Gazi University

# Contra to science

Journal of Science



http://dergipark.gov.tr/gujs

## **Mixed Fuzzy Soft Topological Spaces**

Ayten GEZICI<sup>1,\*</sup>, Cemil YILDIZ<sup>1</sup>

<sup>1</sup>Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar Ankara, Turkey

Article Info

#### Abstract

Received: 09/03/2017 Accepted: 14/03/2018

#### Keywords

Fuzzy soft set Fuzzy soft topology First countable space Second countable space

## **1. INTRODUCTION**

In 1965, Zadeh [1] introduced the notion of fuzzy sets and fuzzy sets operations. Subsequently, Chang [2] defined the notion of fuzzy topology. Pao Ming et al. [3] defined neighbourhood structure of a fuzzy point.

In this paper, we introduce a new type of mixed fuzzy soft topological space over a fuzzy soft set on initial universe set. We define countability on mixed fuzzy soft topological spaces.

In 1999, Molodtsov [4] introduced soft set theory for modeling vagueness and uncertainties. He applied soft set theory to several directions, such as game theory, Riemann integration, Perron integration, smoothness of functions. Maji, Biswas and Roy [5] defined and studied several basic notions of soft set theory.

In recent times, researchers have contributed a lot towards fuzzification of soft set theory. In 2001, Maji et al. [6] introduced the concept of fuzzy soft set. Tanay et al. [7] introduced the definition of fuzzy soft topology over a subset of initial universe set while Roy and Samanta [8] gave the definition of fuzzy soft topology over the initial universe set. Varol and Aygün [9,10], Neog et al. [11] and Hussain [12] studied the topological structures of fuzzy soft theory. Simsekler and Yuksel [13,14] introduced fuzzy soft topology over a fuzzy soft set on initial universe set. Tripathy and Ray [15] introduced and studied the concept of mixed fuzzy topological spaces and countability. Tripathy and Ray [16] introduced mixed fuzzy ideal topological spaces. Borah and Hazarika [17] gave the definition mixed fuzzy soft topological space over the initial universe set.

In this paper we introduce mixed fuzzy soft topological space. It is define over a fuzzy soft set instead of initial universe set. In order to define the mixed fuzzy soft topological space over a fuzzy soft set we give definition the complement according to this fuzzy soft set. We introduce the notions of fuzzy soft neighbourhood, Q-fuzzy soft neighbourhood over a fuzzy soft set. Also we define countability on mixed fuzzy soft topological spaces.

## 2. PRELIMINARIES

Throughout this paper X denotes initial universe set, E denotes the set of all possible parameters which are attributes, characteristic or properties of the objects in X and the set of all subsets of X will be denoted by P(X).

**Definition 1.** [1] A fuzzy set *A* in *X* is a set of ordered pairs:

 $A = \{ (x, \mu_A(x): x \in X) \},\$ 

where  $\mu_A: X \to [0,1] = I$  is called the membership function and  $\mu_A(x)$  is grade of membership of x in A. The family of all fuzzy sets in X denoted by  $I^X$ .

**Definition 2.** [1] Let A, B be two fuzzy sets of  $I^X$ .

- 1. *A* is contained in *B* if and only if  $\mu_A(x) \le \mu_B(x)$ , for every  $x \in X$ .
- 2. The union of A and B is a fuzzy set C, denoted by  $A \lor B = C$ , whose membership function  $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$  for every  $x \in X$ .
- 3. The intersection of A and B is a fuzzy set C, denoted by  $A \wedge B = C$ , whose membership function  $\mu_{C}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}$  for every  $x \in X$ .
- 4. The complement of A is a fuzzy set, denoted by  $A^c$ , whose membership function  $\mu_{A^c}(x) = 1 \mu_A(x)$ , for every  $x \in X$ .

**Definition 3.** [2] A fuzzy set A is called a null fuzzy set, if  $\mu_A(x) = 0, \forall x \in X$  and denoted by  $\overline{0}$ .

**Definition 4.** [2] A fuzzy set A is called a absolute fuzzy set, if  $\mu_A(x) = 1, \forall x \in X$  and denoted by  $\overline{1}$ .

## **Definition 5.** [4]

- 1. Let X be the initial universe set, E be the set of parameters and  $A \subset E$ . A pair (F, A) or  $F_A$  is called a soft set over X, where F is mapping given by  $F: A \to P(X)$ .
- 2. Let X be the initial universe set, E be the set of parameters. A pair (F, E) or  $F_E$  is called a soft set over X, where F is mapping given by  $F: E \to P(X)$ .

In other words, the soft set is a parameterized of subsets of the set X. For  $e \in E$ , F(e) may be considered as the set of e-elements of the soft set (F, E) or as the set of e-approximate elements of the soft set of (F, E).

## **Definition 6.** [8]

- 1. Let X be the initial universe set, E be the set of parameters and  $A \subset E$ . A pair (f, A) or  $f_A$  is called a fuzzy soft set over X, where f f is mapping given by  $f: A \to I^X$ .
- 2. Let X be the initial universe set and E be the set of parameters. A pair (f, E) or  $f_E$  is called a fuzzy soft set over X, where f is mapping given by  $f: E \to l^X$ .

The following definition is the extended of fuzzy soft set  $f_A$ .

**Definition 7.** [8] Let X be an initial universe set, E be a parameters set and  $A \subseteq E$ . Then the mapping  $f_A: E \to I^X$ , defined by  $f_A(e) = \mu_{f_A}(e)$ , is called fuzzy soft set over X, where  $\mu_{f_A}(e) = \overline{0}$ , if  $e \in E \setminus A$  and  $\mu_{f_A}(e) \neq \overline{0}$ , if  $e \in A$ .

The set of all fuzzy soft set over X is denoted by FS(X, E).

**Definition 8.** [8] The complement of a fuzzy soft set  $f_A$  on X which is denoted by  $f_A^c$  and  $f_A^c: E \to I^X$  is defined by  $\mu_{f_A^c}^e = \overline{1} - \mu_{f_A}^e$  if  $e \in A$  and  $\mu_{f_A^c}^e = \overline{1}$  if  $e \in E \setminus A$ , where  $\overline{1}(x) = 1$  for each  $x \in X$ .

**Definition 9.** [8] The fuzzy soft set  $f_{\emptyset} \in FS(X, E)$  is called null fuzzy soft set and it is denoted by  $\Phi$ . Here  $f_{\emptyset}(e) = \overline{0}$ , for every  $e \in E$ , where  $\overline{0}(x) = 0$  for every  $x \in X$ .

**Definition 10.** [8] The fuzzy soft set  $f_E \in FS(X, E)$  is called absolute fuzzy soft set and it is denoted by  $\check{E}$ . Here  $f_E(e) = \bar{1}$ , for every  $e \in E$ .

