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Abstract

In this paper, we developed the slice sampler algorithm for the gener-
alized Pareto distribution (GPD) model. Two simulation studies have
shown the performance of the peaks over given threshold (POT) and
GPD density function on various simulated data sets. The results were
compared with another commonly used Markov chain Monte Carlo
(MCMC) technique called Metropolis-Hastings algorithm. Based on
the results, the slice sampler algorithm provides closer posterior mean
values and shorter 95% quantile based credible intervals compared to
the Metropolis-Hastings algorithm. Moreover, the slice sampler algo-
rithm presents a higher level of stationarity in terms of the scale and
shape parameters compared with the Metropolis-Hastings algorithm.
Finally, the slice sampler algorithm was employed to estimate the re-
turn and risk values of investment in Malaysian gold market.
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1. Introduction

The field of extreme value theory (EVT) goes back to 1927, when Fréchet [18] for-
mulated the functional equation of stability for maxima, which later was solved with
some restrictions by Fisher and Tippett [16] and finally by Gnedenko [22] and De Haan
[12]. There are two main approaches in the modelling of extreme values. First, under
certain conditions, the asymptotic distribution of a series of maxima (minima) can be
properly approximated by Gumbel, Weibull and Frechet distributions which have been
unified in a generalized form named generalized extreme value (GEV) distribution [6].
The second approach is related to a model associated with observation over (below) a
given threshold. EVT indicates that such approximated model represents a generalized
Pareto distribution (GPD) [11, 26]. The GPD has the benefit of using more sample in-
formation for tail estimation, as compared to the generalized extreme value GEV which
considers the block maxima (BM). It therefore can minimize the problem of being waste-
ful of extreme information for gathering more extreme data compared to the GEV [6].
The BM approach group the data into epochs (months, years, etc.) or events (storms)
and use the maxima (minima) as representative of each epoch or event. This leads to
the fact that every epoch or event contains one representative no matter the size of the
associated extreme value and all values which are not extremes of epochs or events are
discarded. Thus, some information seems to be lost. The larger the epoch the larger the
loss of data [4]. A more natural way to define extremes in a given sample is to set a high
threshold u and to consider as extreme any observation exceeding u [42]. The threshold
approach is the analogue of the GEV distribution for the block maxima, but it leads to a
distribution called the GPD which is proven to be more flexible than the block maxima
[45, 44, 23]. This approach allows in principle for a more parsimonious use of data and
hinges on theoretical foundations as solid as those of the BM method, as shown by the
results of [2] and [38]. One advantage of the threshold methods over the block maxima
is that they can deal with asymmetries in the tails of distributions [30].

1.1. Generalized Pareto Distribution. Let the random variable X follow a GPD
model and indicate the excess above the selected threshold u. The distribution function
of X is in form

L-[L+e(=m)]7 e#0,
1—exp( = ") £E=0,

where the probability density function is given by

[+ ( )](1+1/E) €40,
exp (—%=%) £=0,
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with

T > u, o >0, 1+§(I_M)>O.
o

where, o is the scale parameter, £ is the shape parameter and w is the threshold.
There are three type of tail distributions associated with GPD regarding to the shape
parameter value. The excesses distribution has an upper bound of the distribution if
¢ < 0. A exponential decayed type tail correspond to & = 0, considered in the limit
& — 0. The excesses above the threshold has a slowly decaying tail and no upper
bound if & > 0. Therefore, the shape parameter of GPD is dominant in determining the
qualitative behaviour of the tail.
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1.1.1. Threshold Selection. The threshold selection of the GPD can be problematic in
applications. The threshold selection has to satisfy the balance of validity of the asymp-
totic and variance of the estimators. The threshold must be sufficiently high to ensure
the threshold excesses such that the asymptotically motivated GPD provides a reliable
approximation to avoid bias. The threshold cannot be too high otherwise there is poten-
tial little sample information leading high variance on estimates. The idea of threshold
selection is to pick as low a threshold as possible subject to the limit model providing
a reasonable approximation [6]. Traditionally, two methods are available for this: the
first method is an exploratory technique carried out prior to model estimation, e.g. us-
ing mean residual life (MRL) plots, also referred to as mean excess plots in statistical
literature; the second method is an assessment of the stability of parameter estimates
based on the fitting of models across a range of different thresholds. Above a level g, the
asymptotic motivation for GPD is valid and the estimates of shape and scale parameters
should be approximately constant [6].

In this study, we use MRL plot as a commonly used tool for threshold selection, see
[6, 8, 21, 27, 19, 49].

1.1.2. Mean Residual Life Plot. Suppose a sequence of independent and identically dis-
tributed measurements xi1 --- ,x, and let z1,--- , xx represent the subset of data points
that exceed a particular threshold, u, where 1, - , zx consist of the k observations that
exceed u. Define threshold excesses by:

k
1
1. n =7 i ) max
(1.3)  en(u) % ;:1(:10 u) u<T

where Tmax is the largest of the X;. The expected value of excess over threshold, for
(X —u) ~ GPD(0,¢), is

o

E(X —u)= i—e
provided & < 1. If the GPD is valid for excesses of a threshold ug, it should be valid for
all u > ug subject to the change of scale parameter o,. Hence, for u > ug
Uu

1-¢
_ Oy + Eu
=T
Furthermore, E(X —u | X > u) is simply the mean of the excesses of the threshold u,
for which the sample mean of the threshold excesses of u provides an empirical estimate
[8]- According to (1.4), these estimates are expected to change linearly with u, at levels
of u for which the GPD is appropriate. This leads to the following procedure. The locus
of points {(u,es) : ¥ < Tmax} is termed the MRL plot. Above a threshold uo at which
the GPD provides a valid approximation to the excess distribution, the MRL plot should
be approximately linear in u. Confidence intervals can be added to the plot based on the
approximate normality of sample means.

