\int Hacettepe Journal of Mathematics and Statistics Volume 47 (6) (2018), 1417 – 1426

\oplus -co-coatomically supplemented and co-coatomically semiperfect modules

Rafail Alizade^{*†} and Serpil Güngör[‡]

Abstract

In this paper it is shown that a factor module of an \oplus -co-coatomically supplemented module is not in general \oplus -co-coatomically supplemented. If M is \oplus -co-coatomically supplemented and U is a fully invariant submodule of M, then M/U is \oplus -co-coatomically supplemented. A ring R is left perfect if and only if $R^{(\mathbb{N})}$ is an \oplus -co-coatomically supplemented R-module. A projective module M is co-coatomically semiperfect if and only if M is \oplus -co-coatomically supplemented. A ring is semiperfect if and only if every finitely generated free R-module is co-coatomically semiperfect.

Keywords: Co-coatomic submodule, \oplus -co-coatomically supplemented module, co-coatomically semiperfect module.

Received: 04.06.2014 Accepted: 18.11.2014 Doi: 10.15672/HJMS.20154413844

1. Introduction

Throughout this paper \mathbb{N} is the set of all positive integers, R is an associative ring with identity and all modules are *left* unitary R-modules $(_RM)$ unless otherwise stated. For any module M, $\operatorname{Rad}(M)$ denotes the radical of M. The Jacobson radical of $_RR$ is denoted by $\operatorname{Jac}(R)$. Let U be a submodule of M. A submodule V of M is called a *supplement* of U in M if V is minimal element in the set of submodules $L \leq M$ with U + L = M. V is a supplement of U in M if and only if U + V = M and $U \cap V \ll V$. A module M is called *supplemented* if every submodule of M has a supplement in M (see [15, Section 41] or [5, Chapter 4]). Semisimple, artinian and hollow (in particular local) modules are supplemented. A module M is called *coatomic* if every proper submodule of M is contained in a maximal submodule (see [18]). Semisimple, finitely generated and hollow modules are coatomic modules. Let N be a submodule of a module M. We say

^{*}Yaşar University, Faculty of Science and Letter, Department of Mathematics, Selçuk Yaşar Kampüsü, Üniversite Cad., No:35-37, Ağaçlı Yol, 35100, Bornova, İzmir, Türkiye Email: rafail.alizade@yasar.edu.tr

[†]Corresponding Author.

[‡] Email: serpiltop@gmail.com

that N is a co-coatomic submodule in M if M/N is coatomic. Since factor module of a coatomic module is coatomic, every submodule of semisimple, finitely generated and hollow modules is co-coatomic. A module M is said to be co-coatomically supplemented if every co-coatomic submodule of M has a supplement in M. A submodule N of M is called *cofinite* if M/N is finitely generated. M is called a *cofinitely supplemented* module if every cofinite submodule of M has a supplement in M (see [1]). Clearly a co-coatomically supplemented module is cofinitely supplemented and a coatomic module is co-coatomically supplemented if and only if it is a supplemented module. A module is said to be \oplus -supplemented if every submodule of M has a supplement that is a direct summand of M. A module M is called \oplus -co-coatomically supplemented if every co-coatomic submodule of M has a supplement that is a direct summand of M. Obviously an \oplus -supplemented module is \oplus -co-coatomically supplemented. Hollow modules (in particular local modules) are \oplus -supplemented, so \oplus -co-coatomically supplemented. A module M is called \oplus -cofinitely supplemented if every cofinite submodule of M has a supplement that is a direct summand of M (see [4]). Clearly an \oplus -co-coatomically supplemented module is \oplus -cofinitely supplemented.

In Section 2 , we show that a factor module of an \oplus -co-coatomically supplemented module need not be \oplus -co-coatomically supplemented by Example 2.1. If M is \oplus -co-coatomically supplemented and U is a fully invariant submodule of M, then M/U is \oplus -co-coatomically supplemented. For any ring R, any finite direct sum of \oplus -co-coatomically supplemented R-modules is \oplus -co-coatomically supplemented, but any direct sum of \oplus -co-coatomically supplemented modules need not be \oplus -co-coatomically supplemented. We show that a ring R is left perfect if and only if $R^{(\mathbb{N})}$ is an \oplus -co-coatomically supplemented R-module.

