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On m-quasi class A(k*) and
absolute-(k*, m)-paranormal operators

Tlmi Hoxha*, Naim L. Braha!t and Kotaro Tanahashi®

Abstract

In this paper, we introduce a new class of operators, called m-quasi
class A(k™) operators, which is a superclass of hyponormal operators
and a subclass of absolute-(k*,m)-paranormal operators. We will
show basic structural properties and some spectral properties of this
class of operators. We show that if T is m-quasi class A(k™), then
Gap(T)\ {0} = 0,(T) \ {0}, 0na(T) \ {0} = 0(T) \ {0} and T — p
has finite ascent for all u € C. Also, we consider the tensor product of
m-quasi class A(k™) operators.
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1. Introduction

Let H be an infinite dimensional complex Hilbert space and L(H) be the set of all
bounded operators on H. For T' € L(H), we denote by kerT the null space and by T'(H)
the range of T. The closure of a set M will be denoted by M. An operator T' € L(H) is
said to be positive T' > 0 if (T'z,z) > 0 for all z € H. We write r(T") = lim, 0 ||T"H%
for the spectral radius. It is well known that »(7) < ||T||. An operator T is called a
normaloid operator if r(T) = ||T]|.

An operator T is said to be paranormal if ||T2z|| > ||Tx||* for every unit vector x € H
([6]). Also, T is said to be a *-paranormal operator if | T2z| > ||T*z||® for every unit
vector x € H ([4]).

In [7], Furuta, Ito and Yamazaki introduced a class A(k) operator T' with k& > 0
defined as

1
(TP >
(for K = 1 it defines the class A operator). The set of class A(1) operators includes

log-hyponormal operators by Theorem 2 of [7] and paranormal operators by Theorem 1
of [7]. In [7], an absolute-k-paranormal operator T" with k& > 0 was introduced as

71 e| > e

for every umit vector x € H. Every class A(k) operator with £ > 0 is an absolute-k-
paranormal operator by Theorem 2 of [7].
An operator T is said to be a class A(k™) operator with k& > 0 if

o1
(T*|T|2kT) BT > \T*|2.

In case where k = 1 it defines class A" operators. Every class A* operator is a *-
paranormal operator by Theorem 1.3 of [5].
In paper [13], an absolute-k*-paranormal operator 7" with k£ > 0 was introduced as
follows:
T Tz > (| T*a||"
for every unit vector © € H. Every class A(k") operator is an absolute-k*-paranormal
operator by Theorem 2.4 of [13].

1.1. Lemma. [12, Holder-McCarthy’s inequality] Let T be a positive operator. Then the
following inequalities hold for all x € H:

(1) (T"x,x) < (T, z)" ||| for 0 < r < 1,

(2) (TTz,x) > (Tz,z)"||z|[**~") for r > 1.
1.2. Lemma. [9, Hansen’s inequality| If A, B € L(H) satisfy A >0 and |B|| <1, then
(B*AB)° > B*A°B for all § € (0,1].

2. Definition and examples

2.1. Definition. Let & > 0 and m be a non-negative integer. An operator T € L(H) is
said to be an m-quasi class A(k™) operator (abbreviate Q(A(k*), m)) if

1
T*m (T*|T|2kT) k+1 Tm Z T*m|T*|2T'm

1-quasi class A(k™) operator is called a quasi class A(k)* operator. 1-quasi class A(1%)
operator is called a quasi class A" operator. 0-quasi class A(k") operator is called a class
A(k™)operator and 0O-quasi class A(1*) operator is called a class A* operator. If T is
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an m-quasi class A(k™) operator, then T is an (m + 1)-quasi class A(k") operator. The
inverse is not true as it can be seen below.

2.2. Example. Consider a unilateral weighted shift operator as an infinite dimensional
Hilbert space operator. Recall that given a bounded sequence of positive numbers a :=
{1, a2, a3, au, ...} (called weights), a unilateral weighted shift W, associated with weight
a is defined by Wae, = anenyi for allm > 1, where {e, }5; is the canonical orthonormal
basis on I2(N), i.e.,

0 0 0 0 0
a1 0 0 0 0
0 az 0 0 O
W, = 0 0 a3 0 0
0 0 0 a4 O

Then W, is an m-quasi class A(k*) operator if and only if
O Oy > aiﬁ:—l) for all [ € NU {0}.