EX —-ul|X >u)=

(1.4)

1.2. Slice Sampler. The idea of introducing auxiliary variables into the process of
conditional simulation was introduced in statistical physics by Trotter and Tukey [50],
who proposed a powerful technique called conditional Monte Carlo, which has been later
generalized by Hammersley and Morton [24]. In addition, Edwards et al. [14], Besag and
Green [3] suggest additional algorithms of using auxiliary variables in MCMC simulation
for the purpose of improving the efficiency of the simulation process. Furthermore, Mira
and Tierney [31] present a sufficient condition for the uniform ergodicity of the auxiliary
variable algorithm and an upper bound for the rate of convergence to stationarity. These
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important results guarantee that the Markov chain converges efficiently to the target
distribution.

As a special case of the auxiliary variable method, slice sampler algorithm also re-
quires introducing additional variable(s), to accompany the variable of interest, in order
to generate realizations from a target probability density function. The history of the
slice sampler can be traced back to Swendsen and Wang [46], who introduced the idea of
using auxiliary variables for improving the efficiency of the MCMC sampling technique
for a statistical physics model. Later, Swendsen and Wang’s notion was further enhanced
by the introduction of the slice sampler which has been studied in recent years by many
researchers. For example, Besag and Green [3] apply a similar algorithm in agricultural
field experiments. Higdon [25] introduces an improved auxiliary variable method for
MCMC techniques based on the Swendsen and Wang algorithm called partial decoupling
with applications in Bayesian image analysis. Other developments and detailed descrip-
tions of several applications of slice sampler can be found in [14, 17, 41, 33]. Damlen
and Wakefield [10] demonstrate the use of latent variables for Bayesian non conjugate,
nonlinear, and generalized linear mixed models. The purpose of their paper is to pro-
vide a possible sampling algorithm other than rejection based methods or other sampling
methods similar to the Metropolis-Hastings algorithm. They point out that with the aid
of latent variables the process of constructing a Markov chain is more efficient than a
Metropolis-Hastings independence chain. Damlen and Wakefield [10] propose samplers
using multiple auxiliary variables for Bayesian inference problems. They factor the prob-
ability density of f(x) into the product of k parts, i.e., f(z) < fi(x), f2(x), -, fu(x),
then introduce k auxiliary variables, yi,---,yx, one for each factor. The joint den-
sity function for z and y;’s is proportional to the product of the indicator functions:
flx,yr, - yw) o< [T, {0 < i < fi(x)}. The main idea of [10] is to make all the condi-
tional distributions for the auxiliary variables and the components of x easy to sample
from by such factorization. They also compare the auxiliary variable method with the
independence Metropolis-Hastings algorithm and conclude that the former is more effi-
cient.

Two years later, Damien and Walker [9] provide a "black-box" algorithm for sampling
from truncated probability density functions based on the introduction of latent vari-
ables. They show that by introducing a single auxiliary variable, the process of sampling
truncated density functions, such as truncated normal, beta, and gamma distributions
can be reduced to the sampling of a couple of uniform random variables. However, their
discussions are mainly focused on the one dimensional case.

Thereafter, Neal [35] introduces a single auxiliary variable slice sampler method which
can be used for univariate and multivariate distribution sampling. He summarizes the sin-
gle variable slice sampler method in three steps. First, uniformly sample from(0, f(z0)),
where z is the current state, and define a current horizontal slice 75”7 as S = {z: y <
f(z)}. Then, around the current state zo, find an interval I = (L, R) containing much,
if not all, of the current slice "S ". Third, uniformly sample from the part of the slice
within interval I to get the new state z1. Neal [35] proves that the resulting Markov
chain from this algorithm converges to the target distribution. He points out that the
sampling efficiency can be improved by suppressing random walks. This can be done
for univariate slice sampling by "overrelaxation," and for multivariate slice sampling by
"reflection" from the edges of the slice. To improve the efficiency of the slice sampler,
Neal [35] also introduce the idea of "shrinkage", that is, to shrink the hyper rectangle
sampling region when rejection happens. By doing this, the number of rejections de-
creases dramatically. As pointed out by Chen and Schmeiser [5], for single variable slice
sampler, the sampling process proposed by Neal [35] operates analogously to the Gibbs
sampling method in the sense that given the current state xo, to obtain the next state
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x1, first an auxiliary variable y is generated from the conditional distribution [y | zo];
and then z, is sampled from the conditional distribution [z | y]. The reason for using the
auxiliary variable is that directly sampling from [z | y] is not possible since the closed
form of the support of [z | y] is not available. By introducing the auxiliary variable,
this problem is solved by sampling from two uniform distributions: [y | zo] and [z | y].
Agarwal and Gelfand [1] illustrate the application of the auxiliary variable method in a
simulation based fitting strategy of Bayesian models in the context of fitting stationary
spatial models for geo-referenced or point source data.