In Section 3, we define co-coatomically semiperfect module. For an R-module M, a pair (P, π) is a projective cover of M in case P is a projective R-module and $\pi : P \to M$ is a small epimorphism (see [2]). A module M is called *semiperfect* if every factor module of M has a projective cover (see [15]). A projective module is semiperfect if and only if it is \oplus -supplemented (see [10, Lemma 1.2.]). A module M is called *co-coatomically semiperfect* if every coatomic factor module of M has a projective cover. A projective module M is co-coatomically semiperfect if and only if M is \oplus -co-coatomically supplemented. An R-module M is cofinitely semiperfect or briefly cof-semiperfect if every finitely generated factor module of M has a projective cover (see [4]). Clearly a semiperfect module is co-coatomically semiperfect and a co-coatomically semiperfect. We show that a ring R is semiperfect if and only if every finitely generated free R-module is co-coatomically semiperfect.

2. \oplus -co-coatomically supplemented modules

2.1. Example. [8, Example 2.2] Let R be a commutative local ring which is not a valuation ring and let $n \ge 2$. By [14, Theorem 2], there exists a finitely presented indecomposable module $M = R^{(n)}/K$ which cannot be generated by fewer than n elements. By [7, Corollary 1], $R^{(n)}$ is \oplus -co-coatomically supplemented. However, M is not \oplus -cofinitely supplemented so it is not \oplus -co-coatomically supplemented (see [7, Proposition 2] and [13, Example 2.1]).

The above example shows that a factor module of an \oplus -co-coatomically supplemented module need not be \oplus -co-coatomically supplemented.

Let M be a nonzero module and let U be a fully invariant submodule of M, i.e. $f(U) \leq U$ for each $f \in End_R(M)$. If $M = M_1 \oplus M_2$, then $U = (U \cap M_1) \oplus (U \cap M_2)$ (see [6, Lemma 9.3] for abelian groups).

2.2. Proposition. Let M be a nonzero module and U be a fully invariant submodule of M. If M is \oplus -co-coatomically supplemented, then M/U is \oplus -co-coatomically supplemented. Furthermore, if U is a co-coatomic direct summand of M, then U is also \oplus -co-coatomically supplemented.

Proof. Suppose that M is an \oplus -co-coatomically supplemented module and L/U is a cocoatomic submodule of M/U. Therefore $M/L \cong (M/U)/(L/U)$ is coatomic. Since M is \oplus -co-coatomically supplemented, there exist submodules N and N' of M such that $M = N \oplus N', M = N+L$ and $N \cap L \ll N$. Then (N+U)/U is a supplement of L/U in M/U (see [15, 41.1(7)]). By hypothesis, U is fully invariant, therefore $U = (U \cap N) \oplus (U \cap N')$ (see [6, Lemma 9.3]). Thus $U = (N+U) \cap (N'+U)$ and $M/U = ((N+U)/U) \oplus ((N'+U)/U)$. Hence M/U is \oplus -co-coatomically supplemented.

Now suppose that U is a co-coatomic direct summand of M. Then there exists a submodule U' of M such that $M = U \oplus U'$ and U' is coatomic. Let V be a co-coatomic submodule of U. Therefore $M/V = (U \oplus U')/V \cong (U/V) \oplus U'$ is coatomic as it is direct sum of two coatomic modules. Since M is \oplus -co-coatomically supplemented, there exist submodules K and K' of M such that $M = K \oplus K', M = V + K$ and $V \cap K \ll K$. Thus $U = V + (U \cap K)$. Since U is fully invariant, $U = (U \cap K) \oplus (U \cap K')$, and so $U \cap K$ is direct summand of U. Furthermore, $V \cap (U \cap K) = V \cap K \ll K$. Then $V \cap (U \cap K) \ll U \cap K$ (see [15, 19.3(5)]). Therefore $U \cap K$ is a supplemented.

