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 Thirty nine different biomass samples ranging from various herbaceous/woody materials to juice 

pulps were used to develop linear as well as non-linear empirical equations that predict the lower 

heating value (LHV) and the higher heating value (HHV) based on the elemental analysis (C, H, 

N, O, and S) results of the biomass species. These equations were interpreted with respect to their 

prediction performance considering the predicted values and the experimental data. Several 

criteria such as mean absolute error (MAE), average absolute error (AAE), average bias error 

(ABE), and root mean square deviation (RMSD) were regarded. For the linear equations, it was 

found that the lowest values of MAE were 0.3119 MJ/kg and 0.2906 MJ/kg for HHV and LHV, 

respectively, and  AAE(%) changed in the ranges of (1.6659-4.5917) for HHV and (1.8216-

5.5039) for LHV. Besides, it was determined that ABE(%) varies in the intervals of (0.0549-

0.2976) for HHV and (0.0519-0.4177) for LHV when linear equations were tested. The best results 

of RMSD (0.4230 and 0.3607 for HHV and LHV, respectively) were obtained for Equation#1 

where all of the linear terms were considered. Also, the addition of the non-linear terms to the 

linear equations was also studied to check whether any further improvement can be achieved in 

predictions. However, the improvements created by non-linear equations were negligible and it 

was concluded that the linear empirical equations provide satisfactory prediction performance and 

they may be tried to estimate the calorific value of very wide range of biomasses. 
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1. Introduction 

There is a growing consensus that the fossil energy 

sources should be gradually withdrawn from the power 

technology since they lead complicated global concerns 

such as greenhouse gases, political instability, dependence 

on other countries, etc. Besides, environmental pollution 

that takes place during exploitation, drilling, 

transportation, and usage of fossil fuels cannot be ignored. 

On the contrary, biomass is a CO2-neutral fuel that does 

not influence the concentration of atmospheric CO2 

negatively. In addition, biomass can be easily found almost 

everywhere, and therefore it is cheap, abundant, and very 

easy to access [1]. Actually, biomass energy has been used 

in energy and power technologies with increasing shares 

day by day. 

Biomass that is defined as any type of carbonaceous 

material except fossil fuels takes a significant part in green 

energy technologies since it is easy to find, renewable, and 

sustainable energy source [1]. According to this 

description woody/herbaceous crops and residues, 

agricultural leftovers, industrial and domestic wastes, 

municipal solid wastes (MSW), aquatic materials, forest 

by-products and residues are regarded as biomass energy 

resources. Despite this considerable variety in nature and 

properties of samples, they are mainly comprised of C, H, 

and O accompanied by some presence of N and S. 

Conversely, several different macromolecular ingredients 

including cellulose, hemicellulose, and lignin form the 

large portion of the molecular structure. Meanwhile, the 

amount of inorganics that form ash upon burning of 

biomass changes depending on type of the sample. That is, 

woody samples are poor in inorganics, while very large 

contents of inorganics may exist in waste materials. These 

varying characteristics of biomass also affect the “calorific 

value” in other words the “heating value” that is really the 

most important parameter to evaluate its fuel quality. That 

is why the calorific value of biomass cannot be forecasted 
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in most cases without measuring this property 

experimentally. Particularly in case of waste materials and 

herbaceous samples, the complexity of biomass makes it 

highly difficult to estimate the calorific value. The 

calorific value (heating value) is usually specified through 

burning of a specimen in calorimeter under well-controlled 

conditions, and in this way, higher heating value (HHV) is 

determined. Besides, lower heating value (LHV) is 

calculated via elimination of condensation heat of the 

forming water during combustion of H and moisture 

contents. 

Calorific value estimation based on analysis results of 

biomass may be alternatively used provided that the 

analysis results have high accuracy and precision. The 

satisfactory prediction of HHV or LHV based on the 

elemental composition of biomass is a promising way 

since this approach does not deal with the type and 

distribution of the above mentioned macromolecules, and 

instead it only considers extents of the main elemental 

constituents of biomass. Actually, this approach has long 

been used to estimate the HHV or LHV of various coal 

samples globally. However, this approach was not so 

commonly applied yet for biomass. In this context, 

Channiwala and Parikh [2] complied the results of many 

investigations where HHV calculations were implemented 

considering both elemental analysis and proximate 

analysis results. In contrast to this, the literature that 

directly focus on the estimation of the HHV or LHV from 

the analysis results of biomass is scarce, and there have 

been only a few studies in this topic. Also, the existing 

literature on the assessment of HHV or LHV of biomass 

through such calculation-based approach was rather 

related to woody biomass types [2-9]. Motghare et al. [10] 

estimated the biomass calorific value upon the results of 

elemental analysis particularly for some waste species, and 

found that this approach is beneficial and gives highly 

reliable results. 

