𝑊 ∈ 𝒮, 𝑊 ∩ 𝐴 ≠ ∅}. Then there 

exists an open neighborhood 𝐺 of 𝑎 ∈ 𝐴 such that 

𝐺 ∩ 𝑊 ≠ ∅ for every msets 𝑊 in only the finite 

subcollection 𝒮𝐴 of 𝒲𝐴 and so 𝒲𝐴 is locally finite. 

Since 𝒲 is a refinement of 𝒱, for every mset 𝑊 ∈
𝒲, there exists some mset 𝑉 in 𝒱 such that 𝑊 ⊆
𝑉, that is, 𝐶𝑊(𝑥) ≤ 𝐶𝑉(𝑥) for every 𝑥 ∈ 𝑋. In the 

case 𝑉 = 𝑉𝑈, we have that 𝑊 ∩ 𝐴 ⊆ 𝑉𝑈 ∩ 𝐴 =
𝑈 ∈ 𝒰. In the case 𝑉 = 𝐴𝑐, since 𝑊 ⊆ 𝐴𝑐, for any 

𝑈 ∈ 𝒰, 𝑊 ∩ 𝐴 = ∅ ⊆ 𝑈. So, 𝒲𝐴 is a locally finite 

refinement of 𝒰. Thus, 𝐴 is m-paracompact as a 

subspace of 𝑀. 

 

Theorem 5. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. If 𝑀 is m-paracompact 

Hausdorff then 𝑀 is m-normal. 

 

Proof. Let 𝑀 ∈ [𝑋]𝑚 and (𝑀, 𝜏) be a m-

topological space. Let 𝑥 ∈𝑘 𝑀 and F be a closed 

mset such that 𝑥 ∉𝑘 𝐹, Since 𝑀 is Hausdorff, for 

every 𝑦 ∈𝑚 𝐹, there exists an open neighborhood 

𝑈𝑦 such that 𝑥 ∉ 𝐶𝑙(𝑈𝑦). Let 𝒰 be a collection of 

open mset 𝐹𝑐 and these open msets 𝑈𝑦. Then 𝒰 is 

an open cover of 𝑀. Let 𝒲 is a locally finite 

refinement of 𝒰. Let 𝒲′ be a collection of msets 

𝑊 ∈ 𝒲 such that 𝑊 ∩ 𝐹 ≠ ∅. Therefore, 𝒲′ 

covers F. Set 𝑉 ≔ ⋃ 𝒲′ ⊇ 𝐹. Since 𝒲 is a 

refinement of 𝒰, for every 𝑊 ∈ 𝒲′, there exists 

𝑦 ∈ 𝐹 such that 𝑊 ⊆ 𝑈𝑦 and so 𝐶𝑙(𝑊) ⊆ 𝐶𝑙(𝑈𝑦). 

Then, for every 𝑊 ∈ 𝒲′, 𝑥 ∉ 𝐶𝑙(𝑊). Therefore, 

𝑥 ∉ ⋃ 𝐶𝑙(𝒲′) where 𝐶𝑙(𝒲′) ≔ {𝐶𝑙(𝑊) ∶ 𝑊 ∈
𝒲′}. Since 𝒲 is locally finite, from Proposition 1, 

𝑥 ∉ ⋃ 𝐶𝑙(𝒲′) = 𝐶𝑙(⋃ 𝒲′) = 𝐶𝑙(𝑉). Thus, 𝑀 is 

regular. 

 

Let 𝐴, 𝐵 be disjoint closed msubsets of 𝑀. Then, 

for every 𝑦 ∈𝑚 𝐹, there exists an open 

neighborhood 𝑈𝑦 such that 𝐴 ∩ 𝐶𝑙(𝑈𝑦) = ∅. Let 𝒰 

be a collection of open mset 𝐹𝑐 and these open 

msets 𝑈𝑦. Then 𝒰 covers 𝑀. Let 𝒲 is a locally 

finite refinement of 𝒰. Let 𝒲′ be a collection of 

msets 𝑊 ∈ 𝒲 such that 𝑊 ∩ 𝐹 ≠ ∅. Therefore, 

𝒲′ covers 𝐹. Set 𝑉 ≔ ⋃ 𝒲′ ⊇ 𝐹. Since 𝒲 is a 

refinement of 𝒰, for every 𝑊 ∈ 𝒲′, there exists 

𝑦 ∈ 𝐹 such that 𝑊 ⊆ 𝑈𝑦 and so 𝐶𝑙(𝑊) ⊆ 𝐶𝑙(𝑈𝑦). 

Then, for every 𝑊 ∈ 𝒲′, 𝐴 ∩ 𝐶𝑙(𝑊) = ∅. 

Therefore, ∅ = 𝐴 ∩ (⋃ 𝐶𝑙(𝒲)) = 𝐴 ∩
𝐶𝑙(⋃ 𝒲) = 𝐴 ∩ 𝐶𝑙(𝑉) where 𝐶𝑙(𝒲′) ≔
{𝐶𝑙(𝑊) ∶ 𝑊 ∈ 𝒲′}. Hence, 𝑀 is m-normal. 
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