2.3. Corollary. Let M be an \oplus -co-coatomically supplemented R-module. Then $M/\operatorname{Rad}(M)$ and $M/\operatorname{Soc}(M)$ are also \oplus -co-coatomically supplemented modules.

Property (D3) for an *R*-module *M* is the following: If M_1 and M_2 are direct summands of *M* with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of *M*.

2.4. Proposition. Let M be an \oplus -co-coatomically supplemented module with property (D3). Then every co-coatomic direct summand of M is \oplus -co-coatomically supplemented.

Proof. Let N be a co-coatomic direct summand of M that is there exists a submodule N' of M such that $M = N \oplus N'$ and $N' \cong M/N$ is coatomic. Let U be a co-coatomic submodule of N. Then

$$M/U = (N \oplus N')/U \cong (N/U) \oplus N'$$

is coatomic as it is a direct sum of two coatomic modules. Since M is \oplus -co-coatomically supplemented, there exists a direct summand V of M such that

$$M = U + V$$
 and $U \cap V \ll V$.

Hence

$$N = N \cap M = N \cap (U + V) = U + (N \cap V)$$

Since *M* has property (D3), $N \cap V$ is a direct summand of *M*. Furthermore $N \cap V$ is a direct summand of *N* because *N* is a direct summand of *M*. Then $U \cap (N \cap V) = U \cap V$ is small in $N \cap V$ by [15, 19.3(5)]. Hence *N* is \oplus -co-coatomically supplemented.

A ring R is called a left V-ring if every simple R-module is injective (see [15, p. 192]). A commutative ring R is a V-ring if and only if R is a von Neumann regular ring (see [15, 23.5]).

2.5. Proposition. Over a V-ring R, a module M is \oplus -co-coatomically supplemented if and only if M is semisimple.

Proof. (\Leftarrow) Clear.

(⇒) Since M is \oplus -co-coatomically supplemented, M is \oplus -cofinitely supplemented and so cofinitely supplemented. Therefore $M/\operatorname{Soc}(M)$ has no maximal submodule by [1, Theorem 2.8] and [1, Proposition 3.6]. Since R is a V-ring, $M/\operatorname{Soc}(M) = \operatorname{Rad}(M/\operatorname{Soc}(M)) = 0$ (see [15, 23.1]). Thus M is semisimple. \Box

Obviously an \oplus -supplemented module is supplemented and \oplus -co-coatomically supplemented module is co-coatomically supplemented. An \oplus -supplemented module is \oplus -co-coatomically supplemented module, but an \oplus -co-coatomically supplemented module need not be \oplus -supplemented in general by the following example.

2.6. Example. The \mathbb{Z} -module \mathbb{Q} does not have any proper co-coatomic submodule. Thus \mathbb{Q} is \oplus -co-coatomically supplemented. But \mathbb{Z} -module \mathbb{Q} is not supplemented so it is not \oplus -supplemented (see [16, Theorem 3.1]).

An \oplus -co-coatomically supplemented module is \oplus -cofinitely supplemented but the example below shows that an \oplus -cofinitely supplemented module need not be \oplus -co-coatomically supplemented.

2.7. Example. [9, p. 282] Let R denote the ring K[[x]] of all power series $\sum_{i=0}^{\infty} k_i x^i$ in an indeterminate x and with coefficients from a field K. R is a local ring. The R-module R is supplemented so R is semiperfect (see [15, 42.6]). Note that

$$\operatorname{Jac}(R) = \left\{ \sum_{i=1}^{\infty} k_i x^i \, | \, k_i \in K \right\} = Rx$$

is not t-nilpotent. Thus R is not perfect (see [15, 43.9]). Since R is semiperfect, $R/\operatorname{Jac}(R)$ is semisimple. Therefore ${}_{R}R^{(\mathbb{N})}/\operatorname{Rad}({}_{R}R^{(\mathbb{N})})$ is semisimple, so $\operatorname{Rad}({}_{R}R^{(\mathbb{N})})$ is a co-coatomic submodule of ${}_{R}R^{(\mathbb{N})}$. By [3, Theorem 1], $\operatorname{Rad}({}_{R}R^{(\mathbb{N})})$ does not have a supplement. Thus ${}_{R}R^{(\mathbb{N})}$ is not co-coatomically supplemented so it is not \oplus -co-coatomically supplemented. On the other hand, since R is local, R-module R is \oplus -supplemented and so \oplus -cofinitely supplemented. Any direct sum of ${}_{R}R$, in particular ${}_{R}R^{(\mathbb{N})}$ is \oplus -cofinitely supplemented by [4, Theorem 2.6].