**Definition 11.** [8] Let  $f_A$  and  $g_B$  be two fuzzy soft sets on X.  $f_A$  is defined to be fuzzy soft subset of  $g_B$ , if  $\mu_{f_A}^e \leq \mu_{g_B}^e$  for all  $e \in E$  and is denoted by  $f_A \sqsubseteq g_B$ .

**Definition 12.** [8] Let  $f_A$  and  $g_B$  be two fuzzy soft sets on *X*. The union of these two fuzzy soft set is a fuzzy soft set  $h_C$ , defined by  $h_C(e) = \mu_{h_C}^e = \mu_{f_A}^e \vee \mu_{g_B}^e$  for all  $e \in E$ , where  $C = A \cup B$  and is denoted by  $h_C = f_A \sqcup g_B$ .

**Definition 13.** [8] Let  $f_A$  and  $g_B$  be two fuzzy soft sets on X. The intersection of these two fuzzy soft set is a fuzzy soft set  $h_C$ , defined by  $h_C(e) = \mu_{h_C}^e = \mu_{f_A}^e \wedge \mu_{g_B}^e$  for all  $e \in E$ , where  $C = A \cap B$  and is denoted by  $h_C = f_A \sqcap g_B$ .

**Definition 14.** [3] A fuzzy point  $x_{\lambda}$  in X a special fuzzy set with membership defined by:

$$x_{\lambda}(y) = \begin{cases} 0, & x \neq y \\ \lambda & x = y \end{cases}$$

where  $0 < \lambda \leq 1$ .  $x_{\lambda}$  is said to have support x, value  $\lambda$ .

**Definition 15.** [13] Let  $x \in X$ ,  $A \subset E$ . A soft set  $x_A: A \to P(X)$  is called soft point defined by  $x_A(e) = \{x\}$ , for every  $e \in A$ .

**Definition 16.** [9] Let  $f_A \in FS(X, E)$  and  $\lambda: E \to I$  be a mapping defined by  $\lambda(e) \neq 0$ ,  $e \in A$  and  $\lambda(e) = 0, e \in E \setminus A$ .

The fuzzy soft set  $f_A$  is called a fuzzy soft point defined by  $f_A(e) = x_{\lambda(e)}, \forall e \in E$ , where  $f_A(e) = x_{\lambda(e)}$ for  $e \in A$  is a fuzzy soft point and  $\lambda(e) = 0$ , for  $e \in E \setminus A$ ,  $f_A(e)$  is a null fuzzy set. Or equivalently,

$$f_A(e)(y) = x_{\lambda(e)}(y) = \begin{cases} \lambda(e), & x = y, \\ 0, & x \neq y, \end{cases}$$

fuzzy soft point denoted by  $x_A^{\lambda}$ .

**Example 1.** Let  $X = \{x, y\}$ ,  $E = \{e_1, e_2, e_3\}$  and  $A = \{e_1, e_2\} \subset E$ 

$$x_A^{\lambda} = \{x_A^{\lambda}(e_1) = \{(x, 0.1), (y, 0)\}, x_A^{\lambda}(e_2) = \{(x, 0.2), (y, 0)\}, x_A^{\lambda}(e_3) = \{(x, 0), (y, 0)\}\}$$

That  $x_A^{\lambda}$  fuzzy soft set is a fuzzy soft point in X.

**Definition 17.** Let  $g_A$  be a fuzzy soft subset of  $f_A$  and  $\lambda: E \to I$  be a mapping defined by  $\lambda(e) \neq 0$ ,  $e \in A$  and  $\lambda(e) = 0$ ,  $e \in E \setminus A$ .

The fuzzy soft set  $g_A$  is called a fuzzy soft point in  $f_A$  defined by  $g_A(e) = x_{\lambda(e)}$ ,  $\forall e \in E$ , where  $g_A(e) = x_{\lambda(e)}$  for  $e \in A$  is a fuzzy soft point and  $\lambda(e) = 0$ , for  $e \in E \setminus A$ ,  $g_A(e)$  is a null fuzzy set. Or equivalently,

$$g_A(e)(y) = x_{\lambda(e)}(y) = \begin{cases} \lambda(e), & x = y, \\ 0, & x \neq y, \end{cases}$$

fuzzy soft point in  $f_A$  denoted by  $x_A^{\lambda}$ .

**Definition 18.** [14] Let  $f_A$  be a fuzzy soft set on X and  $\tau_f$  be the collection of fuzzy soft subsets of  $f_A$ , then  $\tau_f$  is said to be a fuzzy soft topology if the following conditions hold:

- 1.  $\Phi$ ,  $f_A \in \tau_f$
- 2. If  $g_A, h_A \in \tau_f$  then  $g_A \sqcap h_A \in \tau_f$
- 3. If  $(f_{iA}) \in \tau_f$  then  $\sqcup_i f_{iA} \in \tau_f$

Then  $(f_A, \tau_f)$  is called a fuzzy soft topological spaces over  $f_A$ .

**Definition 19.** Let  $(f_A, \tau_f)$  fuzzy soft topological spaces and  $B_f \subset \tau_f$ .  $B_f$  is said to be base for  $\tau_f$ , if every members of  $\tau_f$  is a union of members of  $B_f$ .

**Definition 20.** Let  $(f_A, \tau_f)$  fuzzy soft topological spaces.  $(f_A, \tau_f)$  is called indiscrete if it contains only  $\Phi$  and  $f_A$  while the discrete fuzzy soft topology consists of all fuzzy soft subset  $f_A$ . That is  $\tau_f = P(f_A)$ .

**Definition 21.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$  and  $g_A$  be a fuzzy soft subset of  $f_A \cdot \text{If } x_{\lambda(e)} \leq g_A(e)$  for every  $e \in A$  ( $\lambda(e) \leq g_A(e)(x)$ , for  $x \in X$ ), then  $x_A^{\lambda}$  belongs to  $g_A$  and this denoted by  $x_A^{\lambda} \in g_A$ .

**Definition 22.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$  and  $g_A$  be a fuzzy soft subset of  $f_A$  and  $(f_A, \tau_f)$  be a fuzzy soft topological space.  $g_A$  is called fuzzy soft neighbourhood  $x_A^{\lambda}$ , if there exists a fuzzy soft open  $h_A$  such that  $x_A^{\lambda} \in h_A \sqsubseteq g_A$ .

The family of neighbourhood of  $x_A^{\lambda}$  is denoted by  $N(x_A^{\lambda})$ .