This study attempts to apply the calculation-based 

method to predict HHV/LHV for miscellaneous waste 

biomasses, taking linear equations that contain elemental 

analysis results into consideration. Particularly, the most 

of the renewable fuel materials used in this study have not 

so far been chosen in investigations that target to describe 

the HHV/LHV prediction. For instance, some unusual 

samples including stems, fruit juice pulps, stalks, distinct 

agricultural leftovers, etc. have not been used in previous 

papers yet because they often show serious handling 

problems and tend to be easily decomposed.  

 

2. Materials and Methods 

2.1 Biomass Characterization 

All of the biomasses used in the present paper are Turkish 

origin and provided from food/beverage industries and 

agricultural/forestry sector. They were kept in open 

container in laboratory to obtain air-dried (ad) specimens, 

and chopping and grinding operations were applied to 

reduce the particle size smaller than 250 µm. The 

proximate analysis was done according to ASTM 

standards, while Leco TruSpec® CHN model equipment 

with Leco TruSpec® S module was used to determine the 

elemental results. Determination of HHV was performed 

by adiabatic bomb calorimeter test using IKA C2000 

model calorimeter operated under oxygen pressure of 30 

atm.  For this, 0.5 g of powdered (< 250 µm) biomass was 

placed into the sample holder and ignited by electricity 

current. This equipment is calibrated using benzoic acid 

and the measured results don’t deviate more than 1-2% 

from the mean values. Calculation of LHV based on HHV 

was implemented by simplified equation given as follows: 

 

𝐿𝐻𝑉 = 𝐻𝐻𝑉 − [(
18.015∗𝐻

2
) + %𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒] ∗ 5.85   (1) 

 

where, H is the hydrogen content of the sample. 

 

Experiments were checked three times to assure the 

reproducibility and accuracy of the results, and they were 

used in predictions as long as they differ within ±0.5%.   

 

2.2 Error Analyses for Prediction Performance 

Four different forms of prediction error such as MAE 

(mean absolute error), AAE (average absolute error), ABE 

(average bias error), and RMSD (root mean square 

deviation) were established using following equations, and 

from which prediction performances could be evaluated.   

   

 

RMSD =  
√(𝐻𝐻𝑉(𝑒)𝑖

−  𝐻𝐻𝑉(𝑝)𝑖
)

2

𝑛
 

 

where, the indices of e and p represent the experimental 

and the predicted values of higher heating value. Likewise,  

the total number of the biomasses and any of the distinct 

biomass were represented by n and i, respectively. Of 

which, MAE shows the intimacy of the predicted HHV and  

the experimental HHV. From this point of view, low 

values of MAE indicate high prediction accuracy. Besides, 

the average absolute error (%) is estimated by AAE. 

Positive ABE means over-estimation whereas negative 

ABE means under-estimation 

(2) 

(3) 

(4) 

(5) 
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3. Results and Discussion 

3.1 Sample Characterization 

Results of the characterization tests are given in Table 1, 

and it is clear from this table that the samples differ seriously 

in terms of properties and the fuel characteristics. Although  

 
Table 1. Analysis results of samples (on dry basis) [11] 

 

 

woody species have promising fuel properties such as low 

ash content and high calorific value, waste biomasses have 

relatively poor fuel characteristics. 