By the example above, it is seen that arbitrary direct sum of \oplus -co-coatomically supplemented modules need not be \oplus -co-coatomically supplemented.

To prove that a finite sum of \oplus -co-coatomically supplemented modules is an \oplus -co-coatomically supplemented module, we will use the following lemma.

2.8. Lemma. Let M be an R-module and N, U be submodules of M such that N is co-caotomically supplemented, U is co-coatomic and N + U has a supplement A in M. Then $N \cap (U + A)$ has a supplement B in N and A + B is a supplement of U in M.

Proof. Let A be a supplement of N+U in M. Then M = N+U+A and $(N+U) \cap A \ll A$. Note that

$$N/(N \cap (U+A)) \cong (N+U+A)/(U+A) = M/(U+A) \cong (M/U)/((U+A)/U)$$

is coatomic. Therefore $N \cap (U + A)$ is a co-coatomic submodule of N. Since N is co-coatomically supplemented, $N \cap (U+A)$ has a supplement B in N, i.e. $N \cap (U+A)+B = N$ and $B \cap (U+A) \ll B$. Then

$$M = N + U + A = U + A + B.$$

$$U \cap (A + B) \le (A \cap (U + B)) + (B \cap (U + A)) \le (A \cap (U + N)) + (B \cap (U + A)) \le (A + B)$$

Hence A + B is a supplement of U in M.

1420

2.9. Proposition. For any ring R, any finite direct sum of \oplus -co-coatomically supplemented R-modules is \oplus -co-coatomically supplemented.

Proof. Let n be a positive integer and $M = M_1 \oplus \cdots \oplus M_n$ where M_i is co-coatomically supplemented for each $1 \leq i \leq n$. To prove that M is \oplus -co-coatomically supplemented it is sufficient to prove the case when n = 2. Therefore let $M = M_1 \oplus M_2$ and L be any co-coatomic submodule of M. Then $M = M_1 + M_2 + L$ such that $M_1 + M_2 + L$ has a supplement 0 in M. Consider the submodule $M_2 \cap (M_1 + L)$ of M_2 .

$$M_2/(M_2 \cap (M_1 + L)) \cong (M_1 + M_2 + L)/(M_1 + L) = M/(M_1 + L).$$

Since M_1+L is a co-coatomic submodule of M, $M_2 \cap (M_1+L)$ is a co-coatomic submodule of M_2 . Since M_2 is an \oplus -co-coatomically supplemented module, $M_2 \cap (M_1 + L)$ has a supplement H in M_2 such that H is a direct summand of M_2 . H is a supplement of $M_1 + L$ in M by Lemma 2.8. Now consider the submodule $M_1 \cap (L + H)$ of M_1 .

$$M_1/(M_1 \cap (L+H)) \cong (M_1 + L + H)/(L+H) = M/(L+H).$$

Since L + H is a co-coatomic submodule of M, $M_1 \cap (L + H)$ is a co-coatomic submodule of M_1 . Since M_1 is \oplus -co-coatomically supplemented, $M_1 \cap (L + H)$ has a supplement Kin M_1 such that K is a direct summand of M_1 . Again by Lemma 2.8, we obtain H + K is a supplement of L in M. It follows that $H + K = H \oplus K$ is a direct summand of M since H is a direct summand of M_2 and K is a direct summand of M_1 . Thus $M = M_1 \oplus M_2$ is \oplus -co-coatomically supplemented. \Box

2.10. Proposition. Let M be an indecomposable R-module. The following are equivalent:

- (1) Every co-coatomic submodule of M has a supplement that is a direct summand.
- (2) Every maximal submodule of M has a supplement that is a direct summand.
- (3) M is radical or M is local.