If amt1 < amt2 < amg3 < Wmta < oo and Qm > Qm41, then Wy is an (m + 1)-quasi
class A(k™) but it is not an m-quasi class A(k*) operator. For example, if 1 = a1 = az =
<o = and 2 = Qm41 = Qa2 = -+, then Wy, is an (m + 1)-quasi class A(k*) but W,
is not an m-quasi class A(k™) operator.

It is well known that every *-paranormal operator is normaloid by Theorem 1.1 of [4].
But an m-quasi class A(k™) operator with m > 2 need not be a normaloid operator: if
a1 > as =a3z =---, then

[Wall = 1 and #(Wa) = lim [|[W2]|" = as.
n—r oo

Now, we show that m-quasi class A((k + 1)*) and (m + 1)-quasi class A(k™) operator
are independent.

2.3. Example. An example of a 1-quasi class A(2*) operator which is not a 2-quasi
class A(1%) operator.

Let W, be a unilateral weighted shift operator with weighted sequence {ay, : n € N},
given by the relation:

1 ifn=1
V2 ifn=2
ap = 2 ifn=3
V3 ifn=4
3 if n > 5.

Simple calculations show that W, is a 1-quasi class A(2") operator, but W, is not a
2-quasi class A(1*) operator.

2.4. Example. An example of a 2-quasi class A(1*) operator which is not a l-quasi
class A(2") operator.

Let W, be a unilateral weighted shift operator with weighted sequence {ay, : n € N},
given by the relation:
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V2 ifn=1
% ifn=2
2 ifn=4
4 if n > 5.

Simple calculations show that W, is a 2-quasi class A(1*) operator, but W, is not a
1-quasi class A(2%) operator.

Given a bounded sequence of complex numbers « := {ay, : n € Z}(called weights), let
T, be a bilateral weighted shift defined by Twen = anenyi1 for all n € Z on H = 12(Z)
with the canonical orthonormal basis {e,, : n € Z}. Based on the definition of the m-quasi
class A(k*) operators the following facts are valid:

2.5. Lemma. Let T, be a bilateral weighted shift operator defined as above with weights
{an :n € Z}. Then T, is an m-quasi class A(k™) operator if and only if
|latntm|® - [ansmst ] > Jangm—1)* T,
for allm € Z and m € NU {0}.
A subspace M of H is said to be a nontrivial invariant subspace of T if {0} # M # H
and T(M) C M.

2.6. Theorem. Let T € Q(A(k™), m) with 0 < k <1 and T does not have a dense range.
Then
A B *1M
T_<O C) on H=Tm(H)®ker(T™™),
where A = Ty i a class A(k™) operator on T™(H), C™ =0 and o(T') = o(A)U{0}.

Proof. Since T™(H) G H is an invariant subspace of T, T' can be written in

A B *1M
T_<O C> on H=Tm(H)®ker(T"™).

Let P = (1) 8 be the orthogonal projection of H onto 7™ (H ). Then (81 8) =TP =

PTP. Since T € Q(A(k™), m), we have
1
P ((T*|T\2kT) B |T*|2) P>O0.

By Hansen’s inequality, we have

|A*|2 0 < ‘A*|2+|B*‘2 0
0 0/ — 0 0

1
— PIT*PP <P (T*\T|2kT) =T p
1 1
< (PT*|T|2kTP) BT (PT*P|T|2’“PTP) S
Also, by Hansen’s inequality, we have P|T|** P < (P|T|*P)* and
PT*P|T|**PTP < PT*(P|T|*P)*TP.

By Lowner—Heinz’s inequality we have

(PT*P|T|2kPTP) L (PT*(P|T|2P)kTP) R
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So, we have

|14*|2 0 *|2
<
( o o) SPITPPP

1
k+1

< (PT*P|T|2’“PTP)ﬁ < (PT*(P\T|2P)’“TP)

= 0 = .

0 0 0

Hence A is a class A(k") operator on T™(H).
Let z = <§1> € H=Tm(H) ®ker(T*™). Then,
2

(C™xa,x2) = (T (I — P)x,(I — P)x) = (I — P)z, T"™ (I — P)x) = 0,

thus C™ = 0.

By Corollary 7 of [8], 0(A) Uo(C) = o(T) UV where ¥ is the union of the holes in
o(T), which happen to be a subset of o(A) No(C). Since o(C) = {0}, 0(A) No(C) has
no interior point. Therefore o(T) = o(A) Uo(C) = o(A) U {0}. O

2.7. Theorem. Let T € Q(A(k™), m) with 0 < k <1 and M be an invariant subspace of
T. Then the restriction Ty of T to M is also a Q(A(K™), m) operator.