**Definition 23.** Let  $g_A$ ,  $h_A$  be two fuzzy soft subsets of  $f_A \cdot g_A$  is said to be quasi-coincident with  $h_A$  denoted by  $g_A \tilde{q} h_A$  if  $g_A(e)qh_A(e)$ ,  $\forall e \in A$ , where  $g_A(e)qh_A(e)$ ,  $\forall e \in A \iff g_A(e)(x) + h_A(e)(x) > 1$ ,  $x \in X$ .

**Definition 24.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$  and  $g_A$  be a fuzzy soft subset of  $f_A \cdot x_A^{\lambda}$  is said to be quasi-coincident with  $g_A$  denoted by  $x_A^{\lambda} \tilde{q} g_A$ , if  $x_{\lambda}(e) q g_A(e)$ ,  $\forall e \in A$ , where  $x_{\lambda}(e) q g_A(e)$ ,  $\forall e \in A \iff \lambda(e) + g_A(e)(x) > 1$ ,  $x \in X$ .

**Definition 25.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$ ,  $g_A$  be a fuzzy soft subset of  $f_A$  and  $(f_A, \tau_f)$  be a fuzzy soft topological space.  $g_A$  is called Q-fuzzy soft neighbourhood  $x_A^{\lambda}$ , if there exists a fuzzy soft open  $h_A$  such that  $x_A^{\lambda} \tilde{q} h_A \subseteq g_A$ .

The family of Q-fuzzy soft neighbourhood of  $x_A^{\lambda}$  is denoted by  $N_Q(x_A^{\lambda})$ .

#### 3. MIXED FUZZY SOFT TOPOLOGICAL SPACE ON $f_A$

Simsekler and Yuksel [14] defined fuzzy soft topology over  $f_A$ . In this section we give the following definitions and mixed fuzzy soft topology over  $f_A$ .

**Definition 26.** The complement with respect to  $f_A$  of a fuzzy soft set  $g_A$  is a fuzzy soft subset of  $f_A$  which is denoted by  $g_A^c$  and  $g_A^c : E \to I^X$  is defined by  $\mu_{g_A}^e = \mu_{f_A}^e - \mu_{g_A}^e e \in E$ .

**Example 2.** Let  $X = \{a, b, c\}$ ,  $E = \{e_1, e_2, e_3\}$ ,  $A = \{e_1, e_2\}$  and

$$\begin{split} f_A &= \{f(e_1) = \{a_{0.7}, b_{0.8}, c_{0.5}\}, f(e_2) = \{a_{0.4}, b_{0.9}, c_{0.3}\}, f(e_3) = \{a_0, b_0, c_0\}\}, \\ g_A &= \{g(e_1) = \{a_{0.6}, b_{0.5}, c_{0.3}\}, g(e_2) = \{a_{0.2}, b_{0.5}, c_{0.1}\}, g(e_3) = \{a_0, b_0, c_0\}\} \end{split}$$

The complement of  $g_A$  is defined by  $\mu_{g_A}^{e_c}(x) = \mu_{f_A}^{e}(x) - \mu_{g_A}^{e}(x), e \in E, x \in X$ .

 $g^c_{A(\mathbf{X})=\{g^c(e_1)=\{a_{0,1},b_{0,3},c_{0,2}\},g^c(e_2)=\{a_{0,2},b_{0,4},c_{0,2}\},g^c(e_3)=\{a_0,b_0,c_0\}\}.$ 

**Theorem 1.**  $(f_A, \tau_1)$  and  $(f_A, \tau_2)$  be two fuzzy soft topological spaces over  $f_A$ . Consider the collection of fuzzy soft sets  $\tau_1(\tau_2) = \{g_A \sqsubseteq f_A$ : For any fuzzy soft set  $h_A$  be a fuzzy soft subset of  $f_A$  with  $g_A \tilde{q} h_A$ , there exists  $\tau_2$ - open set  $h_{A_1}$  such that  $h_{A_1}\tilde{q}h_A$  and  $\tau_1$ -closure  $\overline{h_{A_1}} \sqsubseteq g_A$ . Then this family of fuzzy soft sets will form a topology on  $f_A$ .

**Proof:**  $t_1$ ) Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  and therefore, there does not arise any questions of violation of the condition of being member of  $\tau_1(\tau_2)$ . Therefore  $\Phi \in \tau_1(\tau_2)$ .

Any fuzzy soft set  $g_A$  be a fuzzy soft subset of  $f_{A'}$  such that  $g_A \tilde{q} f_A$  and there exists  $\tau_2$ - open set  $f_A$  with  $g_A \tilde{q} f_A$  and  $\tau_1$ - closure  $\overline{f_A} = f_A \subseteq f_A$ . Therefore  $f_A \in \tau_1(\tau_2)$ .

 $t_2$ ) Let  $g_A, h_A \in \tau_1(\tau_2)$ . We show that  $g_A \sqcap h_A \in \tau_1(\tau_2)$ .

Let  $k_A$  be a fuzzy soft subset of  $f_A$ , such that  $k_A \tilde{q}(g_A \sqcap h_A)$ .

$$\Rightarrow k_A(e)q(g_A(e) \land h_A(e)), \forall e \in A$$
  

$$\Rightarrow k_A(e)(x) + (g_A(e) \land h_A(e))(x) > 1, x \in X, \forall e \in A$$
  

$$\Rightarrow k_A(e)(x) + g_A(e)(x) > 1 \text{ and } k_A(e)(x) + h_A(e)(x) > 1, x \in X, \forall e \in A.$$
  

$$\Rightarrow k_A(e)qg_A(e) \text{ and } k_A(e)qh_A(e), \forall e \in A.$$
  

$$\Rightarrow k_A\tilde{q}g_A \text{ and } k_A\tilde{q}h_A.$$

Since  $g_A, h_A \in \tau_1(\tau_2)$ , for  $k_A \tilde{q} g_A$  there exists  $\tau_2$  open set  $k_{1A}$  such that  $k_{1A} \tilde{q} k_A$  and  $\tau_1$  closure  $\overline{k_{1A}} \sqsubseteq g_A$ and for  $k_A \tilde{q} h_A$  there exists  $\tau_2$  open set  $k_{2A}$  such that  $k_{2A} \tilde{q} k_A$  and  $\tau_1$  closure  $\overline{k_{2A}} \sqsubseteq h_A$ . Now  $k_{1A}, k_{2A}$  are  $\tau_2$  open set implies  $k_{1A} \sqcap k_{2A} \in \tau_1(\tau_2)$ .

