On m-quasi class $\mathcal{A}\left(k^{*}\right)$ and absolute- $\left(k^{*}, m\right)$-paranormal operators

Ilmi Hoxha*, Naim L. Braha ${ }^{\dagger \ddagger}$ and Kotaro Tanahashi \S

Abstract

In this paper, we introduce a new class of operators, called m-quasi class $\mathcal{A}\left(k^{*}\right)$ operators, which is a superclass of hyponormal operators and a subclass of absolute- $\left(k^{*}, m\right)$-paranormal operators. We will show basic structural properties and some spectral properties of this class of operators. We show that if T is m-quasi class $\mathcal{A}\left(k^{*}\right)$, then $\sigma_{n p}(T) \backslash\{0\}=\sigma_{p}(T) \backslash\{0\}, \sigma_{n a}(T) \backslash\{0\}=\sigma_{a}(T) \backslash\{0\}$ and $T-\mu$ has finite ascent for all $\mu \in \mathbb{C}$. Also, we consider the tensor product of m-quasi class $\mathcal{A}\left(k^{*}\right)$ operators.

Dedicated to the memory of Professor Takayuki Furuta with deep gratitude.

Keywords: m-quasi class $\mathcal{A}\left(k^{*}\right)$, absolute- $\left(k^{*}, m\right)$-paranormal.
Mathematics Subject Classification (2010): Primary 47B20; Secondary 47A80, 47B37

Received: 23.01.2017 Accepted : 16.05.2017 Doi: 10.15672/HJMS.2018.630

[^0]
1. Introduction

Let H be an infinite dimensional complex Hilbert space and $L(H)$ be the set of all bounded operators on H. For $T \in L(H)$, we denote by $\operatorname{ker} T$ the null space and by $T(H)$ the range of T. The closure of a set M will be denoted by \bar{M}. An operator $T \in L(H)$ is said to be positive $T \geq 0$ if $\langle T x, x\rangle \geq 0$ for all $x \in H$. We write $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$ for the spectral radius. It is well known that $r(T) \leq\|T\|$. An operator T is called a normaloid operator if $r(T)=\|T\|$.

An operator T is said to be paranormal if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for every unit vector $x \in H$ ([6]). Also, T is said to be a $*$-paranormal operator if $\left\|T^{2} x\right\| \geq\left\|T^{*} x\right\|^{2}$ for every unit vector $x \in H$ ([4]).

In [7], Furuta, Ito and Yamazaki introduced a class $\mathcal{A}(k)$ operator T with $k>0$ defined as

$$
\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq|T|^{2}
$$

(for $k=1$ it defines the class \mathcal{A} operator). The set of class $\mathcal{A}(1)$ operators includes log-hyponormal operators by Theorem 2 of [7] and paranormal operators by Theorem 1 of [7]. In [7], an absolute- k-paranormal operator T with $k>0$ was introduced as

$$
\left\||T|^{k} T x\right\| \geq\|T x\|^{k+1}
$$

for every unit vector $x \in H$. Every class $\mathcal{A}(k)$ operator with $k>0$ is an absolute- k paranormal operator by Theorem 2 of [7].

An operator T is said to be a class $\mathcal{A}\left(k^{*}\right)$ operator with $k>0$ if

$$
\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq\left|T^{*}\right|^{2}
$$

In case where $k=1$ it defines class \mathcal{A}^{*} operators. Every class \mathcal{A}^{*} operator is a $*$ paranormal operator by Theorem 1.3 of [5].

In paper [13], an absolute- k^{*}-paranormal operator T with $k>0$ was introduced as follows:

$$
\left\||T|^{k} T x\right\| \geq\left\|T^{*} x\right\|^{k+1}
$$

for every unit vector $x \in H$. Every class $\mathcal{A}\left(k^{*}\right)$ operator is an absolute- k^{*}-paranormal operator by Theorem 2.4 of [13].
1.1. Lemma. [12, Hölder-McCarthy's inequality] Let T be a positive operator. Then the following inequalities hold for all $x \in H$:
(1) $\left\langle T^{r} x, x\right\rangle \leq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $0<r<1$,
(2) $\left\langle T^{r} x, x\right\rangle \geq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r \geq 1$.
1.2. Lemma. [9, Hansen's inequality] If $A, B \in L(H)$ satisfy $A \geq 0$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\delta} \geq B^{*} A^{\delta} B \text { for all } \delta \in(0,1]
$$

2. Definition and examples

2.1. Definition. Let $k>0$ and m be a non-negative integer. An operator $T \in L(H)$ is said to be an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator (abbreviate $\mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$) if

$$
T^{* m}\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T^{m} \geq T^{* m}\left|T^{*}\right|^{2} T^{m}
$$

1-quasi class $\mathcal{A}\left(k^{*}\right)$ operator is called a quasi class $\mathcal{A}(k)^{*}$ operator. 1-quasi class $\mathcal{A}\left(1^{*}\right)$ operator is called a quasi class \mathcal{A}^{*} operator. 0-quasi class $\mathcal{A}\left(k^{*}\right)$ operator is called a class $\mathcal{A}\left(k^{*}\right)$ operator and 0 -quasi class $\mathcal{A}\left(1^{*}\right)$ operator is called a class \mathcal{A}^{*} operator. If T is
an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator, then T is an $(m+1)$-quasi class $\mathcal{A}\left(k^{*}\right)$ operator. The inverse is not true as it can be seen below.
2.2. Example. Consider a unilateral weighted shift operator as an infinite dimensional Hilbert space operator. Recall that given a bounded sequence of positive numbers $\alpha:=$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right\}$ (called weights), a unilateral weighted shift W_{α} associated with weight α is defined by $W_{\alpha} e_{n}=\alpha_{n} e_{n+1}$ for all $n \geq 1$, where $\left\{e_{n}\right\}_{n=1}^{\infty}$ is the canonical orthonormal basis on $l_{2}(\mathbb{N})$, i.e.,

$$
\mathbf{W}_{\alpha}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \ldots \\
\alpha_{1} & 0 & 0 & 0 & 0 & \ldots \\
0 & \alpha_{2} & 0 & 0 & 0 & \ldots \\
0 & 0 & \alpha_{3} & 0 & 0 & \ldots \\
0 & 0 & 0 & \alpha_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Then W_{α} is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator if and only if

$$
\alpha_{m+l+1}^{2} \alpha_{m+l+2}^{2 k} \geq \alpha_{m+l}^{2(k+1)} \text { for all } l \in \mathbb{N} \cup\{0\}
$$

If $\alpha_{m+1} \leq \alpha_{m+2} \leq \alpha_{m+3} \leq \alpha_{m+4} \leq \ldots$ and $\alpha_{m}>\alpha_{m+1}$, then W_{α} is an $(m+1)$-quasi class $\mathcal{A}\left(k^{*}\right)$ but it is not an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator. For example, if $1=\alpha_{1}=\alpha_{2}=$ $\cdots=\alpha_{m}$ and $2=\alpha_{m+1}=\alpha_{m+2}=\cdots$, then W_{α} is an $(m+1)$-quasi class $\mathcal{A}\left(k^{*}\right)$ but W_{α} is not an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator.