 
 

  C H N S O  VM  FC  Ash   HHV  LHV  

Samples  (%) 

 

 

 (%) 

 

 

 (MJ/kg) 

 

 
Elaeagnus 44.26 6.19 1.37 0.41 46.86  76.43 22.67 0.90  19.80 16.46 

Tea caffeine 48.59 6.43 2.59 0.46 34.78  76.32 16.52 7.16  20.83 18.02 

Ash tree wood 46.72 5.95 0.00 0.32 45.32  87.84 10.46 1.70  19.02 16.24 

Green bean stem and husk  41.26 5.62 0.78 0.39 42.35  77.88 12.52 9.60  16.86 13.97 

Red lentil hull 43.90 6.31 1.54 0.37 42.63  74.73 20.03 5.24  18.27 15.15 

Chickpea husk 43.80 5.81 0.38 0.35 45.67  79.70 16.32 3.98  18.26 15.62 

Tea waste 45.04 6.07 3.48 0.50 40.21  73.36 21.93 4.71  19.87 16.96 

Cornstalk 42.02 5.58 1.24 0.43 43.53  76.79 16.02 7.19  16.55 14.19 

Tobacco waste 37.02 5.01 2.20 0.45 39.95  72.85 11.78 15.36  14.51 12.26 

Broad bean husk 40.11 5.52 1.35 0.33 44.98  74.97 17.33 7.70  16.24 13.50 

Apricot stone 48.07 5.99 0.05 0.39 43.89  82.03 16.26 1.61  19.79 17.33 

Apricot pulp 44.37 5.87 0.95 0.32 47.42  78.80 20.12 1.08  18.52 15.72 

Peach pulp 43.84 6.51 1.04 0.37 42.80  71.21 23.34 5.44  18.23 15.11 

Damson plum stone  50.81 6.36 1.07 0.36 40.39  82.33 16.67 1.00  21.23 18.81 

Coconut shell 50.34 6.26 0.00 0.31 42.08  83.01 15.97 1.02  20.24 17.54 

Cornelian cherry stone 49.03 5.86 0.05 0.34 42.67  79.27 18.67 2.06  19.84 17.44 

Cacao husk 43.00 5.69 2.10 0.41 44.38  75.03 20.56 4.41  17.85 15.07 

Peanut husk 46.89 5.90 0.61 0.37 46.07  79.32 20.53 0.15  19.16 16.53 

Broad bean husk 41.33 5.90 0.39 0.34 46.32  74.88 19.40 5.73  16.80 13.90 

Sunflower stem and stalk 37.94 5.19 0.31 0.35 46.15  77.37 12.58 10.05  15.08 12.55 

Almond shell 47.70 5.88 0.05 0.31 42.58  81.70 14.82 3.48  19.53 16.81 

Robinia pseudoacacia wood 46.30 6.08 0.05 0.35 46.20  86.19 12.80 1.01  18.31 15.59 

Daphne 49.03 6.40 0.94 0.42 35.90  77.76 14.93 7.31  20.44 17.87 

Thyme 44.53 6.01 0.81 0.36 39.34  75.04 16.00 8.96  18.16 15.27 

Walnut shell 48.23 6.00 0.12 0.34 44.42  82.98 16.12 0.90  20.03 17.17 

Locust bean 44.31 5.70 0.92 0.42 43.10  70.29 24.16 5.54  18.04 15.29 

Flos lavandulae romanae 45.28 5.89 0.94 0.42 36.42  74.13 14.82 11.06  18.84 16.01 

Apple pulp 47.05 6.70 0.86 0.35 42.73  82.56 15.13 2.31  19.85 17.15 

Artichoke husk and waste 42.08 5.92 0.83 0.36 45.88  79.66 15.43 4.91  16.38 13.61 

Sunflower stem 39.90 5.38 0.42 0.40 42.80  75.09 13.81 11.10  16.18 13.65 

Sour cherry stem 44.78 5.75 0.50 0.40 43.22  77.48 17.16 5.36  18.27 15.62 

Soybean residue 42.96 6.21 8.02 0.57 35.80  80.01 13.54 6.45  19.26 16.35 

Black sesame residue 45.93 6.79 6.32 0.66 32.01  78.78 12.94 8.28  21.04 18.22 

Cotton residue 45.24 6.46 6.37 0.65 33.41  74.97 17.16 7.87  19.90 17.02 

Pea stem 38.97 5.45 1.79 0.42 40.31  74.67 12.27 13.06  16.31 13.57 

Grape seed 50.47 6.20 2.42 0.47 35.83  74.26 21.12 4.62  21.70 18.73 

Pine cone 48.28 5.73 0.10 0.40 43.89  80.92 17.48 1.60  20.07 16.96 

Peach stone 51.98 6.13 0.02 0.48 40.41  86.42 12.61 0.97  20.31 17.85 

Sour cherry stone 53.30 6.69 1.58 0.39 37.33  81.66 17.62 0.72  21.95 19.45 

VM: volatile matter FC: fixed carbon  

 

  



 

 

 

3.2 Calorific Value Prediction 

Table 2 presents the linear equations used to calculate 

HHV and LHV, r2 values, and the results of performance 

criteria. Equation#1 considers five parameters, while the 

other equations consider less parameters. For instance, the 

number of the parameters in the Equations #2-6 is four.   