We have 
$$\overline{k_{1A} \sqcap k_{2A}} \sqsubseteq \overline{k_{1A}} \sqcap \overline{k_{2A}} \sqsubseteq g_A \sqcap h_A$$
.  
 $k_{1A}\tilde{q}k_A \Longrightarrow k_{1A}(e)(x) + k_A(e)(x) > 1$ ,  $x \in X, \forall e \in A$ .

$$\begin{aligned} k_{2A}\tilde{q}k_A &\Longrightarrow k_{2A}(e)(x) + k_A(e)(x) > 1, \ x \in X, \forall e \in A \\ &\Longrightarrow k_A(e)(x) + (k_{1A}(e) \wedge k_{2A}(e))(x) > 1, \ x \in X, \forall e \in A \\ &\Longrightarrow k_A(e)q(k_{1A}(e) \wedge k_{2A}(e)), \ \forall e \in A \\ &\Longrightarrow k_A\tilde{q}(k_{1A} \sqcap k_{2A}). \end{aligned}$$

For  $k_A \tilde{q}(g_A \sqcap h_A)$ , there exists  $\tau_2$  open set  $k_{1A} \sqcap k_{2A}$  such that  $k_A \tilde{q}(k_{1A} \sqcap k_{2A})$  and  $\tau_1$  closure  $\overline{k_{1A} \sqcap k_{2A}} \sqsubseteq g_A \sqcap h_A$ .

Therefore 
$$g_A \sqcap h_A \in \tau_1(\tau_2)$$
.

$$t_3$$
) Let  $g_{iA} \in \tau_1(\tau_2)$ ,  $\forall i \in \Delta$ , then  $\sqcup_{i \in \Delta} g_{iA} \in \tau_1(\tau_2)$ .

Let  $h_A$  be a fuzzy soft subset of  $f_A$  such that  $h_A \tilde{q} \sqcup_{i \in \Delta} g_{iA}$ .

$$\begin{split} h_A \tilde{q} \sqcup_{i \in \Delta} g_{iA} &\Longrightarrow h_A(e) q \bigvee_{i \in \Delta} g_{iA}(e), \forall e \in A. \\ &\Longrightarrow h_A(e)(x) + \bigvee g_{iA}(e)(x) > 1, x \in X, \forall e \in A \\ &\Longrightarrow h_A(e)(x) + g_{i_0A}(e)(x) > 1, \ i_0 \in \Delta, x \in X, \forall e \in A. \\ &\Longrightarrow h_A(e) q g_{i_0A}(e), \ i_0 \in \Delta, \forall e \in A \Longrightarrow h_A \tilde{q} g_{i_0A}, \ i_0 \in \Delta. \end{split}$$

 $g_{i_0A} \in \tau_1(\tau_2)$  and  $h_A \tilde{q} g_{i_0A}$ ,  $i_0 \in \Delta$  there exists  $\tau_2$  open  $h_{iA}$  such that  $h_{iA} \tilde{q} h_A$  and  $\tau_1$  closure

$$\begin{split} h_{iA} &\sqsubseteq g_{i_0} \\ h_{iA} \widetilde{q} h_A \implies h_A(e)(x) + \bigvee g_{iA}(e)(x) > 1, x \in X, \ \forall \ e \in A \\ \implies &\bigvee_{i \in \Delta} h_{iA}(e)(x) + h_A(e)(x) > 1, , x \in X, \ \forall \ e \in A \\ \implies &\bigvee_{i \in \Delta} h_{iA}(e) q h_A(e), \ \forall \ e \in A \\ \implies &\sqcup_{i \in \Delta} h_{iA} \widetilde{q} h_A \end{split}$$

For  $h_{iA}$  are  $\tau_2$  open set implies  $\sqcup_{i \in \Delta} h_{iA} \in \tau_2$  and  $\tau_1$  closure,  $\overline{\sqcup_{i \in \Delta} h_{iA}} = \sqcup_{i \in \Delta} \overline{h_{iA}} \subseteq \sqcup_{i \in \Delta} g_{iA}$ .

For  $h_A \tilde{q} \sqcup_{i \in \Delta} g_{iA}$ , there exists  $\tau_2$  open  $\sqcup_{i \in \Delta} h_{iA}$  such that  $h_A \tilde{q} \sqcup_{i \in \Delta} h_{iA}$  and  $\tau_1$  closure  $\sqcup_{i \in \Delta} h_{iA} \sqsubseteq \sqcup_{i \in \Delta} g_{iA}$ . Hence  $\sqcup_{i \in \Delta} g_{iA} \in \tau_1(\tau_2)$ .

Therefore this collection  $\tau_1(\tau_2)$  is a fuzzy soft topology on  $f_A$ .

**Definition 27.**  $\tau_1(\tau_2)$  defined in Theorem 3.1. is called a mixed fuzzy soft topolgy on  $f_A$  and  $(f_A, \tau_1(\tau_2))$  is a mixed fuzzy soft topological space.

**Definition 28.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space and  $g_A$  be a fuzzy soft subset of  $f_A$ .  $g_A$  is called a fuzzy soft closed set in  $(f_A, \tau_1(\tau_2))$  iff its complement  $g_A^c$  is a fuzzy soft open set in  $(f_A, \tau_1(\tau_2))$ .

We give an example to  $\tau_1(\tau_2)$  defined in Definition 3.2.

**Example 3.** Let  $X = \{a, b, c, d\}$ ,  $E = \{e_1, e_2, e_3, e_4\}$ ,  $A = \{e_1, e_2, e_3\}$  and fuzzy soft set  $f_A = \{f(e_1) = \{a_{0,4}, b_{0,6}, c_{0,5}, d_{0,6}\}, f(e_2) = \{a_{0,3}, b_{0,7}, c_{0,8}, d_{0,5}\}, f(e_3) = \{a_{0,7}, b_{0,4}, c_{0,6}, d_{0,4}\}, f(e_4) = \{a_{0,6}, b_{0,6}, c_{0,6}, d_{0,6}\}$ 

$$\begin{split} f_{1A} &= \{f_1(e_1) = \{a_{0,2}, b_{0,4}, c_{0,3}, d_{0,5}\}, f_1(e_2) = \{a_{0,2}, b_{0,5}, c_{0,5}, d_{0,3}\}, f_1(e_3) = \\ &\left\{a_{0,4}, b_{0,3}, c_{0,5}, d_{0,3}\}, f_1(e_4) = \{a_{0}, b_{0}, c_{0}, d_{0}\}\right\} \\ f_{2A} &= \{f_2(e_1) = \{a_{0,2}, b_{0,2}, c_{0,2}, d_{0,1}\}, f_2(e_2) = \{a_{0,1}, b_{0,3}, c_{0,2}, d_{0,3}\}, f_2(e_3) = \\ &\left\{a_{0,3}, b_{0,1}, c_{0,1}, d_{0,1}\}, f_2(e_4) = \{a_{0}, b_{0}, c_{0}, d_{0}\}\right\} \end{split}$$

The collection  $\tau_1 = \{\Phi, f_A, f_{1A}, f_{2A}\}$  and  $\tau_2 = \{\Phi, f_A, f_{2A}\}$  are two fuzzy soft topologies on  $f_A$ .