It is well known that every *-paranormal operator is normaloid by Theorem 1.1 of [4]. But an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator with $m \geq 2$ need not be a normaloid operator: if $\alpha_{1}>\alpha_{2}=\alpha_{3}=\cdots$, then

$$
\left\|W_{\alpha}\right\|=\alpha_{1} \text { and } r\left(W_{\alpha}\right)=\lim _{n \rightarrow \infty}\left\|W_{\alpha}^{n}\right\|^{\frac{1}{n}}=\alpha_{2} .
$$

Now, we show that m-quasi class $\mathcal{A}\left((k+1)^{*}\right)$ and $(m+1)$-quasi class $\mathcal{A}\left(k^{*}\right)$ operator are independent.
2.3. Example. An example of a 1 -quasi class $\mathcal{A}\left(2^{*}\right)$ operator which is not a 2 -quasi class $\mathcal{A}\left(1^{*}\right)$ operator.

Let W_{α} be a unilateral weighted shift operator with weighted sequence $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$, given by the relation:

$$
\alpha_{n}= \begin{cases}1 & \text { if } n=1 \\ \sqrt{2} & \text { if } n=2 \\ 2 & \text { if } n=3 \\ \sqrt[4]{3} & \text { if } n=4 \\ 3 & \text { if } n \geq 5\end{cases}
$$

Simple calculations show that W_{α} is a 1 -quasi class $\mathcal{A}\left(2^{*}\right)$ operator, but W_{α} is not a 2 -quasi class $\mathcal{A}\left(1^{*}\right)$ operator.
2.4. Example. An example of a 2 -quasi class $\mathcal{A}\left(1^{*}\right)$ operator which is not a 1 -quasi class $\mathcal{A}\left(2^{*}\right)$ operator.

Let W_{α} be a unilateral weighted shift operator with weighted sequence $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$, given by the relation:

$$
\alpha_{n}= \begin{cases}\sqrt[3]{2} & \text { if } n=1 \\ \frac{1}{\sqrt{2}} & \text { if } n=2 \\ \sqrt{2} & \text { if } n=3 \\ 2 & \text { if } n=4 \\ 4 & \text { if } n \geq 5\end{cases}
$$

Simple calculations show that W_{α} is a 2 -quasi class $\mathcal{A}\left(1^{*}\right)$ operator, but W_{α} is not a 1-quasi class $\mathcal{A}\left(2^{*}\right)$ operator.

Given a bounded sequence of complex numbers $\alpha:=\left\{\alpha_{n}: n \in \mathbb{Z}\right\}$ (called weights), let T_{α} be a bilateral weighted shift defined by $T_{\alpha} e_{n}=\alpha_{n} e_{n+1}$ for all $n \in \mathbb{Z}$ on $H=l_{2}(\mathbb{Z})$ with the canonical orthonormal basis $\left\{e_{n}: n \in \mathbb{Z}\right\}$. Based on the definition of the m-quasi class $\mathcal{A}\left(k^{*}\right)$ operators the following facts are valid:
2.5. Lemma. Let T_{α} be a bilateral weighted shift operator defined as above with weights $\left\{\alpha_{n}: n \in \mathbb{Z}\right\}$. Then T_{α} is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator if and only if

$$
\left|\alpha_{n+m}\right|^{2} \cdot\left|\alpha_{n+m+1}\right|^{2 k} \geq\left|\alpha_{n+m-1}\right|^{2(k+1)}
$$

for all $n \in \mathbb{Z}$ and $m \in \mathbb{N} \cup\{0\}$.
A subspace M of H is said to be a nontrivial invariant subspace of T if $\{0\} \neq M \neq H$ and $T(M) \subseteq M$.
2.6. Theorem. Let $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ with $0<k \leq 1$ and T does not have a dense range. Then

$$
T=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \quad \text { on } \quad H=\overline{T^{m}(H)} \oplus \operatorname{ker}\left(T^{* m}\right)
$$

where $A=\left.T\right|_{\overline{T^{m}(H)}}$ is a class $\mathcal{A}\left(k^{*}\right)$ operator on $\overline{T^{m}(H)}, C^{m}=0$ and $\sigma(T)=\sigma(A) \cup\{0\}$.
Proof. Since $\overline{T^{m}(H)} \varsubsetneqq H$ is an invariant subspace of T, T can be written in

$$
T=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \quad \text { on } \quad H=\overline{T^{m}(H)} \oplus \operatorname{ker}\left(T^{* m}\right)
$$

Let $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ be the orthogonal projection of H onto $\overline{T^{m}(H)}$. Then $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)=T P=$ $P T P$. Since $T \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$, we have

$$
P\left(\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}\right) P \geq O
$$

By Hansen's inequality, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\left|A^{*}\right|^{2} & 0 \\
0 & 0
\end{array}\right) & \leq\left(\begin{array}{cc}
\left|A^{*}\right|^{2}+\left|B^{*}\right|^{2} & 0 \\
0 & 0
\end{array}\right) \\
& =P\left|T^{*}\right|^{2} P \leq P\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} P \\
& \leq\left(P T^{*}|T|^{2 k} T P\right)^{\frac{1}{k+1}}=\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}}
\end{aligned}
$$

Also, by Hansen's inequality, we have $P|T|^{2 k} P \leq\left(P|T|^{2} P\right)^{k}$ and

$$
P T^{*} P|T|^{2 k} P T P \leq P T^{*}\left(P|T|^{2} P\right)^{k} T P
$$

By Löwner-Heinz's inequality we have

$$
\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} \leq\left(P T^{*}\left(P|T|^{2} P\right)^{k} T P\right)^{\frac{1}{k+1}}
$$

So, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\left|A^{*}\right|^{2} & 0 \\
0 & 0
\end{array}\right) & \leq P\left|T^{*}\right|^{2} P \\
& \leq\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} \leq\left(P T^{*}\left(P|T|^{2} P\right)^{k} T P\right)^{\frac{1}{k+1}} \\
& =\left(\begin{array}{cc}
A^{*}\left|A^{*}\right|^{2 k} A & 0 \\
0 & 0
\end{array}\right)^{\frac{1}{k+1}}=\left(\begin{array}{cc}
\left(A^{*}\left|A^{*}\right|^{2 k} A\right)^{\frac{1}{k+1}} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence A is a class $\mathcal{A}\left(k^{*}\right)$ operator on $\overline{T^{m}(H)}$.
Let $x=\binom{x_{1}}{x_{2}} \in H=\overline{T^{m}(H)} \oplus \operatorname{ker}\left(T^{* m}\right)$. Then,

$$
\left\langle C^{m} x_{2}, x_{2}\right\rangle=\left\langle T^{m}(I-P) x,(I-P) x\right\rangle=\left\langle(I-P) x, T^{* m}(I-P) x\right\rangle=0,
$$

thus $C^{m}=0$.
By Corollary 7 of [8], $\sigma(A) \cup \sigma(C)=\sigma(T) \cup \vartheta$ where ϑ is the union of the holes in $\sigma(T)$, which happen to be a subset of $\sigma(A) \cap \sigma(C)$. Since $\sigma(C)=\{0\}, \sigma(A) \cap \sigma(C)$ has no interior point. Therefore $\sigma(T)=\sigma(A) \cup \sigma(C)=\sigma(A) \cup\{0\}$.
2.7. Theorem. Let $T \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$ with $0<k \leq 1$ and M be an invariant subspace of T. Then the restriction $\left.T\right|_{M}$ of T to M is also a $Q\left(\mathcal{A}\left(k^{*}\right), m\right)$ operator.

Proof. We can represent T as

$$
T=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \quad \text { on } \quad H=M \oplus M^{\perp}
$$

where $A=\left.T\right|_{M}$. Let $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ be the orthogonal projection of H onto M. Then we have

$$
\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)=T P=P T P .
$$

Since T is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator, we have

$$
T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}\right) T^{m} \geq 0
$$

We remark

$$
\begin{aligned}
P T^{* m}\left|T^{*}\right|^{2} T^{m} P & =P T^{* m} P\left|T^{*}\right|^{2} P T^{m} P=P T^{* m} P T T^{*} P T^{m} P \\
& =\left(\begin{array}{cc}
A^{* m}\left|A^{*}\right|^{2} A^{m}+\left|B^{*} A^{m}\right|^{2} & 0 \\
0 & 0
\end{array}\right) \geq\left(\begin{array}{cc}
A^{* m}\left|A^{*}\right|^{2} A^{m} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

By Hansen's inequality, we have

$$
\begin{aligned}
P T^{* m}\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T^{m} P & =P T^{* m} P\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} P T^{m} P \\
& \leq P T^{* m}\left(P T^{*}|T|^{2 k} T P\right)^{\frac{1}{k+1}} T^{m} P \\
& =P T^{* m}\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} T^{m} P \\
& \leq P T^{* m}\left(P T^{*} P\left(P T^{*} T P\right)^{k} P T P\right)^{\frac{1}{k+1}} T^{m} P \\
& =\left(\begin{array}{cc}
A^{* m} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A^{*}|A|^{2 k} A & 0 \\
0 & 0
\end{array}\right)^{\frac{1}{k+1}}\left(\begin{array}{cc}
A^{m} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{* m}\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}} A^{m} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\begin{array}{cc}
A^{* m}\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}} A^{m} & 0 \\
0 & 0
\end{array}\right) & \geq P T^{* m}\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T^{m} P \\
& \geq P T^{* m}\left|T^{*}\right|^{2} T^{m} P \geq\left(\begin{array}{cc}
A^{* m}\left|A^{*}\right|^{2} A^{m} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Thus A is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator on M.

3. On absolute- $\left(k^{*}, m\right)$-paranormal operator

3.1. Definition. Let $k>0$ and m be a non-negative integer. An operator $T \in L(H)$ is said to be an absolute- $\left(k^{*}, m\right)$-paranormal operator if

$$
\left\|\left|T^{*}\right| T^{m} x\right\|^{k+1} \leq\left\||T|^{k} T^{m+1} x\right\|\left\|T^{m} x\right\|^{k} \quad \text { for } \quad x \in H
$$

An absolute- $\left(k^{*}, 0\right)$-paranormal operator is called an absolute- k^{*}-paranormal operator. If T is an absolute- $\left(k^{*}, m\right)$-paranormal operator, then we have T is an absolute- $\left(k^{*}, m+1\right)$ paranormal operator by taking $x=T z$ in the definition.
3.2. Lemma. For positive real numbers $a>0$ and $b>0$,

$$
\lambda a+\mu b \geq a^{\lambda} b^{\mu}
$$

holds for $\lambda>0$ and $\mu>0$ such that $\lambda+\mu=1$.
3.3. Theorem. Let $k>0$ and m be a non-negative integer. Then an operator $T \in L(H)$ is an absolute- $\left(k^{*}, m\right)$-paranormal operator if and only if

$$
T^{*(m+1)}|T|^{2 k} T^{m+1}-(k+1) \lambda^{k} T^{* m}\left|T^{*}\right|^{2} T^{m}+k \lambda^{k+1} T^{* m} T^{m} \geq 0 \quad \text { for all } \lambda>0
$$

Proof. Suppose T is an absolute- $\left(k^{*}, m\right)$-paranormal operator. Then

$$
\begin{equation*}
\left\|\left|T^{*}\right| T^{m} x\right\| \leq\left\||T|^{k} T^{m+1} x\right\|^{\frac{1}{k+1}}\left\|T^{m} x\right\|^{\frac{k}{k+1}} \tag{3.1}
\end{equation*}
$$