The properties of the slice sampler have been discussed by several researchers. Mira
and Tierney [32] prove that the slice sampler algorithm performs better than the corre-
sponding independence Metropolis-Hastings algorithm in terms of asymptotic variance
in the central limit theorem. Based on the findings, they suggest that given any inde-
pendence Metropolis-Hastings algorithm a corresponding slice sampler that has a smaller
asymptotic variance of the sample path averages for every function obeying the central
limit theorem can be constructed. Subsequently, Roberts and Rosenthal [41] prove that
the simple slice sampler is stochastically monotone under an appropriate ordering on its
state space. Based on this property, they derive useful rigorous quantitative bounds on
the convergence of slice samplers for certain classes of probability distributions. Roberts
and Rosenthal [41] show that the simple slice sampler is nearly always geometrically er-
godic and very few other MCMC algorithms exhibit comparably robust properties. Their
paper discusses the theoretical properties of slice samplers, especially the convergence of
slice sampler Markov chains and shows that the algorithm has desirable convergence
properties. Roberts and Rosenthal [41] prove the geometric ergodicity of all simple slice
samplers on probability density functions with asymptotically polynomial tails, which
indicates that this algorithm has extremely robust geometric ergodicity properties. They
derive analytic bounds on the total variation distance from the stationarity of the algo-
rithm by using the Foster-Lyapunov drift condition methodology. Mira and Tierney [31]
show that slice samplers are uniformly ergodic under certain conditions. Furthermore
they provide upper bounds for the rates of convergence to stationarity for such samplers.
In addition, Walker [51] proposes an axillary variable technique based on slice sampler
algorithm to sample from well known mixture of Dirichlet process model. The key to
the algorithm detailed in his paper, which also keeps the random distribution functions,
is the introduction of a latent variable which allows a finite number, which is known, of
objects to be sampled within each iteration of a Gibbs sampler.

Murray et al. [34] present a MCMC algorithm called elliptical slice sampler for per-
forming inference in models with multivariate Gaussian priors. Its key properties are:
1) it has simple, generic code applicable to many models, 2) it has no free parameters,
3) it works well for a variety of Gaussian process based models. These properties make
their method ideal for use while model building, removing the need to spend time deriv-
ing and tuning updates for more complex algorithms. It performs similarly to the best
possible performance of a related Metropolis-Hastings scheme, and could be applied to
a wide variety of applications in both low and high dimensions. Furthermore, Merrill
and Jingjing [29] suggest two variations of a multivariate normal slice sampler method
that uses multiple auxiliary variables to perform multivariate updating. Their method
is flexible enough to allow for truncation to a rectangular region and/or exclusion of
any n-dimensional hyper-quadrant. Merrill and Jingjing [29] compare efficiency and ac-
curacy of their proposed method and existing state-of-the-art slice sampler. According
to the results, by using this method, one can generate approximately independent and
identically distributed samples at a rate that is more efficient than other methods that
update all dimensions at once. Additionally, Tibbits et al. [48] propose an approach to
multivariate slice sampler that naturally lends itself to a parallel implementation. They
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study approaches for constructing a multivariate slice sampler, and they show how par-
allel computing can be useful for making MCMC algorithms computationally efficient.
Tibbits et al. [48] examine various implementations of their algorithm in the context of
real and simulated data. Moreover, Kalli et al. [28] present a more efficient version of the
slice sampler for Dirichlet process mixture models described by Walker [51]. Their pro-
posed sampler allows for the fitting of infinite mixture models with a wide-range of prior
specifications. Two applications are considered: density estimation using mixture models
and hazard function estimation. Kalli et al. [28] show how the slice efficient sampler can
be applied to make inference in the models. In the mixture case, two sub models are
studied in detail. The first one assumes that the positive random variables are Gamma
distributed and the second one is assumed to be inverse Normal distributed. Both pri-
ors have two hyper parameters and they consider their effect on the prior distribution
of the number of occupied clusters in a sample. Extensive computational comparisons
with alternative conditional simulation techniques for mixture models using the stan-
dard Dirichlet process prior and their new priors are made. According to the findings,
concerning performance of slice-efficient and retrospective samplers, both samplers are
approximately the same in terms of efficiency and performance. However, the savings are
in the prerunning work where setting up a slice sampler is far easier than setting up a
retrospective sampler. In addition, Favaro and Walker [15] consider the problem of slice
sampler mixture models for a large class of mixing measures generalizing the celebrated
Dirichlet process. Such a class of measures, known in the literature as o-stable Poisson-
Kingman models, includes as special cases most of the discrete priors currently known
in Bayesian nonparametrics, e.g., the two parameter Poisson-Dirichlet process and the
normalized generalized Gamma process. Favaro and Walker [15] show how to slice sample
a class of mixture models which includes all of the popular choices of mixing measures.
Based on the results, with standard stick-breaking models the stick-breaking variables
are independent, even as they appear in the full conditional distribution sampled in the
posterior MCMC algorithm. They show how to sample this joint distribution and hence
implement a valid MCMC algorithm. Moreover, Nieto et al. [36] introduce an automatic
method for rail inspection that detects rail flaws using computer vision algorithms. The
proposed technique is based on the novel combination of simple but effective laser-camera
calibration procedure with the application of an MCMC framework. They evaluate the
performance of the proposed strategy applying various sampling techniques including
sequential importance resampling, Metropolis-Hastings, slice sampler and overrelaxated
slice sampler. The results show that the overrelaxed slice sampler is capable of more ef-
ficiently representing a probability density function using the slice method, which allows
faster computation without sacrifying accuracy. In addition, Nishihara et al. [37] present
a parallelizable MCMC algorithm for efficiently sampling from continuous probability
distributions that can take advantage of hundreds of cores. This method shares infor-
mation between parallel Markov chains to build a scale-location mixture of Gaussians
approximation to the density function of the target distribution. Nishihara et al. [37]
combine this approximation with elliptical slice sampler algorithm presented by Murray
et al. Murray et al. [34] to create a Markov chain with no step-size parameters that
can mix rapidly without requiring gradient or curvature computations. Nishihara et al.
[37] compare their algorithm to several other parallel MCMC algorithms in a variety of
settings. They find that generalized elliptical slice sampler mixes more rapidly than the
other algorithms on a variety of distributions, and they find evidence that the perfor-
mance of generalized elliptical slice sampler can scale super-linearly in the number of
available cores. Further, Dubois et al. [13] introduce an approximate slice sampler that
uses only small mini-batches of data in every iteration. They show that their proposed
algorithm can significantly improve (measured in terms of the risk) the traditional slice
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sampler of Neal [35] when faced with large datasets. Dubois et al. [13] evaluate the
ability of the proposed approximate slice sampler by using three experiments including
regularized linear regression, multinomial regression and logistic regression. The findings
indicate that the performance for the multinomial regression model is most significant
compared to regularized linear regression and logistic regression.