We obtain the family fuzzy soft closed sets by the complement of the element of  $au_1$ 

$$\begin{split} \tau_1^c &= \{\Phi^c, f_{A_i}^c, f_{1A}^c, f_{2A}^c\}, \text{ where} \\ \Phi^c &= \{\Phi^c(e_1) = \{a_{0,4}, b_{0,6}, c_{0,5}, d_{0,6}\}, \Phi^c(e_2) = \{a_{0,3}, b_{0,7}, c_{0,8}, d_{0,5}\}, \Phi^c(e_3) = \\ \left\{a_{0,7}, b_{0,4}, c_{0,6}, d_{0,4}\}, \Phi^c(e_4) = \{a_0, b_0, c_0, d_0\}\right\} = f_A \\ f_{A_i}^c &= \{f_A^c(e_1) = \{a_0, b_0, c_0, d_0\}, f_A^c(e_2) = \{a_0, b_0, c_0, d_0\}, f_A^c(e_3) = \{a_0, b_0, c_0, d_0\}, f_A^c(e_4) = \\ \left\{a_0, b_0, c_0, d_0, \right\} = \Phi \\ f_{1A}^c &= \{f_1^c(e_1) = \{a_{0,2}, b_{0,2}, c_{0,2}, d_{0,1}\}, f_1^c(e_2) = \{a_{0,1}, b_{0,2}, c_{0,3}, d_{0,2}\}, f_1^c(e_3) = \\ \left\{a_{0,3}, b_{0,1}, c_{0,1}, d_{0,1}\}, f_1^c(e_4) = \{a_0, b_0, c_0, d_0\}, f_2^c(e_2) = \{a_{0,2}, b_{0,4}, c_{0,6}, d_{0,2}\}, f_2^c(e_3) = \\ \left\{a_{0,4}, b_{0,3}, c_{0,5}, d_{0,3}\}, f_2^c(e_4) = \{a_0, b_0, c_0, d_0\}\}. \end{split}$$

Now we construct the mixed fuzzy soft topological space on  $f_A$  from there two fuzzy soft topolgies  $\tau_1$  and  $\tau_2$ .

We show that  $\Phi, f_A \in \tau_1(\tau_2)$ .

Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  fuzzy soft subset of  $f_A$  and therefore, there does not arise any questions of violation of the condition of being member of  $\tau_1$  ( $\tau_2$ ). Then  $\Phi \in \tau_1$  ( $\tau_2$ ).

 $f_A \sqsubseteq f_A$  and for any fuzzy soft set  $g_A$  fuzzy soft subset of  $f_A$  with  $f_A \tilde{q} g_A$ , there exists  $\tau_2$  open set  $f_A$  such that  $f_A \tilde{q} g_A$  and  $\tau_1$  closure  $\overline{f_A} = f_A \sqsubseteq f_A$ . Then  $f_A \in \tau_1$  ( $\tau_2$ ).

Let us consider a fuzzy soft set  $g_A$  fuzzy soft subset of  $f_A$  such that  $g_A \tilde{q} f_{2A}$ .

Now the only  $\tau_2$  open sets are  $f_A$  and  $f_{2A}$  such that  $g_A \tilde{q} f_{2A}$  and  $g_A \tilde{q} f_A$ .

Again,  $\tau_1$  closure of,

 $\overline{f_{2A}} = \sqcap \{k_A : k_A \text{ is } \tau_1 \text{ closed and } f_{2A} \sqsubseteq k_A\} = f_A \sqcap f_{1A}^c = f_{2A} \sqsubseteq f_{2A}$ 

Hence,  $f_{2A} \in \tau_1$  ( $\tau_2$ ) and so  $\tau_1$  ( $\tau_2$ ) = { $\Phi$ ,  $f_A$ ,  $f_{2A}$ } is a mixed fuzzy soft topology on  $f_A$ .

## Result 1.

1. Let  $(f_A \tau)$  be a indiscrete fuzzy soft topological space and  $\tau$  ( $\tau$ ) construct from fuzzy soft topology  $\tau$ . Then  $\tau$  ( $\tau$ ) is a indiscrete mixed fuzzy soft topology.

2.Let  $(f_A, \tau)$  be a discrete fuzzy soft topological space and  $\tau(\tau)$  construct from fuzzy soft topology  $\tau$ . Then  $\tau(\tau)$  is a discrete mixed fuzzy soft topology. 3. Let  $(f_A, \tau_1)$  be a discrete and  $(f_A, \tau_2)$  indiscrete fuzzy soft topological spaces and  $\tau_1$  ( $\tau_2$ ) construct from these two fuzzy soft topologies  $\tau_1$  and  $\tau_2$ . Then  $\tau_1$  ( $\tau_2$ ) is a indiscrete mixed fuzzy soft topology.

4. Let  $(f_A, \tau_1)$  be a indiscrete and  $(f_A, \tau_2)$  discrete fuzzy soft topological spaces and  $\tau_1$  ( $\tau_2$ ) construct from these two fuzzy soft topologies  $\tau_1$  and  $\tau_2$ . Then  $\tau_1$  ( $\tau_2$ ) is a indiscrete mixed fuzzy soft topology.

**Proof** 1. We show that  $\tau(\tau)$  is a indiscrete mixed fuzzy soft topolgy. Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  and therefore, there does not arise any questions of violation of the condition of being member of  $\tau(\tau)$ .

Therefore  $\Phi \in \tau(\tau)$ .

Any fuzzy soft set  $g_A$  be a fuzzy soft subset of  $f_A$ , such that  $g_A \tilde{q} f_A$  and there exists  $\tau$ -open set  $f_A$  with  $g_A \tilde{q} f_A$  and  $\tau$ -closure  $\bar{f}_A = f_A \sqsubseteq f_A$ . Therefore  $f_A \in \tau(\tau)$ .

Let  $g_A \sqsubseteq f_A$ ,  $k_A$  be a fuzzy soft of  $f_A$ , with  $g_A \tilde{q} k_A$  and  $h_A$  be a  $\tau$  open fuzzy soft set such that  $h_A \tilde{q} k_A$ .  $\tau$  closure  $\overline{h_A} = f_A$ , because  $\tau$  is a indiscrete topology.  $\overline{h_A} = f_A \nvDash g_A$ . So  $g_A \notin \tau(\tau)$ . Therefore  $\tau(\tau)$  mixed fuzzy soft topology only contains  $\Phi, f_A, \tau(\tau) = {\Phi, f_A}$  is a indiscrete mixed fuzzy soft topology.

2. We show that  $\tau(\tau)$  is a discrete mixed fuzzy soft topolgy.

Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  and therefore, there does not arise any questions of violation of the condition of being member of  $\tau(\tau)$ . Therefore  $\Phi \in \tau(\tau)$ .