Using Lemma 3.2, we have

$$
\begin{aligned}
\left.\left.\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle & \left.\leq\left.\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle^{\frac{1}{k+1}}\left\langle T^{* m} T^{m} x, x\right\rangle^{\frac{k}{k+1}} \\
& \left.=\left\{\left.\frac{1}{\lambda^{k}}\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle\right\}^{\frac{1}{k+1}}\left\{\lambda\left\langle T^{* m} T^{m} x, x\right\rangle\right\}^{\frac{k}{k+1}} \\
& \left.\leq\left.\frac{1}{k+1} \frac{1}{\lambda^{k}}\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle+\frac{k}{k+1} \lambda\left\langle T^{* m} T^{m} x, x\right\rangle
\end{aligned}
$$

for all $x \in H$ and $\lambda>0$. Hence

$$
\begin{equation*}
T^{*(m+1)}|T|^{2 k} T^{m+1}-(k+1) \lambda^{k} T^{* m}\left|T^{*}\right|^{2} T^{m}+k \lambda^{k+1} T^{* m} T^{m} \geq 0 \tag{3.2}
\end{equation*}
$$

Conversely, we assume (3.2). If $T^{m} x=0$, then (3.1) is trivial. Hence we may assume $T^{m} x \neq 0$. If $\left.\left.\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle>0$, put

$$
\lambda=\left(\frac{\left.\left.\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle}{\left\langle T^{m} x, T^{m} x\right\rangle}\right)^{\frac{1}{k+1}}>0
$$

in (3.3), i.e.,

$$
\begin{equation*}
\left.\left.\left.\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle-\left.(k+1) \lambda^{k}\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle+k \lambda^{k+1}\left\langle T^{* m} T^{m} x, x\right\rangle \geq 0 . \tag{3.3}
\end{equation*}
$$

Then we have (3.1). If $\left.\left.\left\langle T^{*(m+1)}\right| T\right|^{2 k} T^{m+1} x, x\right\rangle=0$, we have

$$
\left.0-\left.(k+1)\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle+k \lambda\left\langle T^{* m} T^{m} x, x\right\rangle \geq 0 \quad \text { for all } \quad \lambda>0
$$

by (3.3). By letting $\lambda \rightarrow+0$, we have $\left.\left.\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle=0$ and we gain (3.1).
3.4. Theorem. If $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$, then T is an absolute- $\left(k^{*}, m\right)$-paranormal operator. The converse is not true.

Proof. Suppose $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$. From Hölder-McCarthy's inequality, we have

$$
\begin{aligned}
\left\|\left|T^{*}\right| T^{m} x\right\|^{2} & \left.=\left.\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle \\
& \leq\left\langle T^{* m}\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T^{m} x, x\right\rangle \\
& \leq\left\langle T^{* m}\left(T^{*}|T|^{2 k} T\right) T^{m} x, x\right\rangle^{\frac{1}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}} \\
& =\left\||T|^{k} T^{m+1} x\right\|^{\frac{2}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}} .
\end{aligned}
$$

Hence T is an absolute- $\left(k^{*}, m\right)$-paranormal operator. To prove that the converse is not true we will consider a following example.
3.5. Lemma. Let $H=\oplus_{n=1}^{\infty} H_{n}$ where $H_{n}=\mathbb{C}^{2}$. Let $A_{j} \in B\left(H_{j}\right)$ and define $T \in B(H)$ as

$$
T=\left(\begin{array}{cccc}
0 & 0 & 0 & \ldots \\
A_{1} & 0 & 0 & \ldots \\
0 & A_{2} & 0 & \ldots \\
0 & 0 & A_{3} & \\
\vdots & \vdots & & \ddots
\end{array}\right)
$$

Let $k>0$ and m be a non-negative integer. Then the following assertions hold:
(1) T is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator if and only if

$$
\begin{align*}
& A_{j}^{*} A_{j+1}^{*} \cdots A_{j+m-1}^{*}\left(A_{j+m}^{*}\left|A_{j+m+1}\right|^{2 k} A_{j+m}\right)^{\frac{1}{k+1}} A_{j+m-1} \cdots A_{j+1} A_{j} \\
& \geq A_{j}^{*} A_{j+1}^{*} \cdots A_{j+m-1}^{*}\left|A_{m}^{*}\right|^{2} A_{j+m-1} \cdots A_{j+1} A_{j} \text { for } j=1,2, \cdots \tag{3.4}
\end{align*}
$$

(2) T is an absolute- $\left(k^{*}, m\right)$-paranormal operator if and only if

$$
\begin{align*}
& A_{j}^{*} \cdots A_{j+m-1}^{*}\left(A_{j+m}^{*}\left|A_{j+m+1}\right|^{2 k} A_{j+m}-(k+1) \lambda^{k}\left|A_{j+m-1}^{*}\right|^{2}+k \lambda^{k+1}\right) A_{j+m-1} \cdots A_{j} \geq 0 \tag{3.5}\\
& \text { for } j=1,2, \cdots
\end{align*}
$$

3.6. Example. Examples of m-quasi class $\mathcal{A}\left(k^{*}\right)$ operators and an absolute- $\left(k^{*}, m\right)$ paranormal operators.

Consider $T=T(m, c)$ with $0<c<\sqrt{3} / 4=0.433 \cdots$ as in Lemma 3.5 where $0<A_{1}=A_{2}=\cdots=A_{m}=\left(\begin{array}{cc}\frac{3}{4} & c \\ c & \frac{1}{4}\end{array}\right)$ and $0<\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right)=A_{m+1}=A_{m+2}=\cdots$. Since every A_{j} is invertible, (3.4) means

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right) \geq\left(\begin{array}{cc}
\frac{3}{4} & c \\
c & \frac{1}{4}
\end{array}\right) .
$$

Since

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right)-\left(\begin{array}{cc}
\frac{3}{4} & c \\
c & \frac{1}{4}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{4} & -c \\
-c & \frac{1}{4}
\end{array}\right)
$$

and

$$
\left|\begin{array}{cc}
\frac{1}{4} & -c \\
-c & \frac{1}{4}
\end{array}\right|=\frac{1}{16}-c^{2}
$$

we have that $T(m, c)$ is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator if $0<c \leq 0.25$ and $T(m, c)$ is not an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator if $0.25<c<\sqrt{3} / 4$. Also, $T(m, c)$ is an $(m+1)$-quasi class $\mathcal{A}\left(k^{*}\right)$ operator for all $0<c<\sqrt{3} / 4$. On the otherhand (3.5) means

$$
\left(\begin{array}{cc}
1-\frac{3}{4}(k+1) \lambda^{k}+k \lambda^{k+1} & -(k+1) \lambda^{k} c \tag{3.6}\\
-(k+1) \lambda^{k} c & \left(\frac{1}{2}\right)^{k+1}-\frac{1}{4}(k+1) \lambda^{k}+k \lambda^{k+1}
\end{array}\right) \geq 0 \text { for all } \lambda>0
$$