Proof. We can represent T as

(A B _ 1L
T_<O C) on H=Maoe M

1 0

where A =T |p. Let P = <0 0

) be the orthogonal projection of H onto M. Then we

have

A 0
<0 0) =TP = PTP.

Since T is an m-quasi class A(k™) operator, we have
1
We remark
PT*™|T**T™P = PT*"P|T*?PT™P = PT*" PTT*PT™P
- 0 0 ’

0 0
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By Hansen’s inequality, we have

k+1 k+1

PT*™ (T*|T|2'“T) TP = PT*™P (T |T\2kT) PT™P
1
< pT™ (PT*|T\2’“TP) R pmp
_1

- PT™ (PT*P|T|2’“PTP) T pmp
_1

PT*™ (PT P(PT*TP)*PTP)""' T™P

A*|APPPA 0 A

0 0 0 0

A A*\AFM) T A™ o)

IN

0
Hence
AT (AT APRFA)FTA™ 0\ o prem (T*‘TWT)%HTWLP
0 0) —
*m *|2 Am
> PT*™|T**T™P > ATATEAT 0y
0 0

Thus A is an m-quasi class A(k™) operator on M. O

3. On absolute-(k*, m)-paranormal operator

3.1. Definition. Let k£ > 0 and m be a non-negative integer. An operator T' € L(H) is
said to be an absolute-(k*, m)-paranormal operator if

T T2 * 0 < ||| T* T a|| | T 2" for =€ H.
An absolute-(k*, 0)-paranormal operator is called an absolute-k*-paranormal operator.

If T is an absolute-(k*, m)-paranormal operator, then we have T is an absolute-(k*, m+1)-
paranormal operator by taking x = T'z in the definition.

3.2. Lemma. For positive real numbers a > 0 and b > 0,
Aa + ub > a b*
holds for A > 0 and p > 0 such that A\ + p = 1.

3.3. Theorem. Let k > 0 and m be a non-negative integer. Then an operator T € L(H)
is an absolute-(k™, m)-paranormal operator if and only if

T D TR (o DART T PT™ + kAR T > 00 for all A > 0.
Proof. Suppose T is an absolute-(k*, m)-paranormal operator. Then
B T < T T
Using Lemma 3.2, we have
(T | T PT™ 2, z) < <T*(m+1)|T|2kTm+1x,x>k%l (T*™T™ g, ) 1
i
{,le <T*<m+1>\T|2’“Tm+1x,x>} T T g, )V EE

11 /.. k )
< TEIw <T (m+1)|T|2kTm+1;r,m> M T e )
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for all x € H and A > 0. Hence
Conversely, we assume (3.2). If 7™z = 0, then (3.1) is trivial. Hence we may assume

Tz # 0. I (T Y| TPPRT™ g 1) > 0, put

1

\ <T*(m+1)|T‘2kTm+ICC,ZL’> k+1
N (Tmz, Tmx)

>0

in (3.3), i.e.,
(3.3) (T PRI g 1) — (k4 DA T PT ™ 5, ) + kAT (T T e 1) > 0.
Then we have (3.1). If (7D |T2R™ g 2) = 0, we have

0— (k4 1T T*PT™"x, x) + kAT Tz, z) >0 forall X >0

by (3.3). By letting A\ — 40, we have (T*™|T*|*T™z, z) = 0 and we gain (3.1).
(]

3.4. Theorem. IfT € Q(A(k*), m), then T is an absolute-(k*, m)-paranormal operator.
The converse is not true.

Proof. Suppose T' € Q(A(k™), m). From Holder-McCarthy’s inequality, we have
T [T™a])” = (T [T P17, )
a1
< <T*m (T*|T‘2kT) k+1 Tmm,x>

_1
< (T TP T, ) T
= T T | B | T

Hence T is an absolute-(k*, m)-paranormal operator. To prove that the converse is not
true we will consider a following example. (]

3.5. Lemma. Let H = &2 H, where H, = C*. Let A; € B(H;) and define T € B(H)
as

0 0 0
A 00
r_|0 A o0
0 0 As

Let k > 0 and m be a non-negative integer. Then the following assertions hold:
(1) T is an m-quasi class A(k™) operator if and only if
1
AjAG i Afpma (A;+m|Aj+m+1|2’“Aj+m) T A1 Ajp A
(34) >AAL A AR Ajpme1 - A1 Ay for §=1,2,-.
(2) T is an absolute-(k™, m)-paranormal operator if and only if
(3:5)  AJ - A1 (Al Ajrma [ A — (b + DA AT P+ RN Ajr - 4520
forj=1,2---.