Any fuzzy soft set  $g_A$  be a fuzzy soft subset of  $f_A$ , such that  $g_A \tilde{q} f_A$  and there exists  $\tau$  -open set  $f_A$  with  $g_A \tilde{q} f_A$  and  $\tau$ -closure  $\bar{f}_A = f_A \subseteq f_A$ . Therefore  $f_A \in \tau(\tau)$ .

Let  $g_A \sqsubseteq f_A$ ,  $k_A$  be a fuzzy soft subset of  $f_A$ , with  $g_A \tilde{q} f_A$ . There exists  $\tau$  open  $g_A$  such that  $g_A \tilde{q} f_A$ .  $\tau$  closure  $\overline{g_A} = g_A$ , because  $\tau$  is a discrete topology.  $\overline{g_A} = g_A \sqsubseteq g_A \cdot \text{So } g_A \in \tau(\tau)$ . Therefore  $\tau(\tau)$  mixed fuzzy soft topology contains all fuzzy soft subsets of  $f_A \cdot \tau(\tau) = P(f_A)$  is a discrete mixed fuzzy soft topology.

3.We show that  $\tau_1(\tau_2)$  is a indiscrete mixed fuzzy soft topolgy.

Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  and therefore, there does not arise any question of violation of the condition of being member of  $\tau_1(\tau_2)$ . Therefore  $\Phi \in \tau_1(\tau_2)$ .

Any fuzzy soft set  $g_A$  be a fuzzy soft subset of  $f_A$ , such that  $g_A \tilde{q} f_A$  and there exists  $\tau_2$  -open set  $f_A$  with  $g_A \tilde{q} f_A$  and  $\tau_1$ -closure  $\bar{f}_A = f_A \subseteq f_A$ . Therefore  $f_A \in \tau_1(\tau_2)$ .

Let  $g_A$  be any subset of  $f_A$ ,  $k_A$  be a fuzzy soft subset of  $f_A$ , with  $g_A \tilde{q} f_A$ . There exists  $\tau_2$  open  $f_A$  such that  $f_A \tilde{q} k_A$ .  $\tau_1$  closure  $\overline{f_A} = f_A \notin g_A$ . So  $g_A \notin \tau_1(\tau_2)$ . Therefore  $\tau_1(\tau_2)$  mixed fuzzy soft topology only contains  $\Phi$ ,  $f_A$ .  $\tau_1(\tau_2) = \{\Phi, f_A\}$  is a indiscrete mixed fuzzy soft topology.

4. We show that  $\tau_1(\tau_2)$  is a indiscrete mixed fuzzy soft topolgy.

Since  $\Phi$  is not quasi-coincident with any fuzzy soft set  $g_A$  and therefore, there does not arise any questions of violation of the condition of being member of  $\tau_1(\tau_2)$ . Therefore  $\Phi \in \tau_1(\tau_2)$ .

Any fuzzy soft set  $g_A$  be a fuzzy soft subset of  $f_{A'}$  such that  $g_A \tilde{q} f_A$  and there exists  $\tau_2$ -open set  $f_A$  with  $g_A \tilde{q} f_A$  and  $\tau_1$ -closure  $\overline{f_A} = f_A \sqsubseteq f_A$ . Therefore  $f_A \in \tau_1(\tau_2)$ .

Let  $g_A$  be any subset of  $f_A$ ,  $k_A$  be a fuzzy soft subset of  $f_A$ , with  $g_A \tilde{q} f_A$ . There exists  $\tau_2$  open  $h_A$  such that  $h_A \tilde{q} k_A$ .  $\tau_1$  closure  $\overline{h_A} = f_A$ . Because  $\tau_1$  indiscrete topology.  $\overline{h_A} = f_A \not\subseteq g_A$ . So  $g_A \notin \tau_1(\tau_2)$ . Therefore  $\tau_1(\tau_2)$  mixed fuzzy soft topology only contains  $\Phi$ ,  $f_A$ .  $\tau_1(\tau_2) = \{\Phi, f_A\}$  is a indiscerete mixed fuzzy soft topology.

## 4. COUNTABILITY ON MIXED FUZZY SOFT TOPOLOGICAL SPACE ON $f_A$

In this section, the definitions of neighbourhood, Q neighbourhood, first countability, Q first countability, second countability will be given with respect to the topology on fuzzy soft set  $f_A$  instead of the topology on X. Furthermore, the above mentioned definitions and related theorems will be given in mixed fuzzy soft topological space on fuzzy soft set  $f_A$ .

**Definition 29.** Let  $(f_A, \tau_f)$  fuzzy soft topological space and  $N(x_A^{\lambda})$  be a family of neighbourhood of a fuzzy soft point  $x_A^{\lambda}$  in  $f_A$ . A subfamily  $B(x_A^{\lambda})$  of  $N(x_A^{\lambda})$  is said to be fuzzy soft neighbourhood base of  $x_A^{\lambda}$ , if for every  $g_A \in N(x_A^{\lambda})$  there exists  $h_A \in B(x_A^{\lambda})$  such that  $h_A \sqsubseteq g_A$ .

**Definition 30.** A fuzzy soft topological space  $(f_A, \tau_f)$  is said to be first countable space if and only if every fuzzy soft point in  $f_A$  has a countable fuzzy soft neighbourhood base.

The following definition is an alternative to the Definition 4.2.

**Definition 31.** Let  $(f_A, \tau_f)$  be a fuzzy soft topological space. Then  $(f_A, \tau_f)$  is said to be fist countable space, if for each fuzzy soft point  $x_A^{\lambda}(0 < \lambda(e) \le 1)$  there exists a countable class of fuzzy soft open sets  $B(x_A^{\lambda})$  such that  $x_A^{\lambda} \in g_A$ , for all  $g_A \in B(x_A^{\lambda})$  and  $x_A^{\lambda} \in h_A$  for some fuzzy soft open set  $h_A$  then there exists  $k_A \in B(x_A^{\lambda})$  such that  $k_A \sqsubseteq h_A$ .

**Definition 32.** Let  $N_Q(x_A^{\lambda})$  be a family of Q fuzzy soft neigbourhood of fuzzy soft point  $x_A^{\lambda}$  in  $f_A$ . A subfamily  $B_Q(x_A^{\lambda})$  of  $N_Q(x_A^{\lambda})$  is said to be a Q-fuzzy soft neigbourhood base of  $x_A^{\lambda}$  if for every  $g_A \in N_Q(x_A^{\lambda})$  there exists  $h_A \in B_Q(x_A^{\lambda})$  such that  $h_A \sqsubseteq g_A$ .

Briefly we will say Q -fuzzy soft neighbourhood base Q -neighbourhood base.