  

Table 2. Linear Equations and the prediction performances [11]  

Equation#1 that includes all of the parameters of elemental 

analysis  gave the  best  prediction  with  respect  to  the 

coefficients  of determination (r2) as expected. 

 

 

  

 
 

 

Eq. 

No 
Linear Equations r2 SD MAE 

AAE 

(%) 

ABE 

(%) 
RMSD 

1 

𝐻𝐻𝑉 = −4,914 0 + 0,2611 𝑁 + 0,4114 𝐶 + 0,6114 𝐻
+ 0,3888 𝑆 + 0,02097 𝑂 

 

𝐿𝐻𝑉 = −5,5232 + 0,2373 𝑁 + 0,4334 𝐶 +
0,2360𝐻 + 0,3732 𝑆 + 0,000838 𝑂 

0.9441 

 

 

0.9582 

 

1.7379 

 

 

1.7272 

0.3178 

 

 

0.2915 

 

1.6978 

 

 

1.8304 

 

0.0549 

 

 

0.0654 

 

0.4230 

 

 

0.3607 

 

2 

𝐻𝐻𝑉 = −3,4643 + 0,2492 𝑁 + 0,4045 𝐶 + 0,6072 𝐻
− 0,1618 𝑆 

 

𝐿𝐻𝑉 = −5,4653 + 0,2368𝑁 + 0,4331𝐶 + 0,2358𝐻
+ 0,3511𝑆 

0.9434 

 

 

0.9582 

 

1.7373 

 

 

1.7271 

0.3119 

 

 

0.2915 

 

1.6659 

 

 

1.8304 

 

0.0571 

 

 

0.0562 

 

0.4256 

 

 

0.3607 

 

3 

𝐻𝐻𝑉 = −4,6246 + 0,2732 𝑁 + 0,4120 𝐶 + 0,5992 𝐻
+ 0,01841 𝑂 

 

𝐿𝐻𝑉 = −5.2454 + 0.2489𝑁 + 0.4340𝐶 + 0.2243𝐻
− 0.00162𝑂 

0.9440 

 

 

0.9581 

 

1.7379 

 

 

1.7270 

0.3186 

 

 

0.2925 

 

1.7020 

 

 

1.8367 

 

0.0562 

 

 

0.0519 

 

0.4232 

 

 

0.3610 

 

4 

𝐻𝐻𝑉 = −3.17334 + 0.3474 𝑁 + 0.4593 𝐶
− 0.4021 𝑆 + 0.01972 𝑂 

 

𝐿𝐻𝑉 = −4.8513 + 0.2706 𝑁 + 0.4519 𝐶 + 0.06784 𝑆
+ 0.000356 𝑂 

0.9378 

 

 

0.9572 

 

1.7321 

 

 

1.7264 

0.3387 

 

 

0.2906 

 

1.8134 

 

 

1.8216 

 

0.0645 

 

 

0.0663 

 

0.4461 

 

 

0.3649 

 

5 

𝐻𝐻𝑉 = 1.5348 − 0.3434 𝑁 + 3.4740 𝐻 + 2.9958 𝑆
− 0.1028 𝑂 

 

𝐿𝐻𝑉 = 1.2705 − 0.3996 𝑁 + 3.2517 𝐻 + 3.1196 𝑆
− 0.1296 𝑂 

0.6916 

 

 

0.6702 

 

1.4875 

 

 

1.4444 

0.8524 

 

 

0.8698 

 

4.5917 

 

 

5.5039 

 

0.2976 

 

 

0.4177 

 

0.9933 

 

 

1.0132 

 

6 

𝐻𝐻𝑉 = −5.6318 + 0.3630 𝐶 + 1.0237 𝐻 + 4.1453 𝑆
+ 0.00389 𝑂 

 