3.6. Example. Examples of m-quasi class A(k™) operators and an absolute-(k*,m)-
paranormal operators.
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0.433--- as in Lemma 3.5 where
3 0
O<A1:A2:---:Am:(4 f)ando<< 1) Api1 = Apyz = --- . Since
¢ 1 V2

every A; is invertible, (3.4) means

Consider T = T(m,c) with 0 < ¢ < V/3/4 =

Since

and

we have that T'(m,c) is an m-quasi class A(k™) operator if 0 < ¢ < 0.25 and T(m,c) is
not an m-quasi class A(k*) operator if 0.25 < ¢ < v/3/4. Also, T(m,c) is an (m+1)-quasi
class A(k*) operator for all 0 < ¢ < v/3/4. On the otherhand (3.5) means

1= 3(k+ DA* + kAR —(k+ 1Ak
3.6 1 > 0 for all .
(36) ( —(k + D)Ake (3 = L+ 1A 4 k,\k“) 2 0 for all A >0

Since

1— §(k+ DAF 4 kAR > 0,

1" 1
(§> — 0 DA RN > 0 forall A0,

the inequality (3.6) means

3(k+ 1)A* 4 kAR —(k 4+ 1)X\¢

> 0 for all A
“(k+ DAke (L)1 L g 1Ak 4 b ] = 0 Torall A= 0,

(3.7) '1

or equivalently,

1 1
1 3 kX \? 1 1 kA2
f(k’)\)'_((k+l))\k_1+k+1> ((k+1)2k+1/\k_1+k+1)

(3.8) >c for all A > 0.
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G

f(2,0)

FLA)

y= f(k7 >‘)
c= \/3/4
c=034 @&------->g----- - T
f(0.5,2)
I R N e =
c=0285 @----------- T ¥m—— - - - eE T - — - - - - -
c=025 ¢

The above is graph of y = f(0.5,X), f(1, ), f(2,A), f(3,A). Hence T'(m,0.285) is
an absolute-(1*, m)-paranormal operator, but 7'(m, 0.285) is not an absolute-(0.5", m)-
paranormal operator. Also, T'(m,0.31) is an absolute-(2*, m)-paranormal operator, but
T'(m, 0.31) is not an absolute-(1*, m)-paranormal operator, and T'(m, 0.34) is an absolute-
(3%, m)-paranormal operator, but 7'(m,0.34) is not an absolute-(2*, m)-paranormal op-
erator.

4. Spectral properties

A complex number A is said to be in the point spectrum o,(7T) of T if there is a
nonzero x € H such that (T — p)x = 0. If in addition, (T — p)*z = 0, then u is said
to be in the normal point spectrum o,,(T) of T. Clearly 0,,(T) C 0,(T"). In general
onp(T) # 0p(T). A complex number 4 is said to be in the approximate point spectrum
0a(T) of T if there is a sequence {x,}5e; C H of unit vectors satisfying (T' — p)zn, — 0
as n — oo. If in addition (T" — p)*z, — 0 as n — oo, then p is said to be in the
normal approximate point spectrum onq(7") of an operator 7. Clearly opna(T) C 04(T).
In general 0, (T) # 0a(T). Let a(T') = dimker(7T") and S(T) = dim Ker(T™).

4.1. Theorem. Let 0 < k < 1 and m be a non-negative integer. If T € Q(A(k"),m) and
(T — pw)x =0 with u # 0, then (T — w)*z = 0.

Proof. We may assume that x # 0. Let M be a span of {x}. Then M is an invariant
subspace of T'. Let

_(n B — 1
T_<() C) on H=M& M.
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From the Theorem 2.7 we have

2m 2 * |2
(w (1l + 1) 8): JE—

_1
< PT™ (PT*P\T|2’“PTP) STpmp
1

< pr*™ (PT*P(P|T|2P)’“PTP> Hpmp

_ (P 0

“U o o)

« (0 0 \ [2\ _
r-we=(o c,) (5)-

4.2. Corollary. If T is an m-quasi class A(k™) operator with 0 < k < 1, then
onp(T) \ {0} = op(T) \ {0}

4.3. Corollary. If T is an m-quasi class A(k™) operator with 0 < k < 1, then
(T = p) < B(T — ) for all pu # 0.

4.4. Theorem. Let 0 < k <1 and m be a non-negative integer. If T € Q(A(k*), m) and
v,8 are nonzero numbers such that v # 0, then ker(T — ) L ker(T — 9).