Recently, Tibbits et al. [47] describe a two-pronged approach for constructing efficient,
automated MCMC algorithms: (1) they propose the factor slice sampler, a generalization
of the univariate slice sampler where they treat the selection of a coordinate basis (factors)
as an additional tuning parameter, and (2) they develop an approach for automatically
selecting tuning parameters to construct an efficient factor slice sampler. Tibbits et al.
[47] examine the performance of the standard and factor univariate slice samplers within
the context of several examples, including two challenging examples from spatial data
analysis. They show how the algorithm can be fully automated, which makes it very
useful for routine application by modelers who are not experts in MCMC. Furthermore,
according to the findings, the automated and parallelized factor slice sampler provides
an efficient technique that has broad application to statistical sampling problems.

It can be seen from the above review that the slice sampler algorithm has been ex-
tensively studied, yet the literature on extreme value case is sparse. Nowadays, many
researchers are dealing with extreme data sets and computational challenges. Hence,
there are increasingly more requirements for efficient sampling algorithms of extreme
value distributions. In this paper, slice sampler algorithm is developed for the GPD
model.

2. Metropolis-Hastings algorithm

Metropolis-Hastings algorithm simulates samples from a probability distribution by
making use of the full joint density function and (independent) proposal distributions for
each of the variables of interest [52]. The idea behind the Metropolis-Hastings algorithm
is to start with an (almost) arbitrary transition density ¢. This density will not give the
correct asymptotic distribution f, but we could try to repair this by rejecting some of
the moves it proposes, see [43].

In this study, candidate generator is assumed to have a normal distribution, so-called
"random walk Metropolis-algorithm with normal increments". Metropolis-Hastings al-
gorithm used in this study is based on simulation of a random walk chain. Random
walk chain is a more natural approach for the practical construction of a Metropolis-
Hastings proposal is thus to take into account the value previously simulated to generate
the following value; that is, to consider a local exploration of the neighbourhood of the
current value of the Markov chain [40]. Note that each step of the two stage Gibbs
sampler amounts to an infinity steps of a special slice sampler. Moreover, the Gibbs
sampling method is equivalent to the composition of p Metropolis-Hastings algorithm,
with acceptance probabilities uniformly equal to 1 [39].

3. Bayesian inference of the GPD using slice sampler algorithm

Although, the central idea of the threshold approach is to avoid the loss of informa-
tion produced by the BM approaches [4], one of the common issues with extreme value
modeling is the lack of observations [7]. There are a number of reasons why a Bayesian
analysis of extreme value data might be useful. First and foremost, owing to scarcity of
data, the facility to include other sources of information through a prior distribution has
obvious appeal. Second, the output of a Bayesian analysis - the posterior distribution -
provides a more complete inference than the corresponding maximum likelihood analysis
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[6]. Therefore, in the current study, Bayesian inference is used for fitting the GPD pos-
terior model as we can potentially take advantage of any expert prior information, which
can be important in tail estimation due to the inherent sparsity of extremal data, and to
account for all uncertainties in the estimation. Although, in this study, we deliberately
apply vague priors, to show our little prior information about the GPD parameters. The
slice sampler algorithm was developed to obtain the posterior distribution of the GPD.

3.1. Likelihood function. Given a value of threshold u, and the original sample X7, - - -
the extremes over u compose a new sample X1, -+, Xg, kK < n. The likelihood function
for a GPD sample is given by

I

(3.1) Lx|o,§ = Ulkﬁ [1 T (mi;u)]*ﬂﬂ/&)

where
1e (Bt >0, g0 i=120 0k
g

3.2. Prior distribution. We have defined the gamma and normal with large variances
denoted by Ga(a, \) and N(j,7n?) as prior distributions on the scale (o) and shape (€)
parameters, respectively. The probability densities are:

a—1

(o) = /\arl(a) exp(f%)a : c>0, a>0, A>0
_ 1 (€= 6)2}
S

3.3. Posterior distribution. By multiplying the likelihood function in Equation (3.1)
and the prior distributions in Equation (3.2), the posterior distribution becomes:

(0, €[x) o< L(x | 0, &) x w(0) x w(£)

(3.2)

m(§) ; §eER, BER, >0

1 & zi — uy]—(+1/O)
(3.3) O‘?E [1+§( o )]
X exp [7% - %} oL

4. Simulation study

Two simulation studies consider the performance of the slice sampler algorithm in
the GPD model and compare the results with the Metropolis-Hastings algorithm. One
parameter sets from the GEV model, including GEV(10, 5,0.3) and three parameter sets
from the GPD density function, containing GPD(5,0.3), GPD(5,10~?) and GPD(5, —0.3)
were chosen to simulate data from POT and GPD density function with different tail
behaviours, respectively. The different shape parameter (§) values used for these three
sets are to identify the model features for heavier tails. In the POT approach, estimation
of the shape parameter is problematic due to requiring a large size of data to obtain
reliable estimate [6].