Proof. (1) \Rightarrow (2) Since every maximal submodule is co-coatomic it is clear.

(2) \Rightarrow (3) If M is not radical, that is there is a maximal submodule N of M, then N has a supplement K that is a direct summand. Since M is indecomposable either K = 0 or K = M. If K = 0 then M = N + K = N. Contradiction. If K = M then $N = N \cap K \ll M$, therefore N is the largest proper submodule of M, so M is local.

 $(3) \Rightarrow (1)$ Let N be a co-coatomic submodule of M. If $N \neq M$ then M/N has a maximal submodule, therefore M has also a maximal submodule, that is M is not a radical module. Then M is local and therefore \oplus -supplemented. Thus every co-coatomic submodule has a supplement that is a direct summand in M.

2.11. Corollary. Let M be an indecomposable R-module such that $\operatorname{Rad}(M) \neq M$. M is \oplus -co-coatomically supplemented if and only if M is local.

A module M is called Σ -selfprojective if for each index set I, the module $M^{(I)}$ is selfprojective (see [17]).

2.12. Remark. For an *R*-module *M*, if *M* is Σ -selfprojective and $U \leq \operatorname{Rad}(M)$, then the following holds: *U* has a supplement in *M*, so *U* is small in *M* [17, Satz 4.1]. Clearly $_{R}R^{(\mathbb{N})}$ is Σ -selfprojective and $\operatorname{Rad}(_{R}R^{(\mathbb{N})}) \leq \operatorname{Rad}(_{R}R^{(\mathbb{N})})$, therefore if $\operatorname{Rad}(_{R}R^{(\mathbb{N})})$ has a supplement in $_{R}R^{(\mathbb{N})}$ then $\operatorname{Rad}(_{R}R^{(\mathbb{N})}) \ll _{R}R^{(\mathbb{N})}$.

2.13. Theorem. A ring R is left perfect if and only if $R^{(\mathbb{N})}$ is an \oplus -co-coatomically supplemented R-module.

Proof. (\Rightarrow) By [12, Proposition 4.8 and Theorem 4.41], $_{R}R^{(\mathbb{N})}$ is \oplus -supplemented and so \oplus -co-coatomically supplemented.

(⇐) Let M denote the R-module $R^{(\mathbb{N})}$. Since M is \oplus -co-coatomically supplemented, it is \oplus -cofinitely supplemented and so cofinitely supplemented. Thus $_RR$ is cofinitely supplemented (see [1, Lemma 2.1]). Therefore $_RR$ is supplemented since it is finitely generated. Therefore $R/\operatorname{Jac}(R)$ is semisimple by [15, 42.6]. It follows that $_RR^{(\mathbb{N})}/\operatorname{Rad}(_RR^{(\mathbb{N})})$ is semisimple. Thus $\operatorname{Rad}(_RR^{(\mathbb{N})})$ is co-coatomic in $_RR^{(\mathbb{N})}$. By the assumption, $\operatorname{Rad}(_RR^{(\mathbb{N})})$ has a supplement in $_RR^{(\mathbb{N})}$ that is a direct summand. By Remark 2.12, $\operatorname{Rad}(_RR^{(\mathbb{N})}) \ll _RR^{(\mathbb{N})}$. Therefore, since $R/\operatorname{Jac}(R)$ is semisimple, R is left perfect by [15, 43.9].

2.14. Corollary. The following are equivalent for a ring R:

- (1) R is left perfect.
- (2) The R-module $R^{(\mathbb{N})}$ is \oplus -supplemented.
- (3) The R-module $R^{(\mathbb{N})}$ is \oplus -co-coatomically supplemented.

Proof. (1) \Leftrightarrow (2) By [11, Theorem 2.10].

 $(2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (1)$ By Theorem 2.13.

Let R be a commutative ring. An R-module M is called a multiplication module if every submodule of M is of the form IM for some ideal I of R. Let M be an \oplus -cofinitely supplemented multiplication module with $\operatorname{Rad}(M) \ll M$, then M can be written as an irredundant sum of local direct summands of M (see [13, Theorem 2.7]).