𝐿𝐻𝑉 = −6.1755 + 0.3894 𝐶 + 0.6107 𝐻 + 3.7869 𝑆
− 0.01468 𝑂 

0.9313 

 

 

0.9473 

 

1.7261 

 

 

1.7173 

0.3470 

 

 

0.3174 

 

1.8483 

 

 

1.9923 

 

0.0691 

 

 

0.0673 

 

0.4689 

 

 

0.4049 

 

Equations (#2- #6) ignore only one parameter compared 

to Equation#1. Among these equations, the best 

performance in HHV prediction belongs to Equation#3 

that neglects effect of the content of S. Namely, 

Equation#3 yielded acceptable predictions for HHVs 

(r2=0.9440). Moreover, LHV prediction performance of 

Equation#2 (r2=0.9582) is exactly the same with those of 

Equation#1 that reveals the fact that oxygen content can be 

safely removed from the equation. Besides, the lowest r2 

was found if C content is removed from Equation#5. On 

the contrary, Setyawati et al. [12] correlated HHV of 

tropical peat based on its elemental analysis that ignores 

the C content and uses H, N, S, O, and ash contents.  

The standard deviations (SD) of linear empirical 

equations varied within (1.4875-1.7379) for HHV and 

(1.4444-1.7272) for LHV. Concerning the error functions, 

MAE values indicate that the estimations of HHV and 

LHV can be made with a minimum mean absolute errors 

of 0.3119 MJ/kg and 0.2906 MJ/kg, respectively. Besides, 

AAE(%) values varied in the intervals of (1.6659-4.5917) 

for HHV and (1.8216-5.5039) for LHV. Although the 

upper limits of AAE(%) results may be thought as a bit 

high, these values are roughly consistent with the values 

reported in literature for this criterion. In their paper, 

Nhuchen and Abdul Salam [13] compiled the results of 

various studies about HHV prediction for lignocellulosic 

residues and wastes, chars, and coals that makes it possible 

to compare the error analysis and prediction performances 

for different types of fuels. They concluded that the 

maximum values of AAE(%) values are calculated in the 

case of the lignocellulosic residues as well as the other 

biomasses. On the other hand, coal samples showed 

generally better results. Chen et al. [6] also estimated the 

higher heating value of the torrefied (mildly pyrolyzed) 

biomass using its ultimate analysis, and revealed that the 

relative errors of raw biomasses reached 9.03%. 

Alternatively, Choi at al. [14] reported 8.57% of AAE 

value for prediction of HHV of the mixture of animal 
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wastes for the equation where C, N, S, and O are 

incorporated. Similarly, Bousdira et al. [15] highlighted 

the importance of having low ash yield on prediction 

performance of calorific value prediction based on 

elementary composition. Unfortunately, the biomass 

species we used in this paper are very rich in inorganics, 

and accordingly they produce high yields of ash. 

Therefore, this is a significant concern originating from 

any unforeseen effects of the complicated nature of the 

inorganics.  Also, the ABE(%) values altered within 

(0.0549-0.2976) for HHV and (0.0519-0.4177) for LHV, 

which can comparable with the results reported in 

literature [16]. The most promising values of RMSD 

(0.4230 and 0.3607 for HHV and LHV, respectively) were 

calculated if all parameters were involved (Equation#1). 

 Furthermore, in order to investigate the effects of non-

linear terms in the form of squares of the parameters, new 

equations (#7-#11) were established. That is, Equation#7 

excludes oxygen contents and the squares of the other 

ingredients (N2, C2, H2, S2) were added to their linear 

parameters. Likewise, Equations#8, 9, 10, and 11 exclude 

sulphur, hydrogen, carbon, and nitrogen contents, 

respectively. In this way, the new equations include squares 

of the related four, three, and two parameters. Table 3 

presents these equations and the calculated r2, SD, MAE, 

AAE, ABE, and RMSD results. These results revealed that 

the combination of non-linear terms did not improve so 

significantly the r2 values calculated for the linear equations. 

The best r2 values determined in the case of Equation#1 

increased from 0.9441 to 0.9566 for HHV and from 0.9582 

to 0.9668 for LHV when the sulphur content was ignored and 

the squares of the other four parameters were considered 

(Equation#8). Besides, a bit improvement took place in the 

prediction performance indicators. All in all, it can be 

concluded that the addition of the non-linear terms can not 

be recommended as a reliable approach to increase the 

prediction performance of the linear equations investigated 

in this paper. 