Simulation study I represents a population with the POT model obtained from the
GEV(10,5,0.3). Simulation study II represents a GPD density function for the different
values of the shape parameter. The sample sizes for the first and second simulation
studies are n = 155 and n = 150, respectively. The prior for the simulation sample is
as: o ~ Ga(2,1000) and & ~ N(0,1000). The values of M,, SD,, SE, and 95% quantile
based credible intervals for the scale o and shape & parameters of the GPD model are
shown in Table 1 to Table 4.
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We wrote all the computer code with advanced statistics package R.

4.1. Simulation study I. A sample was simulated from the GEV(10,5,0.3) with a
size 200 with 155 observations over the threshold uw. The threshold value was obtained
through MRL plot as shown in Figure 1. The Figure displays curvature until around
u = 8, after which there is reasonable linearity. Moreover, Figure 2 reveals the n=155
excesses over the threshold u = 8. Figure 3 supplies the diagnostic plots of the exceedence
model fitting on the simulated data. As can be seen from Figure 3, the quantile plot
and density plot show a good fit of GPD to the simulated data. By using the slice
sampler and Metropolis-Hastings algorithms with 5000 iterations, M,, SD,, SE, and
95% quantile based credible intervals of the scale (o) and shape (£) parameters of the
GPD posterior density were calculated as shown in Table 1. Additionally, Figures 4 and 5
present the slice sampler series, the Metropolis-Hastings series and the posterior densities
of the algorithms. The first 1000 iterations are discarded as burn-in.

4.1.1. Results from the slice sampler and Metropolis-Hastings algorithms for the obser-
vations above the given threshold. Table 1 illustrates the statistical results along with
95% quantile based credible intervals of the posterior distribution of the POT model by
specifying the gamma and normal with large variances as prior distributions on the scale
o and shape £ parameters, respectively. As can be seen from the Table, for the slice
sampler algorithm, the posterior means of o and £ are 23.054 and —1.272, respectively.
On the other hand, the posterior means of o and £ for the Metropolis-Hastings algorithm
are 19.928 and —0.316, respectively. In this simulation, since the true parameter values
of the GPD model were unknown, the posterior mean values of the Metropolis-Hastings
and slice sampler algorithms are relatively far from each other.

Moreover, Table 1 reveals the SE, for both Metropolis-Hastings and slice sampler
algorithms are less than 0.025 which shows a low level of error. Further, based on Table 1,
the lower and upper bounds of the 95% quantile based credible intervals of o and ¢ for the
slice sampler algorithm are equal to (22.223,24.432) and (—1.291, —1.219), respectively.
In addition, the lower and upper bounds of o and & for the Metropolis-Hastings algorithm
are (16.870,23.114) and (—0.384, —0.233), respectively. Overall, both the slice sampler
and Metropolis-Hastings algorithm show a low level of error (SE, < 0.03), however, the
slice sampler presents closer posterior means and shorter credible intervals for o and &
compared with Metropolis-Hastings algorithm.

In addition, in this research, the maximum likelihood estimations of the GPD param-
eters are calculated. According to the results, the maximum likelihood estimations of o
and ¢ are equal to 20.573 and —0.137, respectively, which are close to the posterior mean
values of the slice sampler technique. These results show that there is a high level of
consistency between maximum likelihood estimations and and posterior means of slice
sampler algorithm.

Figures 4a and 4b show convergency in both the Metropolis-Hastings and slice sam-
pler series. In this work, in order to determine the algorithm which shows a higher
level of stationarity, we compare the running time to converge on a satisfactory model
for Metropolis-Hastings and slice sampler algorithms. According to the findings, the
Metropolis-Hastings algorithm requires around 9 seconds to perform 5000 iterations,
while the running time to converge on a satisfactory model for slice sampler technique
is around 3 seconds. Therefore, the slice sampler algorithm reduces the time required to
perform a number of iterations. Consequently, the slice sampler shows a higher level of
stationarity compared to the Metropolis-Hastings algorithm.

Additionally, density plots of the posteriors in the Metropolis-Hastings and slice sam-
pler algorithms are shown in Figures 5a and 5b, respectively.
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Figure 3. Diagnostic plot of GPD fitting for the exceedence over a
high threshold of the simulated data. The figures show that the peaks
over the threshold value u = 8 is well approximated by the GPD.

Table 1. Summary of properties of the slice sampler and
Metropolis-Hastings algorithms of the POT model parameters for
single simulated dataset from the GEV(10,5,0.3) with 155 obser-
vations over the threshold u. Values of the M,, SD, and SE,
along with the 95% quantile based credible interval across the

5000 iterations.

MH SS
o 13 o 13
M, 19.928 -0.316 23.064  -1.272
SD, | 1.591 0.038 0.593 < 0.020
SE, | 0.022 < 0.001 0.008 0.001
LCI | 16.870 -0.384 22.223  -1.291
UCI | 23.114 -0.233 24.432  -1.219
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Figure 5. Posterior distributions of ¢ and ¢ with sample size n

(b) Slice sampler

155 and 5000 iterations by defining the gamma and normal with large
variances as prior distributions on the scale and shape parameters,
respectively.