2.15. Proposition. Let R be a commutative ring and M be a multiplication R-module. If M is an \oplus -co-coatomically supplemented module with $\operatorname{Rad}(M) \ll M$, then M can be written as an irredundant sum of local direct summands of M.

Proof. Since every \oplus -co-coatomically supplemented module is \oplus -cofinitely supplemented the proof is clear by [13, Theorem 2.7].

3. Co-coatomically semiperfect modules

3.1. Definition. Let M be an R-module. M is called co-coatomically semiperfect if every coatomic factor module of M has a projective cover.

The following proposition gives a characterization of a projective \oplus -co-coatomically supplemented module.

3.2. Proposition. Let M be a projective R-module. Then M is co-coatomically semiperfect if and only if M is \oplus -co-coatomically supplemented.

Proof. (\Rightarrow) Let N be a co-coatomic submodule of M. Then M/N is coatomic. By hypothesis, there exists a projective cover $\pi : P \to M/N$. Let $\sigma : M \to M/N$ be canonical epimorphism. Since M is projective there exists a homomorphism $f : M \to P$ such that the diagram

is commutative, i.e. $\pi \circ f = \sigma$. Since π is a small epimorphism, f is epic by [15, 19.2]. Since P is projective, f splits, i.e. there exists a homomorphism $g: P \to M$ such that $f \circ g = 1_P$ by [9, 3.9.3]. Thus $\pi = \pi \circ f \circ g = \sigma \circ g$. It follows that $M = \ker f \oplus g(P)$

1422

and ker $f \leq N$, so M = N + g(P). Let $\mu = \sigma \mid_{g(P)} : g(P) \to M/N$. Then $\pi = \mu \circ g$ and therefore μ is epic since π is epimorphism. Furthermore, since π is a small epimorphism, μ is also a small epimorphism by [15, 19.3]. Therefore ker $\mu = N \cap g(P) \ll g(P)$. Thus g(P) is a supplement of N.

 (\Leftarrow) Let M/N be a coatomic factor module of M. Since M is \oplus -co-coatomically supplemented, there exists submodules K and K' such that $M = K \oplus K'$, M = N + K and $N \cap K \ll K$. Since M is projective, K is projective. Therefore $\sigma \circ i : K \to M/N$ is an epimorphism and ker $\sigma \circ i = N \cap K \ll K$ for the inclusion homomorphism $i : K \to M$ and the canonical epimorphism $\sigma : M \to M/N$.

An R-module M is cofinitely semiperfect or briefly cof-semiperfect if every finitely generated factor module of M has a projective cover.

A co-coatomically semiperfect module is cof-semiperfect but converse need not be true by Example 2.7 since the projective *R*-module $R^{(\mathbb{N})}$ in that example is \oplus -cofinitely supplemented but not \oplus -co-coatomically supplemented.

A submodule U of an R-module M has ample supplements in M if, for every submodule V of M with U + V = M, there exists a supplement V' of U with V' $\leq V$ (see [5, p. 237]). A module M is called *co-coatomically amply supplemented* if every co-coatomic submodule of M has ample supplements in M. Clearly a co-coatomically amply supplemented module is co-coatomically supplemented.

Let M be an R-module and N be a submodule of M. N is called lie above a direct summand of M if there is a decomposition $M = K \oplus K'$ such that $K \leq N$ and $K' \cap N \ll K'$.

3.3. Proposition. Let M be a projective module. Then the following are equivalent:

- (1) M is co-coatomically semiperfect.
- (2) M is \oplus -co-coatomically supplemented.
- (3) Each co-coatomic submodule of M lies above a direct summand of M.
- (4) M is co-coatomically amply supplemented by supplements which have projective covers.
- (5) M is co-coatomically supplemented by supplements which have projective covers.

Proof. (1) \Leftrightarrow (2) By Proposition 3.2.