Since

$$
\begin{aligned}
& 1-\frac{3}{4}(k+1) \lambda^{k}+k \lambda^{k+1}>0 \\
&\left(\frac{1}{2}\right)^{k+1}-\frac{1}{4}(k+1) \lambda^{k}+k \lambda^{k+1}>0 \text { for all } \lambda>0
\end{aligned}
$$

the inequality (3.6) means

$$
\left|\begin{array}{cc}
1-\frac{3}{4}(k+1) \lambda^{k}+k \lambda^{k+1} & -(k+1) \lambda^{k} c \tag{3.7}\\
-(k+1) \lambda^{k} c & \left(\frac{1}{2}\right)^{k+1}-\frac{1}{4}(k+1) \lambda^{k}+k \lambda^{k+1}
\end{array}\right| \geq 0 \text { for all } \lambda>0
$$

or equivalently,

$$
\begin{align*}
f(k, \lambda) & :=\left(\frac{1}{(k+1) \lambda^{k}}-\frac{3}{4}+\frac{k \lambda}{k+1}\right)^{\frac{1}{2}}\left(\frac{1}{(k+1) 2^{k+1} \lambda^{k}}-\frac{1}{4}+\frac{k \lambda}{k+1}\right)^{\frac{1}{2}} \\
& \geq c \text { for all } \lambda>0 \tag{3.8}
\end{align*}
$$

The above is graph of $y=f(0.5, \lambda), f(1, \lambda), f(2, \lambda), f(3, \lambda)$. Hence $T(m, 0.285)$ is an absolute-($\left.1^{*}, m\right)$-paranormal operator, but $T(m, 0.285)$ is not an absolute- $\left(0.5^{*}, m\right)$ paranormal operator. Also, $T(m, 0.31)$ is an absolute- $\left(2^{*}, m\right)$-paranormal operator, but $T(m, 0.31)$ is not an absolute- $\left(1^{*}, m\right)$-paranormal operator, and $T(m, 0.34)$ is an absolute$\left(3^{*}, m\right)$-paranormal operator, but $T(m, 0.34)$ is not an absolute- $\left(2^{*}, m\right)$-paranormal operator.

4. Spectral properties

A complex number λ is said to be in the point spectrum $\sigma_{p}(T)$ of T if there is a nonzero $x \in H$ such that $(T-\mu) x=0$. If in addition, $(T-\mu)^{*} x=0$, then μ is said to be in the normal point spectrum $\sigma_{n p}(T)$ of T. Clearly $\sigma_{n p}(T) \subseteq \sigma_{p}(T)$. In general $\sigma_{n p}(T) \neq \sigma_{p}(T)$. A complex number μ is said to be in the approximate point spectrum $\sigma_{a}(T)$ of T if there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset H$ of unit vectors satisfying $(T-\mu) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. If in addition $(T-\mu)^{*} x_{n} \rightarrow 0$ as $n \rightarrow \infty$, then μ is said to be in the normal approximate point spectrum $\sigma_{n a}(T)$ of an operator T. Clearly $\sigma_{n a}(T) \subseteq \sigma_{a}(T)$. In general $\sigma_{n a}(T) \neq \sigma_{a}(T)$. Let $\alpha(T)=\operatorname{dim} \operatorname{ker}(T)$ and $\beta(T)=\operatorname{dim} \operatorname{Ker}\left(T^{*}\right)$.
4.1. Theorem. Let $0<k \leq 1$ and m be a non-negative integer. If $T \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$ and $(T-\mu) x=0$ with $\mu \neq 0$, then $(T-\mu)^{*} x=0$.

Proof. We may assume that $x \neq 0$. Let M be a span of $\{x\}$. Then M is an invariant subspace of T. Let

$$
T=\left(\begin{array}{ll}
\mu & B \\
0 & C
\end{array}\right) \quad \text { on } \quad H=M \oplus M^{\perp} .
$$

From the Theorem 2.7 we have

$$
\begin{aligned}
\left(\begin{array}{cc}
|\mu|^{2 m}\left(|\mu|^{2}+\left|B^{*}\right|^{2}\right) & 0 \\
0 & 0
\end{array}\right) & =P T^{* m}\left|T^{*}\right|^{2} T^{m} P \\
& \leq P T^{* m}\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} T^{m} P \\
& \leq P T^{* m}\left(P T^{*} P\left(P|T|^{2} P\right)^{k} P T P\right)^{\frac{1}{k+1}} T^{m} P \\
& =\left(\begin{array}{cc}
|\mu|^{2+2 m} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence $B=0$. Thus

$$
(T-\mu)^{*} x=\left(\begin{array}{cc}
0 & 0 \\
0 & C-\mu
\end{array}\right)^{*}\binom{x}{0}=0
$$

4.2. Corollary. If T is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator with $0<k \leq 1$, then $\sigma_{n p}(T) \backslash\{0\}=\sigma_{p}(T) \backslash\{0\}$.
4.3. Corollary. If T is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator with $0<k \leq 1$, then $\alpha(T-\mu) \leq \beta(T-\mu)$ for all $\mu \neq 0$.
4.4. Theorem. Let $0<k \leq 1$ and m be a non-negative integer. If $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ and γ, δ are nonzero numbers such that $\gamma \neq \delta$, then $\operatorname{ker}(T-\gamma) \perp \operatorname{ker}(T-\delta)$.
Proof. Let $x \in \operatorname{ker}(T-\gamma)$ and $y \in \operatorname{ker}(T-\delta)$. Then $T x=\gamma x$ and $T y=\delta y$. Therefore

$$
\gamma\langle x, y\rangle=\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle x, \bar{\delta} y\rangle=\delta\langle x, y\rangle
$$

then $\langle x, y\rangle=0$. Therefore, $\operatorname{ker}(T-\gamma) \perp \operatorname{ker}(T-\delta)$.
4.5. Theorem. Let $0<k \leq 1$ and m be a non-negative integer. If $T \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$ and $(T-\mu) x_{n} \rightarrow 0$ with $\mu \neq 0$ and $\left\|x_{n}\right\|=1$, then $(T-\mu)^{*} x_{n} \rightarrow 0$.
Proof. By the assumption $(T-\mu) x_{n} \rightarrow 0$, from

$$
T^{l}=(T-\mu+\mu)^{l}=\sum_{i=1}^{l}\binom{l}{i} \mu^{l-i}(T-\mu)^{i}+\mu^{l}, \text { for } l \in \mathbb{N},
$$

we have $\left(T^{l}-\mu^{l}\right) x_{n} \rightarrow 0$. By

$$
\left|\left\|T^{l} x_{n}\right\|-|\mu|^{l}\right| \leq\left\|\left(T^{l}-\mu^{l}\right) x_{n}\right\|
$$

we have
(4.1) $\quad\left\|T^{l} x_{n}\right\| \rightarrow|\mu|^{l}$.