**Definition 33.** A fuzzy soft topological space  $(f_A, \tau_f)$  is said to be Q -first countable space if and only if every fuzzy soft point in  $f_A$  has countable Q -neighbourhood base.

**Definition 34.** A fuzzy soft topologial space  $(f_A, \tau_f)$  is said to be second countable space if there exists a countable base for  $\tau_f$ .

**Definition 35.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$ ,  $g_A$  be a fuzzy soft subset of  $f_A$  and  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topolgical space.  $g_A$  is a called fuzzy soft neighbourhood of  $x_A^{\lambda}$ , if there exists a fuzzy soft open  $h_A$  such that  $x_A^{\lambda} \in h_A \sqsubseteq g_A$ .

The family of neighbourhood of  $x_A^{\lambda}$  is denoted by  $N(x_A^{\lambda})$ .

**Definition 36.** Let  $x_A^{\lambda}$  be a fuzzy soft point in  $f_A$ ,  $g_A$  be a fuzzy soft subset of  $f_A$  and  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topolgical space.  $g_A$  is a called Q-fuzzy soft neighbourhood of  $x_A^{\lambda}$ , if there exists a fuzzy soft open  $h_A$  such that  $x_A^{\lambda}\tilde{q}h_A \sqsubseteq g_A$ .

The family of Q -fuzzy soft neighbourhood of  $x_A^{\lambda}$  is denoted by  $N_Q(x_A^{\lambda})$ .

**Definition 37.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space. Let  $N(x_A^{\lambda})$  be a family fuzzy soft neighbourhood of a fuzzy soft point  $x_A^{\lambda}$  in  $f_A$ . A subfamily  $B(x_A^{\lambda})$  of  $N(x_A^{\lambda})$  is said to be a fuzzy soft neighbourhood base of  $x_A^{\lambda}$  if for every  $g_A \in N(x_A^{\lambda})$  there exists  $h_A \in B(x_A^{\lambda})$  such that  $h_A \sqsubseteq g_A$ .

**Definition 38.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space. Then  $(f_A, \tau_1(\tau_2))$  is said to be first countable space if every fuzzy soft point in  $f_A$  has a countable fuzzy soft neighbourhood base.

**Definition 39.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space. Then  $(f_A, \tau_1(\tau_2))$  is said to be Q -first countable space if every fuzzy soft point in  $f_A$  has a countable Q -neighbourhood base.

**Definition 40.** A mixed fuzzy soft topological space  $(f_A, \tau_1(\tau_2))$  is said to be second countable space if there exists a countable base for  $\tau_1(\tau_2)$ .

**Theorem 2.** Let  $(f_A, \tau_1(\tau_2))$  be a first countable space. Then it is a Q - first countable space.

**Proof:** Let  $x_A^{\lambda}$  be any fuzzy soft point in  $f_A$ . Consider a sequence  $\{\lambda_n(e)\} n \in \mathbb{N}$  in  $(1-\lambda(e), 1]$  converging to  $1-\lambda(e)$  and let  $x_A^{\lambda n} \in f_A$ . Since  $(f_A, \tau_1(\tau_2))$  is a first countable space for each  $n \in \mathbb{N}$ , there exists a countable open neighbourhood base  $B_n(x_A^{\lambda n})\}, n \in \mathbb{N}$  of  $x_A^{\lambda n}$ . We have for each member  $g_A$  of  $\{B_n(x_A^{\lambda n})\}, g_A(e)(x) \ge \lambda_n(e) > 1 - \lambda(e)$ 

$$\Rightarrow \lambda(e) + g_A(e)(x) > 1$$

$$\Rightarrow x_A^{\Lambda} \tilde{q} g_A$$

Hence  $g_A$  is a Q-neighbourhood of  $x_A^{\lambda}$ . This the collection  $\{B_n(x_A^{\lambda n})\}$  is a family of open Q-neighbourhoods of  $x_A^{\lambda}$  and hence this family is a countable family of Q-neighbourhood of  $x_A^{\lambda}$ .

Let  $h_A$  be an arbitrary Q -neighbourhood of  $x_A^{\lambda}$ . Hence  $h_A(e)(x) > 1 - \lambda(e)$ . Since  $\lambda_n(e) > 1 - \lambda(e)$  so there exists  $m \in N$  such that  $h_A(e)(x) \ge \lambda_m(e) > 1 - \lambda(e) \Longrightarrow x_A^{\lambda m} \in h_A$  and an open neighbourhood of  $x_A^{\lambda m}$ .

This there exists a member  $g_A \in \{B_n(x_A^{\lambda n})\}$  such that  $g_A \sqsubseteq h_A$  and  $g_A(e)(x) > \lambda_m(e) > 1 - \lambda(e)$  and so  $g_A$  is a Q-neighbourhood base of  $x_A^{\lambda}$ . Hence  $(f_A, \tau_1(\tau_2))$  is Q-first countable space.

**Theorem 3.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space and  $x_A^{\lambda}$  is a fuzzy soft point  $f_A$ . A subfamily  $\beta$  of  $\tau_1(\tau_2)$  is said to base for  $\tau_1(\tau_2)$  if and only if a collection  $B(x_A^{\lambda})$  such that,

 $B(x_A^{\lambda}) = \left\{ k_A \in \beta : x_A^{\lambda} \in k_A \right\} \text{ is a neighbourhood base of } x_A^{\lambda}$ 

**Proof:** Let  $\beta$  be a base for  $\tau_1(\tau_2)$ . We Show that  $B(x_A^{\lambda}) = \{k_A \in \beta : x_A^{\lambda} \in k_A\}$  is a neighbourhood base of  $x_A^{\lambda}$ .

 $x_A^{\lambda}$  is an arbitrary fuzzy soft point in  $f_A$  and  $h_A$  be a fuzzy soft neighbourhood of  $x_A^{\lambda}$ ,  $h_A \in N(x_A^{\lambda})$ .  $h_A \in N(x_A^{\lambda}) \Longrightarrow$  there exists  $g_A$  fuzzy soft open such that  $x_A^{\lambda} \in g_A \sqsubseteq h_A$ . Since  $\beta$  is a base for  $\tau_1(\tau_2)$ ,  $g_A \in \tau_1(\tau_2)$  is expressed as a union of members of  $\beta$ . Therefore, there exists  $k_A \in \beta$  such that  $x_A^{\lambda} \in k_A \sqsubseteq g_A$ . Hence  $k_A$  becomes a member of neighbourhood base of  $x_A^{\lambda}$ .  $k_A \in B(x_A^{\lambda})$  and  $B(x_A^{\lambda}) = \{k_A \in \beta : x_A^{\lambda} \in k_A\}$  is a neighbourhood base of  $x_A^{\lambda}$ .