Hence B = 0. Thus

Proof. Let z € ker(T — ~) and y € ker(T' — §). Then Tx = vz and Ty = dy. Therefore
Yz, y) = (Ta,y) = (&, T"y) = (z,0y) = 6(z,y),
then (x,y) = 0. Therefore, ker(T" — ) L ker(T — §). O

4.5. Theorem. Let 0 < k <1 and m be a non-negative integer. If T € Q(A(k*), m) and
(T — w)zn — 0 with u # 0 and ||z,| = 1, then (T — p)*x, — 0.

Proof. By the assumption (T' — p)z, — 0, from
1
DY - i
T = (T — p+p) :Z () p T — ) 4 4t for 1 e N,

we have (T" — p')z, — 0. By
! l 1 l
T @] = |l < (T = ph)zall,
we have
41) (T = |ul"
Moreover
42)  |IT " wn]| = T (T = ™| < | T T 2]
Since T is an m-quasi class A(k") operator, we get
IT*T™2))? = |7 T |® < ||T)* T o) ¥ | 77|
= (|TPET™ g, T ) B || T | T
¢ (1—k)
< (TPT™ e, T ) BT 77 | SR 7

S T

— (|72 B T g
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by Holder-McCarthy’s inequality. Hence
@3) T T™a|| < [T 2| #6755 T
Then it follows from (4.1),(4.2) and (4.3) that
limsup | 7"z, < |ul.
n— o0

Since
* 2 * * —
(T = ) @al® = | T"2nl® — 2Re(T 2, i) + |||z |
= | T"znl* — 2Re(@n, BT2n) + |ul*||zall?,
we have
limsup [|(T' = ) “@n|* < |u* = 2|ul* + |p|* = 0.
n—o0

This implies (T — p)*z, — 0. d

4.6. Corollary. If T € Q(A(k™),m) with 0 < k <1, then ona(T) \ {0} = 04(T) \ {0}.

4.7. Lemma. |2, Corollary 2| Let T = U|T)| be the polar decomposition of T, pn = |p|e®® #
0 and {x.} a sequence of vectors. Then the following assertions are equivalent:
(1) (T — p)xn =0 and (T* — @)z, — 0, as n — oo,
2) (IT| = |u))xn — 0 and (U — )z, — 0, as n — oo,
3) (7| - |uDzn — 0 and (U* — e~ )z, — 0, as n — co.
4.8. Corollary. If T € Q(A(k*),m) with 0 < k <1 and p € 0,(T) \ {0} then
lul € oa(|T]) Noa(IT7]).

Proof. If p € 04(T) \ {0}, then by Theorem 4.5, there exists a sequence of unit vectors
{zn} such that (T' — p)xn — 0 and (T — pu)*z, — 0, as n — co. Hence we have
|| € 0o (|T]) Noa(]T*]) by Lemma 4.7 O

4.9. Corollary. Let T' € Q(A(k"),m) with 0 < k < 1 and T = U|T| be the polar
decomposition of T. If = |p|e® # 0 and p € 0,(T), then € € gno(U).

Proof. Let 1 € 04(T'). From Corollary 4.6, ;1 € opna(7T'). Then, there exists a sequence of
unit vectors {z, } such that (' —p)z, — 0 and (T'— )"z, — 0, as n — co. From Lemma
4.7 we have (U — €%)x, — 0 and (U* — e ")z, — 0, as n — oc. Thus € € 0,,(U). O

An operator T on a complex Banach space X has the single-valued extension property,
abbreviated SVEP, if, for every open set U C C, the only analytic solution f: U — X of
the equation (7" — X) f(A) = 0 for all A € U is the zero function on U.