Moreover
(4.2) $\quad \mid\left\|T^{*} \mu^{m} x_{n}\right\|-\left\|T^{*}\left(T^{m}-\mu^{m}\right) x_{n}\right\|\|\leq\| T^{*} T^{m} x_{n} \|$.

Since T is an m-quasi class $\mathcal{A}\left(k^{*}\right)$ operator, we get

$$
\begin{aligned}
\left\|T^{*} T^{m} x\right\|^{2} & =\left\|\left|T^{*}\right| T^{m} x\right\|^{2} \leq\left\||T|^{k} T^{m+1} x\right\|^{\frac{2}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}} \\
& \left.=\left.\langle | T\right|^{2 k} T^{m+1} x, T^{m+1} x\right\rangle^{\frac{1}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}} \\
& \left.\leq\left.\langle | T\right|^{2} T^{m+1} x, T^{m+1} x\right\rangle^{\frac{k}{k+1}}\left\|T^{m+1} x\right\|^{\frac{2(1-k)}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}} \\
& =\left\|T^{m+2} x\right\|^{\frac{2 k}{k+1}}\left\|T^{m+1} x\right\|^{\frac{2(1-k)}{k+1}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}}
\end{aligned}
$$

by Hölder-McCarthy's inequality. Hence

$$
\begin{equation*}
\left\|T^{*} T^{m} x\right\| \leq\left\|T^{m+2} x\right\|^{\frac{k}{k+1}}\left\|T^{m+1} x\right\|^{\frac{1-k}{k+1}}\left\|T^{m} x\right\|^{\frac{k}{k+1}} \tag{4.3}
\end{equation*}
$$

Then it follows from (4.1),(4.2) and (4.3) that

$$
\limsup _{n \rightarrow \infty}\left\|T^{*} x_{n}\right\| \leq|\mu|
$$

Since

$$
\begin{aligned}
\left\|(T-\mu)^{*} x_{n}\right\|^{2} & =\left\|T^{*} x_{n}\right\|^{2}-2 \operatorname{Re}\left\langle T^{*} x_{n}, \bar{\mu} x_{n}\right\rangle+|\mu|^{2}\left\|x_{n}\right\|^{2} \\
& =\left\|T^{*} x_{n}\right\|^{2}-2 \operatorname{Re}\left\langle x_{n}, \bar{\mu} T x_{n}\right\rangle+|\mu|^{2}\left\|x_{n}\right\|^{2}
\end{aligned}
$$

we have

$$
\limsup _{n \rightarrow \infty}\left\|(T-\mu)^{*} x_{n}\right\|^{2} \leq|\mu|^{2}-2|\mu|^{2}+|\mu|^{2}=0
$$

This implies $(T-\mu)^{*} x_{n} \rightarrow 0$.
4.6. Corollary. If $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ with $0<k \leq 1$, then $\sigma_{n a}(T) \backslash\{0\}=\sigma_{a}(T) \backslash\{0\}$.
4.7. Lemma. [2, Corollary 2] Let $T=U|T|$ be the polar decomposition of $T, \mu=|\mu| e^{i \theta} \neq$ 0 and $\left\{x_{n}\right\}$ a sequence of vectors. Then the following assertions are equivalent:
(1) $(T-\mu) x_{n} \rightarrow 0$ and $\left(T^{*}-\bar{\mu}\right) x_{n} \rightarrow 0$, as $n \rightarrow \infty$,
(2) $(|T|-|\mu|) x_{n} \rightarrow 0$ and $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0$, as $n \rightarrow \infty$,
(3) $\left(\left|T^{*}\right|-|\mu|\right) x_{n} \rightarrow 0$ and $\left(U^{*}-e^{-i \theta}\right) x_{n} \rightarrow 0$, as $n \rightarrow \infty$.
4.8. Corollary. If $T \in Q\left(\mathcal{A}\left(k^{*}\right)\right.$, $\left.m\right)$ with $0<k \leq 1$ and $\mu \in \sigma_{a}(T) \backslash\{0\}$ then $|\mu| \in \sigma_{a}(|T|) \cap \sigma_{a}\left(\left|T^{*}\right|\right)$.
Proof. If $\mu \in \sigma_{a}(T) \backslash\{0\}$, then by Theorem 4.5, there exists a sequence of unit vectors $\left\{x_{n}\right\}$ such that $(T-\mu) x_{n} \rightarrow 0$ and $(T-\mu)^{*} x_{n} \rightarrow 0$, as $n \rightarrow \infty$. Hence we have $|\mu| \in \sigma_{a}(|T|) \cap \sigma_{a}\left(\left|T^{*}\right|\right)$ by Lemma 4.7
4.9. Corollary. Let $T \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ with $0<k \leq 1$ and $T=U|T|$ be the polar decomposition of T. If $\mu=|\mu| e^{i \theta} \neq 0$ and $\mu \in \sigma_{a}(T)$, then $e^{i \theta} \in \sigma_{n a}(U)$.
Proof. Let $\mu \in \sigma_{a}(T)$. From Corollary 4.6, $\mu \in \sigma_{n a}(T)$. Then, there exists a sequence of unit vectors $\left\{x_{n}\right\}$ such that $(T-\mu) x_{n} \rightarrow 0$ and $(T-\mu)^{*} x_{n} \rightarrow 0$, as $n \rightarrow \infty$. From Lemma 4.7 we have $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0$ and $\left(U^{*}-e^{-i \theta}\right) x_{n} \rightarrow 0$, as $n \rightarrow \infty$. Thus $e^{i \theta} \in \sigma_{n a}(U)$.