4. Conclusions 

This study revealed that the calorific values of the highly 

different biomass species can be safely predicted from 

their elemental analysis results. The thirty-nine different 

biomass species used in this study represent highly 

dissimilar structures in terms of the elemental analysis. 

Comparison of the experimental calorific values with the 

predicted calorific values, and the error analyses via MAE, 

AAE, ABE, and RMSD calculations showed that quite 

simple linear equations can be safely used to get the 

calorific value. Among the equations used, the equation 

that contains all of the parameters of elemental analysis 

provided the greatest prediction performance. Elimination 

of any parameter from this equation resulted in decrease in 

the prediction performance. However, addition of non-

linear (squared) terms of the elemental analysis results did 

not provide improvement in performance of the linear 

equations. Thus, the use of linear equations of ultimate 

analysis results are recommended.     
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Table 3. Non-linear Equations used and the prediction performances

Eq. 

No 
Non-linear Equations r2 SD MAE 

AAE 

(%) 

ABE 

(%) 
RMSD 

7 

𝐻𝐻𝑉 = −15.8566 + 0.4951 𝑁 + 1.7601 𝐶 +
5.4604 𝐻 + 1.4769 𝑆 − 0.02812 𝑁2 − 0.01447 𝐶2 +
0.4671 𝐻2 − 2.6691 𝑆2  

 

𝐻𝐻𝑉 = −16.1264 + 0.5064 𝑁 + 1.7144 𝐶 −
4.8484 𝐻 − 0.8586 𝑆 − 0.03065 𝑁2 − 0.01398 𝐶2 +
0.4153 𝐻2  

 

𝐻𝐻𝑉 = −23.9224 + 0.5028 𝑁 + 1.3785 𝐶 +
0.2528 𝐻 − 0.5169 𝑆 − 0.03158 𝑁2 − 0.01045 𝐶2  

0.9556 

 

0.9555 

 

0.9546 

1.7500 

 

1.7475 

 

1.7698 

0.2885 

 

0.2862 

 

0.3832 

1.5870 

 

1.5735 

 

2.0927 

0.0942 

 

0.0085 

 

1.5776 

0.3771 

 

0.3774 

 

0.4781 

7 

𝐿𝐻𝑉 = 2.4879 + 0.4271 𝑁 + 1.6322 𝐶 −
11.4438 𝐻 + 1.0062 𝑆 − 0.0200 𝑁2 − 0.01267 𝐶2 +
0.9370 𝐻2 − 1.9815 𝑆2  

𝐿𝐻𝑉 = 2.2876 + 0.4355 𝑁 + 1.5983 𝐶 −
10.9894 𝐻 − 0.7277 𝑆 − 0.02188 𝑁2 − 0.0123 𝐶2 +
0.8985 𝐻2  

𝐿𝐻𝑉 = 5.4060 + 0.2624 𝑁 + 1.5159 𝐶 −
11.4293 𝐻 − 0.3867 𝑆 − 0.01148 𝐶2 + 0.9420 𝐻2  

0.9662 

 

0.9662 

 

0.9639 

1.7326 

 

1.7327 

 

1.7338 

0.2617 

 

0.2514 

 

0.2696 

1.6875 

 

1.6848 

 

1.7157 

-0.0304 

 

-0.0256 

 

0.1103 

0.3245 

 

0.3248 

 

0.3354 

8 

𝐻𝐻𝑉 = −9.5129 + 0.4900 𝑁 + 1.5545 𝐶 −
3.9058 𝐻 − 0.3211 𝑂 − 0.03242 𝑁2 − 0.01219 𝐶2 +
0.3372 𝐻2 + 0.00409 𝑂2  

𝐻𝐻𝑉 = −14.7175 + 0.4883 𝑁 + 1.2926 𝐶 +
0.2188 𝐻 − 0.3729 𝑂 − 0.03307 𝑁2 − 0.00945 𝐶2 +
0.00467 𝑂2  

𝐻𝐻𝑉 = −23.8290 + 0.5064 𝑁 + 1.3355 𝐶 +
0.2735 𝐻 + 0.01165 𝑂 − 0.03248 𝑁2 − 0.00995 𝐶2  

0.9566 

 