(2) \Rightarrow (3) Let N be a co-coatomic submodule of M. Since M is \oplus -co-coatomically supplemented, there exist submodules K and K' of M such that M = N+K, $N \cap K \ll K$ and $M = K \oplus K'$. Since M is projective there exists a submodule $K'' \leq N$ such that $M = K'' \oplus K$ (see [15, 41.14]).

 $(3) \Rightarrow (2)$ Clear.

 $(1) \Rightarrow (4)$ Let N be a co-coatomic submodule of M and M = N + L for some submodule L of M. Let (P, f) be a projective cover of M/N. Since P is projective and $M/N \cong L/(N \cap L)$, there exists a homomorphism $g: P \to L$. Since Ker $f \ll P$ and $g(\text{Ker } f) = \text{Im } g \cap N \cap L = \text{Im } g \cap N$, $\text{Im } g \cap N = \text{Im } g \cap N \cap L \ll \text{Im } g$. $\text{Im } g + (N \cap L) = L$ since f is an epimorphism. Therefore Im g is a supplement of $N \cap L$ in L. $M = N + L = N + \text{Im } g + (N \cap L) = \text{Im } g + N$ and $\text{Im } g \cap N \ll \text{Im } g$, i.e. Im g is a supplement of N in M and Im g is contained in L. Since Ker $g \leq \text{Ker } f$ and Ker $f \ll P$, P is a projective cover of Im g.

 $(4) \Rightarrow (5)$ Clear.

 $(5) \Rightarrow (1)$ Let N be a co-coatomic submodule of M and L be a supplement of N in M. Then L is a small cover of $L/(N \cap L)$. Therefore every projective cover of L is also a projective cover of $L/(N \cap L)$. Since $M/N \cong L/(N \cap L)$, M/N has a projective cover. Thus M is co-coatomically semiperfect. **3.4.** Proposition. Every homomorphic image of a co-coatomically semiperfect module is co-coatomically semiperfect.

Proof. Let $f: M \to N$ be a homomorphism and let M be a co-coatomically semiperfect module. Let f(M)/U be a coatomic factor module of f(M). There is an epimorphism

 $\sigma: M \to f(M)/U, \ m \mapsto f(m) + U.$

Since M is co-coatomically semiperfect,

$$M/f^{-1}(U) \cong f(M)/U$$

that is f(M)/U has a projective cover. Thus f(M) is co-coatomically semiperfect. \Box

3.5. Corollary. Every factor module of a co-coatomically semiperfect module is co-coatomically semiperfect.

3.6. Corollary. Let M be a projective module. If M is \oplus -co-coatomically supplemented then every factor module of an \oplus -co-coatomically supplemented module is also \oplus -co-coatomically supplemented.

Proof. By Corollary 3.5.

3.7. Proposition. Every small cover of a co-coatomically semiperfect module is co-coatomically semiperfect.

Proof. Let N be a co-coatomically semiperfect module, $f: M \to N$ be a small epimorphism and L be a co-coatomic submodule of M. Then N/f(L) is an epimorphic image of M/L under the epimorphism

$$\overline{f}: M/L \to N/f(L), \ \overline{f}(m+L) = f(m) + f(L)$$

Note that ker $\overline{f} \ll M/L$ since ker $f \ll M$. Therefore N/f(L) is coatomic since M/L is coatomic. By hypothesis, N/f(L) has a projective cover, say $\pi : P \to N/f(L)$. Since P is projective there exists a homomorphism $g : P \to M/L$ such that the following diagram is commutative

$$M/L \xrightarrow{g} N/f(L) \xrightarrow{g} N/f(L)$$

i.e. $\overline{f} \circ g = \pi$. Thus g is epic by [15, 19.2] and since π is small, g is small by [15, 19.3]. Hence P is a projective cover of the module M/L.

3.8. Corollary. If $K \ll M$ and M/K is co-coatomically semiperfect then M is cocoatomically semiperfect.

3.9. Corollary. Let $\pi: P \to M$ be a projective cover of a module M. Then the following statements are equivalent:

- $(1) \ M \ is \ co-coatomically \ semiperfect.$
- (2) P is co-coatomically semiperfect.
- (3) P is \oplus -co-coatomically supplemented.