4.2. Simulation study II. We consider the performance of the slice sampler algorithm
for the GPD density function and compare it with the Metropolis-Hastings algorithm.
Three different parameter sets of GPD(c, £) containing GPD(5,0.3), GPD(5,107?) and
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GPD(5, —0.3) were examined, with 5000 iterations and a sample size of n = 15. There are
three type of tail distributions associated with GPD regarding to the shape parameter
value. The excesses distribution has an upper bound of the distribution if £ < 0. A
exponential decayed type tail correspond to £ = 0, considered in the limit £ — 0. The
excesses above the threshold has a slowly decaying tail and no upper bound if £ > 0.
Hence, in this study the different shape parameter values applied for this simulation
study are to identify the model characteristic for heavier tails. The statistical results
are presented in Table 2 to Table 4. In addition, Figure 6 to Figure 11 display the slice
sampler series, the Metropolis-Hastings series and the posterior densities of the three
sample groups. The first 1000 iterations are discarded as burn-in.

4.2.1. Values of the My, SD,, SE, and 95% based credible intervals of the scale o and
shape & parameters of GPD(5,0.3) for the slice sampler and Metropolis-Hastings algo-
rithms. Table 2 demonstrates the My, SD,,, SE, and 95% quantile based credible intervals
of the posterior distribution of GPD(5,0.3) by specifying the gamma and normal with
large variances as prior distributions on the scale and shape parameters. The results,
as shown in Table 2, indicate that the posterior means of o and £ for the slice sampler
algorithm are close to the true parameter values, equal to 4.680 and 0.345,respectively,
while the posterior means of ¢ and £ for the Metropolis-Hastings algorithm are relatively
far from the true parameter values, equal to 4.150 and 0.453, respectively. Further, Table
2 reveals the SE, for both Metropolis-Hastings and slice sampler algorithms are less than
0.01 which shows a low level of error. Moreover, As the Table shows, the lower and upper
bounds of the 95% quantile based credible intervals of o and £ for the slice sampler al-
gorithm are (3.790,5.770) and (0.184, 0.555), respectively. On the other hand, the lower
and upper bounds of ¢ and & for the Metropolis-Hastings algorithm are (3.030,5.412)
and (0.221,0.740), respectively. These results indicate that the slice sampler algorithm
provides closer posterior mean values and shorter credible intervals compared to the
Metropolis-Hastings algorithm.

Moreover, in this paper, the maximum likelihood estimations of the GPD parameters
are calculated. According to the results, the maximum likelihood estimations of ¢ and
& are equal to 4.603 and 0.290, respectively, which are very close to the posterior mean
values of the slice sampler technique. These results indicate that there is a high level
of consistency between maximum likelihood estimations and posterior means of slice
sampler algorithm.

Figures 6a and 6b show iteration series of o and £ in both the Metropolis-Hastings
and slice sampler algorithms.

Based on the results, the Metropolis-Hastings algorithm requires around 11 seconds
to perform 5000 iterations, while the running time to converge on a satisfactory model
for slice sampler technique is around 3 seconds. Therefore, the slice sampler algorithm
reduces the time required to perform a number of iterations. Consequently, the slice sam-
pler shows a higher level of stationarity compared to the Metropolis-Hastings algorithm.
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Table 2. Summary of statistical results of the scale o and shape ¢
parameters of the GPD posterior model for both the slice sampler
and Metropolis-Hastings algorithms with n = 150 sample size and
5000 iterations. Note: the true parameter values of o and £ are 5
and 0.3, respectively.

MH SS

o I3 o 13
True Value 5 0.3 5 0.3
M, 4.150 0.453 4.680 0.345
SD, 0.621 0.135 0.499 0.093
SE, 0.009 0.002 0.007 0.001
LCI 3.030 0.221 3.790 0.184
UCI 5.412 0.740 5.770 0.555

4.2.2. Values of the My, SD,, SE, and 95% quantile based credible intervals of the scale
o and shape & parameters of GPD(5,107°) for the slice sampler and Metropolis- Hastings
algorithms. Table 3 presents the M, SD,, SE, and 95% quantile based credible intervals
of the posterior distribution of GPD(5,107°) by defining the gamma and normal with
large variances as prior distributions on the scale and shape parameters. From Table 3, it
can be seen that the posterior means of o and & for the slice sampler algorithm are close
to the true parameter values, equal to 4.840 and 0.032, respectively, while the posterior
means of o and £ for the Metropolis-Hastings algorithm are relatively far from the true
parameter values, equal to 4.293 and 0.127, respectively. In addition, Table 3 reveals the
SE, for both Metropolis-Hastings and slice sampler algorithms are less than 0.01 which
shows a low level of error. In addition, From Table 3, we can see that the lower and
upper bounds of the 95% quantile based credible intervals of o and ¢ for the slice sampler
algorithm are (4.120, 5.700) and (—0.077,0.180), respectively. By contrast, the lower and
upper bounds of o and £ for the Metropolis-Hastings algorithm are (3.259,5.484) and
(—0.055,0.375), respectively. Taken together, these results suggest that the slice sampler
algorithm provides closer posterior means and shorter credible intervals compared with
the Metropolis-Hastings algorithm.

Moreover,the maximum likelihood estimations of the GPD parameters are calculated.
According to the findings, the maximum likelihood estimations of o and & are equal to
4.852 and 0.022, respectively, which are very close to the posterior mean values of the
slice sampler technique. These results indicate that there is a high level of consistency
between maximum likelihood estimations and posterior means of slice sampler algorithm.