0.9560 

 

0.9547 

1.7502 

 

1.7481 

 

1.7465 

0.2839 

 

0.2831 

 

0.2895 

 

1.5573 

 

1.5468 

 

1.5852 

 

0.0449 

 

0.0287 

 

0.0018 

0.3729 

 

0.3753 

 

0.3808 

8 

𝐿𝐻𝑉 = 7.3723 + 0.4130 𝑁 + 1.4676 𝐶 −
10.0585 𝐻 − 0.2655 𝑂 − 0.02286 𝑁2 −
0.01086 𝐶2 + 0.8217 𝐻2 + 0.00335 𝑂2  

𝐿𝐻𝑉 = 2.0693 + 0.4259 𝑁 + 1.5481 𝐶 −
10.8196 𝐻 + 0.0109 𝑂 − 0.02233 𝑁2 −
0.01173 𝐶2 + 0.8870 𝐻2  

𝐿𝐻𝑉 = 4.8380 + 0.2490 𝑁 + 1.4924 𝐶 −
11.1362 𝐻 + 0.00164 𝑂 − 0.01125 𝐶2 + 0.9193 𝐻2  

0.9668 

 

0.9661 

 

0.9638 

1.7339 

 

1.7358 

 

1.7315 

0.2605 

 

0.2651 

 

0.2680 

1.6717 

 

1.7083 

 

1.7030 

0.0229 

 

0.1068 

 

0.0025 

0.3217 

 

0.3251 

 

0.3356 

9 

𝐻𝐻𝑉 = −11.9276 + 0.5322 𝑁 + 1.4068 𝐶 +
3.4329 𝑆 − 0.6077 𝑂 − 0.03177 𝑁2 − 0.01054 𝐶2 −
5.2651 𝑆2 + 0.00742 𝑂2  

𝐻𝐻𝑉 = −13.4885 + 0.5504 𝑁 + 1.3978 𝐶 −
1.0829 𝑆 − 0.4764 𝑂 − 0.03589 𝑁2 − 0.01044 𝐶2 +
0.00584 𝑂2  

𝐻𝐻𝑉 = −25.6364 + 0.5722 𝑁 + 1.4851 𝐶 −
0.6605 𝑆 + 0.00709 𝑂 − 0.03587 𝑁2 − 0.01137 𝐶2  

0.9561 

 

0.9558 

 

0.9538 

1.7479 

 

1.7485 

 

1.7481 

0.2862 

 

0.2887 

 

0.2921 

1.5662 

 

1.5803 

 

1.6049 

0.0035 

 

0.0493 

 

0.0792 

0.3747 

 

0.3762 

 

0.3847 
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Table 3. Continue… 

 

 
Eq. 

No 
Non-linear Equations r2 SD MAE 

AAE 

(%) 

ABE 

(%) 
RMSD 

9 

𝐿𝐻𝑉 = −4.1399 + 0.4129 𝑁 + 0.8277 𝐶 +
1.0241 𝑆 − 0.4525 𝑂 − 0.02311 𝑁2 − 0.00416 𝐶2 −
1.6864 𝑆2 + 0.00545 𝑂2  

𝐿𝐻𝑉 = −4.6399 + 0.4188 𝑁 + 0.8248 𝐶 −
0.4223 𝑆 − 0.4104 𝑂 − 0.02443 𝑁2 − 0.00413 𝐶2 +
0.00494 𝑂2  

𝐿𝐻𝑉 = 4.7003 + 0.4250 𝑁 + 0.4557 𝐶 − 0.4251 𝑆 −
0.4776 𝑂 − 0.02321 𝑁2 + 0.00587 𝑂2  

0.9634 

 

0.9634 

 

0.9619 

1.7322 

 

1.7317 

 

1.7303 

0.2696 

 

0.2684 

 

0.2755 

1.7130 

 

1.7070 

 

1.7390 

0.0476 

 

0.0464 

 

0.0457 

0.3376 

 

0.3378 

 