An operator T on a complex Banach space X has the single-valued extension property, abbreviated SVEP, if, for every open set $U \subset \mathbb{C}$, the only analytic solution $f: U \rightarrow X$ of the equation $(T-\lambda) f(\lambda)=0$ for all $\lambda \in U$ is the zero function on U.
4.10. Corollary. If $T \in Q\left(\mathcal{A}\left(k^{*}\right)\right.$, m) with $0<k \leq 1$, then $\operatorname{ker}(T-\mu)=\operatorname{ker}(T-\mu)^{2}$ if $\mu \neq 0$ and $\operatorname{ker}\left(T^{m}\right)=\operatorname{ker}\left(T^{m+1}\right)$.
Proof. Let $\mu \neq 0$. Since $\operatorname{ker}(T-\mu) \subset \operatorname{ker}(T-\mu)^{2}$ is clear, we prove $\operatorname{ker}(T-\mu)^{2} \subset$ $\operatorname{ker}(T-\mu)$. Let $x \in \operatorname{ker}(T-\mu)^{2}$. Since $(T-\mu)(T-\mu) x=(T-\mu)^{2} x=0$, we have $(T-\mu)^{*}(T-\mu) x=0$ by Corollary 4.1. Hence,

$$
\|(T-\mu) x\|^{2}=\left\langle(T-\mu)^{*}(T-\mu) x, x\right\rangle=0,
$$

so we have $(T-\mu) x=0$. Hence $x \in \operatorname{ker}(T-\mu)$.
Let $x \in \operatorname{ker}\left(T^{m+1}\right)$. Then

$$
\left\|\left|T^{*}\right| T^{m} x\right\|^{2} \leq\left\|\left|T^{k}\right| T^{m+1} x\right\|^{\frac{2}{1+k}}\left\|T^{m} x\right\|^{\frac{2 k}{k+1}}=0
$$

Hence $\left|T^{*}\right| T^{m} x=0$. Then

$$
\left\|T^{m} x\right\|^{2}=\left\langle T^{*} T^{m} x, T^{m-1} x\right\rangle=\left\langle U^{*}\right| T^{*}\left|T^{m} x, T^{m-1} x\right\rangle=0
$$

Thus $x \in \operatorname{ker}\left(T^{m}\right)$.
4.11. Corollary. If $T \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$ with $0<k \leq 1$, then T has $S V E P$.

Proof. The proof is obvious from Theorem 2.39 of [1].

5. Tensor product for $\mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$

Let H and K denote Hilbert spaces. For given non zero operators $T \in L(H)$ and $S \in B(K), T \otimes S$ denotes the tensor product on the product space $H \otimes K$. It is known that the normaloid property is invariant under tensor products by [14], and there exist paranormal operators T and S such that $T \otimes S$ is not paranormal by [3], and $T \otimes S$ is normal if and only if T and S are normal by [15]. These results were extended to the class \mathcal{A} operators, class $A(k)$ operators, and $*$-class \mathcal{A} operators by [10] [11] and [5]. In this section, we prove an analogues result for $\mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ operators.

Let $T \in L(H)$ and $S \in L(K)$ be non zero operators. Then $(T \otimes S)^{*}(T \otimes S)=T^{*} T \otimes S^{*} S$ holds. By the uniqueness of positive square roots, we have $|T \otimes S|^{r}=|T|^{r} \otimes|S|^{r}$ for any positive rational number r. From the density of the rationales in the real, we obtain $|T \otimes S|^{p}=|T|^{p} \otimes|S|^{p}$ for any positive real number p.
5.1. Theorem. Let $0<k$ and m be a non-negative integer. If (1) $T, S \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$ or (2) $T^{m}=0$ or $S^{m}=0$ holds, then $T \otimes S \in Q\left(\mathcal{A}\left(k^{*}\right), m\right)$.

Proof. By simple calculation we have:

$$
\begin{gathered}
(T \otimes S)^{* m}\left(\left((T \otimes S)^{*}|(T \otimes S)|^{2 k}(T \otimes S)\right)^{\frac{1}{k+1}}-\left|(T \otimes S)^{*}\right|^{2}\right)(T \otimes S)^{m} \\
=T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}\right) T^{m} \otimes S^{* m}\left(S^{*}|S|^{2 k} S\right)^{\frac{1}{k+1}} S^{m} \\
+T^{* m}\left|T^{*}\right|^{2} T^{m} \otimes S^{* m}\left(\left(S^{*}|S|^{2 k} S\right)^{\frac{1}{k+1}}-\left|S^{*}\right|^{2}\right) S^{m}
\end{gathered}
$$

Hence, if either (1) or (2), then $T \otimes S \in \mathcal{Q}\left(\mathcal{A}\left(k^{*}\right), m\right)$.
5.2. Theorem. Let m be a non-negative integer and $T \in L(H)$ and $S \in L(K)$ be nonzero operators. If $T \otimes S \in \mathcal{Q}\left(\mathcal{A}\left(1^{*}\right), m\right)$, then (1) $T, S \in \mathcal{Q}\left(\mathcal{A}\left(1^{*}\right), m\right)$ or (2) $T^{m+1}=0$ or $S^{m+1}=0$ holds .

Proof. Suppose $T \otimes S \in \mathcal{Q}\left(\mathcal{A}\left(1^{*}\right), m\right)$. Then we get

$$
\begin{aligned}
& \left\langle T^{* m}\left(\left(T^{*}|T|^{2} T\right)^{\frac{1}{2}}-\left|T^{*}\right|^{2}\right) T^{m} x, x\right\rangle\left\langle S^{* m}\left(S^{*}|S|^{2} S\right)^{\frac{1}{2}} S^{m} y, y\right\rangle \\
& \left.\quad+\left.\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x, x\right\rangle\left\langle S^{* m}\left(\left(S^{*}|S|^{2} S\right)^{\frac{1}{2}}-\left|S^{*}\right|^{2}\right) S^{m} y, y\right\rangle \geq 0
\end{aligned}
$$

for $x \in H, y \in K$.
Assume $T \notin \mathcal{Q}\left(\mathcal{A}\left(1^{*}\right), m\right)$. Then there exists $x_{0} \in H$ such that:

$$
\left\langle T^{* m}\left(\left(T^{*}|T|^{2} T\right)^{\frac{1}{2}}-\left|T^{*}\right|^{2}\right) T^{m} x_{0}, x_{0}\right\rangle:=\alpha<0
$$

and

$$
\left.\left.\left\langle T^{* m}\right| T^{*}\right|^{2} T^{m} x_{0}, x_{0}\right\rangle:=\beta>0
$$