Proof. $(1) \Rightarrow (2)$ By Proposition 3.7.

- $(2) \Rightarrow (1)$ By Proposition 3.4.
- (2) \Leftrightarrow (3) By Proposition 3.2.

Let M be an R-module. Then an R-module N is called (finitely) M-generated if it is a homomorphic image of a (finite) direct sum of copies of M (see [5, 1.1.]).

3.10. Lemma. Let M be a projective module. If M is semiperfect then every finitely M-generated module is co-coatomically semiperfect. The converse holds if M is finitely generated.

Proof. Let N be a finitely M-generated module. Since M is semiperfect, M is \oplus -supplemented. Therefore M is \oplus -co-coatomically supplemented. By Proposition 2.9, a finite direct sum of M, i.e. for any finite set Λ , $M^{(\Lambda)}$ is also \oplus -co-coatomically supplemented. Therefore $M^{(\Lambda)}$ is co-coatomically semiperfect by Proposition 3.2. By Corollary 3.5, N is co-coatomically semiperfect. Conversely, suppose that M is finitely generated and so it is coatomic. By hypothesis, M is co-coatomically semiperfect. \Box

3.11. Proposition. For a ring R, the following statements are equivalent:

- (1) R is semiperfect.
- (2) Every finitely generated free R-module is semiperfect.
- (3) Every finitely generated free R-module is co-coatomically semiperfect.

Proof. (1) \Leftrightarrow (2) By [10, Lemma 1.2] and [11, Theorem 2.1.].

(1) \Leftrightarrow (3) By Lemma 3.10.

References

- [1] Alizade, R., Bilhan, G., and Smith, P. F. Modules whose maximal submodules have supplements. Communications in Algebra, 29(6):2389-2405, 2001.
- [2] Anderson, F. and Fuller, K. Rings and Categories of Modules. Springer, 1992.
- [3] Büyükaşık, E. and Lomp, C. Rings whose modules are weakly supplemented are perfect. applications to certain ring extensions. Mathematica Scandinavica, 105:25– 30, 2009.
- [4] Çalışıcı, H. and Pancar, A. ⊕-cofinitely supplemented modules. Czechoslovak Mathematical Journal, 54(129):1083-1088, 2004.
- [5] Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R. Lifting Modules. Birkhäuser Verlag, 2006.
- [6] Fuchs, L. Infinite Abelian Groups, Vol. I. New York: Academic Press, 1970.
- [7] Idelhadj, A. and Tribak, R. A dual notion of cs-modules generalization. Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 208:149–155, 2000.
- [8] Idelhadj, A. and Tribak, R. On some properties of ⊕-supplemented modules. International Journal of Mathematics and Mathematical Sciences, 69:4373-4387, 2003.
- [9] Kasch, F. Modules and Rings. London Mathematical Society, 1982.
- [10] Keskin, D., Harmancı, A., and Smith, P. F. On ⊕-supplemented modules. Acta Mathematica Hungaria, 83(1-2):161-169, 1999.
- [11] Keskin, D., Smith, P. F., and Xue, W. Rings whose modules are ⊕-supplemented. Journal of Algebra, 218:470-487, 1999.
- [12] Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, Cambridge, UK, 1990.
- [13] Wang, Y. and Sun, Q. A note on ⊕-cofinitely supplemented modules. International Journal of Mathematics and Mathematical Sciences, 2007:10836-5 pages, 2007.
- [14] Warfield Jr., R. B. Decomposability of finitely presented modules. Proceedings of the American Mathematical Society, 25(1):167-172, 1970.

- [15] Wisbauer, R. Foundations of Modules and Rings. Gordon and Breach, 1991.
- [16] Zöschinger, H. Komplementierte moduln über dedekindringen. Journal of Algebra, 29:42-56, 1974.
- [17] Zöschinger, H. Moduln die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, 35:267–287, 1974.
- [18] Zöschinger, H. and Rosenberg, F. A. Koatomare moduln. Mathematische Zeitschrift, 170(3):221-232, 1980.

1426