4.10. Corollary. If T € Q(A(k*),m) with 0 < k < 1, then ker(T — ) = ker(T — p)? if
u# 0 and ker(T™) = ker(T™1).

Proof. Let j1 # 0. Since ker(T — p) C ker(T — p)? is clear, we prove ker(T — p)? C
ker(T — p). Let = € ker(T — p)?. Since (T — pu)(T — p)z = (T — p)?z = 0, we have
(T — )" (T — p)z = 0 by Corollary 4.1. Hence,

(T = wa|® = (T = )" (T = pa,z) =0,
so we have (T — p)z = 0. Hence = € ker(T — p).
Let x € ker(T™"!). Then

T[T < || T T o] 755 | T ]| 55 = 0.
Hence [T*|T™x = 0. Then
T x|? = (T*T"x, T™ 'z) = (U*|T*|T"x, T" "x) = 0.
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Thus z € ker(T™). O
4.11. Corollary. If T € Q(A(k™),m) with 0 < k <1, then T has SVEP.
Proof. The proof is obvious from Theorem 2.39 of [1]. O

5. Tensor product for Q(A(k*),m)

Let H and K denote Hilbert spaces. For given non zero operators 7' € L(H) and
S € B(K), T ® S denotes the tensor product on the product space H ® K. It is known
that the normaloid property is invariant under tensor products by [14], and there exist
paranormal operators T and S such that 7'® S is not paranormal by [3], and T'® S is
normal if and only if 7" and S are normal by [15]. These results were extended to the
class A operators, class A(k) operators, and x-class A operators by [10] [11] and [5]. In
this section, we prove an analogues result for Q(A(k™), m) operators.

Let T € L(H) and S € L(K) be non zero operators. Then (T®S)*(T®S) = T*T®S*S
holds. By the uniqueness of positive square roots, we have |T'® S|” = |T|” ® |S|" for
any positive rational number r. From the density of the rationales in the real, we obtain
[T ® S|P =|T|” ®|S|? for any positive real number p.

5.1. Theorem. Let 0 < k and m be a non-negative integer. If (1) T, S € Q(A(k"™), m)
or (2) T™ =0 or S™ =0 holds, then T ® S € Q(A(k™), m).

Proof. By simple calculation we have:
1

(T'® S)™ (((T® S (T 9)*(T @ S))’ch “(T® S)*\2> (T®s)™

1 1
— rm ((T*|T|2kT) T \T*|2> ™ & §*™ (S*|S\2k5) R gm
+T*nL|T*|2Tm ® g*m ((S |S|2k8) |S ‘ ) Sm™.
Hence, if either (1) or (2), then T ® S € Q(A(k™), m).
O
5.2. Theorem. Let m be a non-negative integer and T € L(H) and S € L(K) be non-
zero operators. If T ® S € Q(A(1*),m), then (1) T,S € Q(A(1*),m) or (2) T™ =0 or
8™ =0 holds.
Proof. Suppose T ® S € Q(A(1*),m). Then we get
1 ;
<T*m ((T*|T|2T) 7 - |T*|2> me,x> <S*m (S*[S[°S)= S y>
0

"y,
1
(T T Tz, x) <s*’" ((s*\sfs)z 1S*| >Smy y> >
forx e H ye K.
Assume T & Q(A(1%), m). Then there exists zo € H such that:

1
<T*m ((T*|T|2T) - |T*\2) Tma:o,xo> =a<0
and
(T*™|T*|*T™ z0, m0) == B > 0.
From the above relation, we have

(a+ﬁ)< ™ (5%15P5)F 5™y >2ﬂ<s*m|5*\2smy,y>.
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Thus S € Q(A(1%),m) because a + 8 < 8 and 0 < .
Since

and using Holder McCarthy’s inequality, we get

<S*m (S*|S|2S)% Smy7y> _ <(S*|S|2S)% Smy,Smy>

1
<{((S7[8129)8™y, S™y) |S™y|
= [[1SIS™ Yyl 1S yl|.

Then
(a+ BISIS™ yllllS™yll = BIS* Syl
Since S € Q(A(1*),m), S has decomposition of the form

0o C
where A = S | g7y is a A(1") operator by Theorem 2.6. Then we have

(a+ A%zl = (a+ BlIAIA|l2] = BIIS™2]* = BlIA™=II* ,

for all z € S™(H). Since A € A(1"), A is normaloid by Theorem 1.1 of [4]. By taking
supremum on both sides of the above inequality, we have

(a+B)IA]* = BllA™|1* = Bl A"
This implies A = 0. Then we have

m 0 BC™
S +1 _ (0 Cm+1) =0.

A similar argument shows that if S ¢ Q(A(1*),m), then ™! = 0. Hence the proof is
completed. O

S = ( A B ) on H = S (H) & ker(S™™)
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