From the above relation, we have

$$
\left.(\alpha+\beta)\left\langle S^{* m}\left(S^{*}|S|^{2} S\right)^{\frac{1}{2}} S^{m} y, y\right\rangle \geq\left.\beta\left\langle S^{* m}\right| S^{*}\right|^{2} S^{m} y, y\right\rangle
$$

Thus $S \in \mathscr{Q}\left(\mathcal{A}\left(1^{*}\right), m\right)$ because $\alpha+\beta<\beta$ and $0<\beta$.
Since

$$
\left.\left.\left.\left\langle S^{* m}\right| S^{*}\right|^{2} S^{m} y, y\right\rangle=\left.\langle | S^{*}\right|^{2} S^{m} y, S^{m} y\right\rangle=\left\langle S^{*} S^{m} y, S^{*} S^{m} y\right\rangle=\left\|S^{*} S^{m} y\right\|^{2}
$$

and using Holder McCarthy's inequality, we get

$$
\begin{aligned}
\left\langle S^{* m}\left(S^{*}|S|^{2} S\right)^{\frac{1}{2}} S^{m} y, y\right\rangle & =\left\langle\left(S^{*}|S|^{2} S\right)^{\frac{1}{2}} S^{m} y, S^{m} y\right\rangle \\
& \leq\left\langle\left(S^{*}|S|^{2} S\right) S^{m} y, S^{m} y\right\rangle^{\frac{1}{2}}\left\|S^{m} y\right\| \\
& =\left\||S| S^{m+1} y\right\|\left\|S^{m} y\right\|
\end{aligned}
$$

Then

$$
(\alpha+\beta)\left\||S| S^{m+1} y\right\|\left\|S^{m} y\right\| \geq \beta\left\|S^{*} S^{m} y\right\|^{2}
$$

Since $S \in Q\left(\mathcal{A}\left(1^{*}\right), m\right), S$ has decomposition of the form

$$
S=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \text { on } H=\overline{S^{m}(H)} \oplus \operatorname{ker}\left(S^{* m}\right)
$$

where $A=\left.S\right|_{\overline{S^{m}(H)}}$ is a $\mathcal{A}\left(1^{*}\right)$ operator by Theorem 2.6. Then we have

$$
(\alpha+\beta)\left\|A^{2} z\right\|\|z\|=(\alpha+\beta)\||A| A z\|\|z\| \geq \beta\left\|S^{*} z\right\|^{2} \geq \beta\left\|A^{*} z\right\|^{2}
$$

for all $z \in \overline{S^{m}(H)}$. Since $A \in \mathcal{A}\left(1^{*}\right), A$ is normaloid by Theorem 1.1 of [4]. By taking supremum on both sides of the above inequality, we have

$$
(\alpha+\beta)\|A\|^{2} \geq \beta\left\|A^{*}\right\|^{2}=\beta\|A\|^{2}
$$

This implies $A=0$. Then we have

$$
S^{m+1}=\left(\begin{array}{cc}
0 & B C^{m} \\
0 & C^{m+1}
\end{array}\right)=0
$$

A similar argument shows that if $S \notin Q\left(\mathcal{A}\left(1^{*}\right), m\right)$, then $T^{m+1}=0$. Hence the proof is completed.

Acknowledgment Authors would like to thank referees for fruitful comments and suggestion given in this paper.

References

[1] Aiena,P., Semi-Fredholm operators, perturbations theory and localized SVEP, XX Escuela Venezolana de Matematicas, Merida, Venezuela 2007.
[2] Aluthge, A., Wang, D., The joint approximate point spectrum of an operator, Hokkaido Math. J., 31 (2002), 187-197.
[3] Ando, T., Operators with a norm condition, Acta Sci. Math.(Szeged), 33, 169-178, 1972.
[4] Arora, S. C., Thukral, J. K., On a class of operators, Glas. Math. Ser. III, 21(41) no.2, 381-386, 1986.
[5] Duggal, B. P., Jeon, I. H., Kim, I. H., On *-paranormal contractions and properties for *-class \mathcal{A} operators, Linear Alg. Appl. 436, 954-962, 2012.
[6] Furuta, T., On the class of paranormal operators, Proc. Japan Acad. 43, 594-598, 1967.
[7] Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1, no.3, 389-403, 1998.
[8] Han, J. K., Lee, H. Y., Lee, W. Y., Invertible completions of 2×2 upper triangular operator matrices Proc. Amer. Math. Soc., 128, no.1, 119-123, 2000.
[9] Hansen, F., An operator inequality, Math. Ann. 246, 249-250, 1980.
[10] Kim, I. H., Weyl's theorem and tensor product for operators satisfying $T^{* k}\left|T^{2}\right| T^{k} \geq$ $T^{* k}|T|^{2} T^{k}$, J. Korean Math. Soc. 47, No.2, 351-361, 2010.
[11] Kim, I. H., On spectral continuities and tensor products of operators, J. Chungcheong Math. Soc., 24, No.1, 113-119, 2011.
[12] McCarthy, C. A., c_{p}, Israel J. Math. 5, 249-271, 1967.
[13] Panayappan, S., Radharamani, A., A Note on $p-*-p a r a n o r m a l ~ O p e r a t o r s ~ a n d ~ A b s o l u t e-k *-~$ Paranormal Operators, Int. J. Math. Anal. 2, no.25-28, 1257-1261, 2008.
[14] Saito, T., Hyponormal operators and Related topics, Lecture notes in Math., SpringerVerlag, 247, 1971.
[15] Stochel, J., Seminormality of operators from their tensor products, Proc. Amer. Math. Soc., 124, 435-440, 1996.

[^0]: *Department of Mathematics and Computer Sciences, University of Prishtina; Avenue "Mother Theresa" 5, Prishtinë, 10000, Kosova
 Email : ilmihoxha011@gmail.com
 \dagger Department of Mathematics and Computer Sciences, University of Prishtina; Avenue "Mother Theresa" 5, Prishtinë, 10000, Kosova
 Email : nbraha@yahoo.com
 $\ddagger_{\text {Corresponding Author. }}$
 $\S_{\text {Department of Mathematics, Tohoku Medical and Pharmaceutical University; Sendai 981- }}$ 8558, Japan
 Email : tanahasi@tohoku-mpu.ac.jp