In contrast, let  $B(x_A^{\lambda})$  be a neighbourhood base of  $x_A^{\lambda}$ . We Show that  $\beta$  is a base for  $\tau_1(\tau_2)$ . Let any  $g_A \in \tau_1(\tau_2)$  and  $x_A^{\lambda} \cong k_A \Longrightarrow g_A \in N(x_A^{\lambda})$ . From the definition neighbourhood base of  $x_A^{\lambda}$  there exists

 $h_A \in B(x_A^{\lambda})$  such that  $x_A^{\lambda} \in h_A \sqsubseteq g_A$  and  $h_A \in \beta$ .  $\forall x_A^{\lambda} \in g_A$  and  $x_A^{\lambda} \in h_A \sqsubseteq g_A \Longrightarrow g_A = \sqcup_{x_A^{\lambda} \in g_A} h_A, h_A \in \beta$ .  $g_A$  is an arbitrary element of  $\tau_1(\tau_2)$  and  $g_A$  is a union of members of  $\beta$ . Therefore  $\beta$  is a base for  $\tau(\tau_2)$ .

**Proposition 1.** Let  $(f_A, \tau_1(\tau_2))$  be a mixed fuzzy soft topological space. If  $(f_A, \tau_1(\tau_2))$  is second countable space, then it is also first countable space.

**Proof:** Let  $(f_A, \tau_1(\tau_2))$  be a second countable space. There exists a countable base  $\beta$  for  $\tau_1(\tau_2)$ . B $(x_A^{\lambda})$  neighbourhood base of  $x_A^{\lambda}$  is a subset of  $\beta$  from. Theorem 4.2. Since  $\beta$  is a countable space, B $(x_A^{\lambda})$  is a countable space. Therefore B $(x_A^{\lambda})$  is a countable neighbourhood base of  $x_A^{\lambda}$ .

Thus, there are a countable neighbourhood base every fuzzy soft point in  $f_A$  and  $(f_A, \tau_1(\tau_2))$  is a first countable space.

**Result 2.** If  $(f_A, \tau_1(\tau_2))$  is second countable space, then it also Q -first countable space.

**Proof:** Let  $(f_A, \tau_1(\tau_2))$  be a second countable space. From Proposition 4.1.  $(f_A, \tau_1(\tau_2))$  is a first countable space and from Theorem 4.1.  $(f_A, \tau_1(\tau_2))$  is a Q-first countable space.

**Proposition 2.** Let  $\tau_1$  and  $\tau_2$  be two fuzzy soft topologies for  $f_A$  and if the mixed fuzzy soft topology  $\tau_1(\tau_2)$  is Q -first countable, then  $\tau_2$  is also Q -first countable.

**Proof:** Let  $x_A^{\lambda}$  be an arbitrary fuzzy soft point in  $f_A$ . Since  $\tau_1(\tau_2)$  is a Q-first countable space, therefore there exists a countable Q -neighbourhood base for every fuzzy soft point  $x_A^{\lambda}$ . Let  $g_A \in B_Q(x_A^{\lambda})$ , where  $B_Q(x_A^{\lambda})$  is the countable collection of  $\tau_1(\tau_2)$  Q-neighbourhood base at  $x_A^{\lambda}$ . Then  $g_A$  is  $\tau_1(\tau_2)$  Qneighbourhood of  $x_A^{\lambda}$ . There exists  $h_A \in \tau_1(\tau_2)$  such that  $h_A \sqsubseteq g_A$  and  $x_A^{\lambda} \tilde{q} h_A$ . We know that  $\tau_1(\tau_2) \subseteq \tau_2$ . Therefore  $h_A \in \tau_1(\tau_2) \Longrightarrow h_A \in \tau_2$  and  $h_A \sqsubseteq g_A, x_A^{\lambda} h_A$ , so  $g_A$  also  $\tau_2$  Qneighbourhood of  $x_A^{\lambda}$ . Thus every member  $g_A \in B_Q(x_A^{\lambda})$  is  $\tau_2$  Q-neighbourhood of  $x_A^{\lambda}$ .

#### **CONFLICTS OF INTEREST**

No conflict of interest was declared by the authors.

#### REFERENCES

- [1] Zadeh, L.A. "Fuzzy sets", Information and Control, 338-353, (1965).
- [2] C.L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl.24, 182-190, (1968).
- [3] Pao-Ming, P., and Ying-Ming, L., "Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence", J.Math.Anal.Appl., 76: 571599 (1980).
- [4] Molodtsov, D., "Soft set theory First result", Computers Math. Appl., 37(4-5): 19-31, (1999).
- [5] Maji, P.K, Biswas, R and Roy A.R. "Soft set theory", Computers Math. Appl.,45(4-5): 555-562, (2003).
- [6] Maji, P.K., Biswas, R. and Roy A.R. "Fuzzy soft sets", J. Fuzzy Math., 589-602, (2001).

- [7] Tanay B., Kandemir M.B., "Topological structure of fuzzy soft sets", Computers and Mathematics with Appl., 61(10): 2952-2957, (2011).
- [8] Roy, S., Samanta, T.K., "A note on fuzzy soft topological spaces", Annals of Fuzzy Mathematics and Informatics", 3(2): 305-311, (2012).
- [9] Varol, B.P., "Fuzzy soft topological spaces", Ph.D Thesis, The Graduate School of Natural and Applied Science of Kocaeli University, (2012)
- [10] Varol, B.P., Aygun H., "Fuzzy soft topology", Hacettepe Journal of Mathematics and Statistics", 41(3): 404-419, (2012).
- [11] Neog, T.J., Sut, D.K., Hazarika, G.C., "Fuzzy soft topological spaces", Lates Trend Math., 2(1), 54-67, (2012).
- [12] Hussain, S., "On some generalized structures in fuzzy soft topological spaces", Information Sciences Letters, 3: 107-115, (2015).
- [13] Dizman, T.H., "Soft ditopological-fuzzy soft topological spaces and the applications in medicine", Ph.D Thesis, The Graduate School of Natural and Applied Science of Selcuk University, (2014).
- [14] Simsekler, T., Yuksel S., "Fuzzy soft topological spaces", Annals of Fuzzy Math. and Informatics", 5(1): 87-96, (2013).
- [15] Tripathy, B.C., Ray G.C., "On mixed fuzzy topological spaces and countability", Soft Comput., 16(10): 1691-1695, (2012).
- [16] Tripathy, B.C. Ray G.C., "Mixed fuzzy ideal topological spaces", Appl. Math. and Comput,,220: 602-607, (2013).
- [17] Borah, M.J. and Hazarika B., "Some results of mixed fuzzy soft topology and applications in Chemistry", Annals of Fuzzy Mathematics and Informatics, 12(1): 129-138, (2016).