Figures 8a and 8b provide iteration series of o and £ in both the Metropolis-Hastings
and slice sampler algorithms. According to the findings, the Metropolis-Hastings algo-
rithm requires approximately 9 seconds to perform 5000 iterations, while the running
time to converge on a satisfactory model for slice sampler technique is about 4 seconds.
Therefore, the slice sampler algorithm reduces the time required to perform a number of
iterations. Consequently, the slice sampler shows a higher level of stationarity compared
to the Metropolis-Hastings algorithm.

Additionally, the posterior densities in the Metropolis-Hastings and slice sampler al-
gorithms are revealed in Figures 9a and 9b respectively.
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Table 3. Results from the slice sampler and Metropolis-Hastings
algorithms for single simulated dataset with sample size n = 150
from the GPD posterior model. Note: the true parameter values
for o and ¢ are 5 and 1077, respectively

MH SS
o 13 o 13
True Value | 5 1077 5 1077
M, 4.293 0.127 4.840 0.032
SD, 0.574 0.114 0.405 0.066
SE, 0.008 0.002 0.006 0.001
LCI 3.259 -0.055 4.120 -0.077
UCI 5.484 0.375 5.700 0.180
n
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Figure 8. Series of o and ¢ as scale and shape parameters of the GPD
posterior model with sample size n = 150 and 5000 iterations. Note:
the true parameter values for o and £ are 5 and 107°, respectively
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Figure 9. Posterior distributions of ¢ and ¢ with 5000 iterations by
defining the gamma and normal with large variances as prior distribu-
tions on the scale and shape parameters of the GPD density function.
Note: the true parameter values for o and € are 5 and 10™%, respectively

4.2.3. Values of the My, SD,, SE, and 95 % quantile based credible intervals of the scale
o and shape § parameters of GPD(5,—0.3) for the slice sampler and Metropolis- Hastings
algorithms. Table 4 demonstrates the posterior mean, SD,, SE, and 95% quantile based
credible intervals of the posterior distribution of GPD(5,—0.3) by specifying the gamma
and normal with large variances as prior distributions on the scale and shape parameters.
As shown in Table 4, the posterior means of o and ¢ for the slice sampler algorithm are
close to the true parameter values, equal to 4.960 and —0.266, whereas the posterior
means of o and £ for the Metropolis-Hastings algorithm are relatively far from the true
parameter values, equal to 4.488 and —0.209, respectively. Additionally, Table 4 reveals
the SE, for both Metropolis-Hastings and slice sampler algorithms are less than 0.01
which shows a low level of error.

Table 4 shows that the lower and upper bounds of the 95% quantile based credible
intervals of o and £ for the slice sampler algorithm are (4.480, 5.530) and (—0.346, —0.186),
respectively. In contrast, the lower and upper bounds of o and ¢ for the Metropolis-
Hastings algorithm are (3.533,5.458) and (—0.350,0.002), respectively. In summary,
these results show that the slice sampler algorithm presents relatively closer posterior
means and shorter credible intervals compared to the Metropolis-Hastings algorithm.
Further, in the current study, the maximum likelihood estimations of the GPD parameters
are calculated. Based on the findings, the maximum likelihood estimations of o and £ are
equal to 4.632 and —0.309, respectively, which are very close to the posterior mean values
of the slice sampler technique. These results show that there is a high level of consistency
between maximum likelihood estimations and posterior means of slice sampler algorithm.

Figures 10a and 10b illustrate iteration series of o and £ in both the Metropolis-
Hastings and slice sampler algorithms.
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According to the findings, the Metropolis-Hastings algorithm requires around 13 sec-
onds to perform 5000 iterations, while the running time to converge on a satisfactory
model for slice sampler technique is around 5 seconds. Therefore, the slice sampler al-
gorithm reduces the time required to perform a number of iterations. Consequently, the
slice sampler shows a higher level of stationarity compared to the Metropolis-Hastings
algorithm.

In addition, the posteriors’ densities in the Metropolis-Hastings and slice sampler
algorithms are shown in Figures 11a and 11b, respectively.
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Figure 10. Series of the scale ¢ and shape parameters of the GPD
posterior model with sample size n = 150 and 5000 iterations. Note:
the true parameter values of o and £ are 5 and —0.3, respectively
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Table 4. Summary of properties of the slice sampler and
Metropolis-Hastings algorithms of the GPD posterior model pa-
rameters for single simulated dataset with sample size n = 150.
Note: the true parameter values of o and £ are 5 and —0.3, re-

spectively.
MH SS
o 13 o 13
True Value 5 -0.3 5 -0.3
M, 4.488 -0.209 4.960 -0.282
SD,, 0.049  0.090 0.266  0.042
SE, 0.004 0.001 0.004 0.001
LCI 3.533  -0.350 4.480 -0.346
UCI 5.458 0.002 5.530 -0.186