0.3444 

10 

𝐻𝐻𝑉 = −63.3676 − 0.4996 𝑁 + 27.2370 𝐻 +
7.9872 𝑆 − 0.3397 𝑂 + 0.02661 𝑁2 − 2.0138 𝐻2 −
5.7886 𝑆2 + 0.00232 𝑂2  

𝐻𝐻𝑉 = −67.4014 − 0.4871 𝑁 + 27.3544 𝐻 +
6.2519 𝑆 − 0.1473 𝑂 + 0.02497 𝑁2 − 2.0225 𝐻2 −
3.5968 𝑆2  

𝐻𝐻𝑉 = −67.7552 − 0.4730 𝑁 + 27.7527 𝐻 +
3.0500 𝑆 − 0.1489 𝑂 + 0.02160 𝑁2 − 2.0581 𝐻2  

0.7516 

 

0.7514 

 

0.7512 

1.5506 

 

1.5505 

 

1.5500 

0.7267 

 

0.7304 

 

0.7283 

3.8914 

 

3.9115 

 

3.9011 

0.2360 

 

0.2178 

 

0.2249 

 

0.8914 

 

0.8918 

 

0.8922 

10 

𝐿𝐻𝑉 = −52.6526 − 0.6553 𝑁 + 22.2289 𝐻 +
7.1848 𝑆 − 0.2097 𝑂 + 0.03954 𝑁2 − 1.6085 𝐻2 −
4.5180 𝑆2 + 0.00048 𝑂2  

𝐿𝐻𝑉 = −53.4812 − 0.6527 𝑁 + 22.2530 𝐻 +
6.8283 𝑆 − 0.1701 𝑂 + 0.0392 𝑁2 − 1.6103 𝐻2 −
4.0677 𝑆2  

𝐿𝐻𝑉 = −53.8812 − 0.6368 𝑁 + 22.7035 𝐻 +
3.2072 𝑆 − 0.1720 𝑂 + 0.03539 𝑁2 − 1.6505 𝐻2  

0.7185 

 

0.7185 

 

0.7182 

1.4955 

 

1.4953 

 

1.4953 

0.7520 

 

0.7527 

 

0.7511 

4.7456 

 

4.7502 

 

4.7418 

0.3248 

 

0.3273 

 

0.3313 

 

0.9362 

 

0.9362 

 

0.9367 

11 

𝐻𝐻𝑉 = −5.6668 + 1.3547 𝐶 − 1.4834 𝐻 +
8.3792 𝑆 − 0.6870 𝑂 − 0.01075 𝐶2 + 0.1770 𝐻2 −
6.3435 𝑆2 + 0.00806 𝑂2  

𝐻𝐻𝑉 = −8.6907 + 1.2124 𝐶 + 0.6759 𝐻 +
7.8601 𝑆 − 0.6898 𝑂 − 0.00925 𝐶2 − 5.7498 𝑆2 +
0.00808 𝑂2  

𝐻𝐻𝑉 = −10.1398 + 1.1979 𝐶 + 0.6475 𝐻 +
2.7380 𝑆 − 0.5422 𝑂 − 0.00907 𝐶2 + 0.00629 𝑂2  

0.9413 

 

0.9411 

 

0.9406 

1.7351 

 

1.7341 

 

1.7349 

0.3207 

 

0.3236 

 

0.3181 

1.7197 

 

1.7317 

 

1.7024 

0.0613 

 

-0.0016 

 

0.0566 

0.4334 

 

0.4341 

 

0.4360 

11 

𝐿𝐻𝑉 = 8.7097 + 1.2497 𝐶 − 7.0316 𝐻 + 5.1349 𝑆 −
0.5485 𝑂 − 0.00916 𝐶2 + 0.6075 𝐻2 − 2.7369 𝑆2 +
0.00635 𝑂2  

𝐿𝐻𝑉 = 7.5243 + 1.2185 𝐶 − 6.6722 𝐻 + 2.6985 𝑆 −
0.4813 𝑂 − 0.00882 𝐶2 + 0.5770 𝐻2 + 0.00553 𝑂2  

𝐿𝐻𝑉 = −1.8445 + 0.7597 𝐶 + 0.3757 𝐻 +
2.7304 𝑆 − 0.5398 𝑂 − 0.00398 𝐶2 + 0.00619 𝑂2  

0.9531 

 

0.9529 

 

0.9512 

1.7233 

 

1.7232 

 

1.7224 

0.3004 

 

0.2982 

 

0.3034 

1.8920 

 

1.8783 

 

1.9039 

0.0691 

 

0.0971 

 

0.1061 

0.3823 

 

0.3828 

 

0.3899 
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