5. Real data analysis

In this study, the slice sampler algorithm is applied to the threshold exceedences
of Malaysian daily gold returns. The data that are used in this research is generated
specifically from daily reports of Malaysian gold price, which have been downloaded
from www.kitco.com. The period is from January 5, 2004 to December 18, 2015, leaving
a total of 3121 days. The daily returns are defined by 7, = log(p:/pt—1) where p; denotes
the price of the gold at day ¢, see [20]. The threshold value was obtained using the
MRL plot in Figure 12. The Figure shows curvature until approximately v = —0.07,
after which there is reasonable linearity. With this threshold, the 12 years of available
daily gold return data, generate 1900 threshold exceedances where the peaks over the
threshold is well approximated by the GPD as shown in Figure 14 which provides the
diagnostic plots of the exceedence model fitting on the Malaysian gold returns. In Figure
14, the quantile plot and density plot display a good fit of GPD to the returns. The
description of the excesses above u = —0.07 is summarized in Table 5. Based on the
results, the mean value of the returns above the threshold is (M= 0.310, SD= 0.355).
Further, the median value is 0.219 indicating 50% of the threshold exceedance returns are
less than 0.219. Additionally, as the Table shows, the minimum and maximum returns
are —0.070 and 4.654, respectively. Moreover, the skewness and kurtosis are 2.774 and
18.498, respectively providing evidence of fat-tailless in the return series. To consider the
fat-tailless of the exceedance returns, a sample histogram together with the best fitted
density (red curve) and best fitted normal distribution (green curve) was used as shown
in Figure 14a. Clearly, the Figure exhibits a heavy upper tail. When £ is positive, the
GPD distribution is a fat-tailed one since the support of the density in this case is [0, c0]
[20]. Moreover, the quantile plot shown in Figure 14b confirms that the peaks over the
threshold u = —0.07 approximately lie on the line y = x and hence the GPD well fits the
set of the exceedance returns.
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Figure 14. Diagnostic plot of GPD fitting for the exceedences over a
high threshold of Malaysian gold return. The plot show that the peaks
over the threshold value u = —0.07 is well approximated by the GPD.

Table 5. Descriptive statistics of threshold exceedances of
Malaysian gold returns from 2004 to 2015

Gold n Mean SD  Median Min  Max Range Skew Kurtosis SE
Value | 1900 0.310 0.355 0.219 -0.070 4.654 4.724 2.774 18.498  0.008

5.1. The slice sampler algorithm for the threshold exceedances of Malaysian
gold return. We applied the slice sampler algorithm for the threshold exceedances of
Malaysian gold return by defining the gamma and normal with large variances on the
scale (o) and shape (§) parameters of the GPD model. The typical problem related to the
extreme value model is the lack of the tail information and the GPD has the advantage
in the availability of the extreme observations compare to the GEV. It is therefore more
preferred for the applications which is hard to collect large size of sample and used more
generally relatively, see [6].

Table 6 illustrates the posterior mean, SD, and SE,, values along with the 95% quantile
based credible interval across 5000 iteration series of the slice sampler algorithm. As can
be observed from Table 6, the posterior mean and SD,, values of o and £ are (M, = 0.218,
SD, = 0.007) and (M, = 0.069, SD, = 0.019), respectively. Additionally, Table 6
indicates that the posterior standard error (SE,) for the scale (¢) and shape ¢ parameters
of the threshold exceedances of Malaysian gold return are less than 0.001 which shows
a low level of error. When ¢ > 0, exceedances over the threshold takes the form of
the ordinary Pareto distribution. This particular case is the most relevant for financial
time series analysis since it is a heavy tailed one [20]. Hosking [26] introduces a formula
for calculation of the mean and standard deviation of the peaks over threshold (POT)
observations when £ > 0. In the current study, after replacing the unknown parameters



1711

including o and £ by their posterior means opm and Epum respectively, the mean (MpoT)
and standard deviation (SDpot) of the threshold exceedance returns are calculated as:

OPM
M ~u+—
POT 1= épn

0.218
= —0.07 + 1-0.069
~0.164

OPM 1
1—¢&pMm

SDpor =~ T—2%
0.218

/ 1
~ 1-0.069V 1—2x0.069

~0.272

Therefore, the average of the threshold exceedances of Malaysian gold return is 0.164.
In other words, according to the threshold exceedance model, the benefit to the investor
resulting from an investment in Malaysian gold market is around 0.164%. Additionally,
based on the standard deviation (SDpot), the risk of investment in Malaysian gold
market is approximately 0.272% which is almost twice the size of the return.

The iteration series of the scale o and shape & parameters of the threshold exceedance
model are plotted in Figure 15a. These plots show stationarity in both aspects of mean
and variance. Furthermore, Figure 15b displays the posterior distributions of the scale
and shape parameters.
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Table 6. Results from the slice sampler algorithm for the thresh-
old exceedances of Malaysian gold return by specifying the gamma
and normal with large variances as prior distributions on the scale
(o) and shape (§) parameters of the GPD posterior model with
5000 iterations.

o g
M, | 0218  0.069
SD, | 0.007  0.019
SE, | <0.001 < 0.001
LCI | 0.205  0.033
UCI | 0.232  0.108

6. Conclusion

It is always challenging to justify the form of extreme models and to estimate pa-
rameters due to the inherent sparsity of tail information, see [7]. This research therefore
develops the slice sampler algorithm for the peaks over a threshold (POT) and gener-
alized Pareto distribution (GPD), since this model can minimize the problem of being
wasteful of extreme information for collecting more extreme observations compared to
maxima over blocks as used for the GEV. A simulation study has been used to show the
performance of the slice sampler approach for fitting the POT and GPD posterior models,
and is shown to perform well when compared to the Metropolis-Hastings algorithm. In
fact, the slice sampler algorithm provides similar performance to the Metropolis-Hastings
algorithm, but has an important benefit in that it reveals a high level of stationarity, thus
making posterior estimation more straightforward. The slice sampler was also applied
to threshold exceedances of Malaysia gold returns and was shown to provide posterior
means with low errors for the parameters, which indicate the general applicability of the
algorithm.
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