
Hacettepe Journal of Mathematics and Statistics
Volume 47 (6) (2018), 1730 � 1741

Solving large scale systems of linear equations with
a stabilized Lanczos-type algorithms running on a

cloud computing platform

M. Maharani∗, A. Salhi†, W.K. Mashwani‡ �, Ozgur Yeniay¶, N.Larasati‖ and

Triyani∗∗

Abstract

The Lanczos-type algorithms for Systems of Linear Equations (SLEs)
are e�cient but fragile. A number of ways to resolve this issue have
been suggested. But, the problem is still not fully sorted, in our view.
Here, we suggest a way that takes advantage of the sequence of ap-
proximate solutions that have been computed prior to breakdown by
embedding interpolation/extrapolation to avoid it. The approach, re-
ferred to as Embedded Interpolation-Extrapolation Model in Lanczos-
type Algorithm (EIEMLA), generates new iterates which are at least as
good as the best in the current sequence. This process is repeated after
appending the new iterates to the sequence of approximate solutions
until some convergence tolerance is achieved. To improve EIEMLA's
convergence and stability, a restart version of REIEMLA is also con-
sidered. These algorithms are more robust than other Lanczos-type
algorithms, including those with restarting and switching strategies.
Both algorithms have been implemented to run in parallel on a Cloud
computing platform. Our tests involve SLEs with up to 106 variables
and equations. The results show that breakdown is mitigated and e�-
ciency gains can be achieved through parallelization.

Keywords: Lanczos-type algorithm, breakdown, EIEMLA method, parallel

processing, cloud computing.

Received : 19.09.2017 Accepted : 26.02.2018 Doi : 10.15672/HJMS.2018.561

∗Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia,
Email: maharani@unsoed.ac.id
†Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, U.K.,

Email: as@essex.ac.uk
‡ Department of Mathematics, Kohat University of Science and Technology, Pakistan, Email:

mashwanigr8@gmail.com
�Corresponding Author.
¶Department of Statistics, Hacettepe University Ankara, Turkey, Email:

yeniay@hacettepe.edu.tr
‖Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia,

Email: nklarasati@yahoo.com
∗∗Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia,

Email: trianisr@yahoo.com.au



1731

1. Introduction

The Large scale Systems of Linear Equations (SLEs) occur routinely in a variety of ap-
plications ranging from engineering to �nance and economics. It is therefore, important
to investigate methods which handle such problems. Lanczos method is one of e�ec-
tive iterative methods which deals with high dimension of SLEs, [22, 23]. The original
derivation, however, still used classical algebra. The modern version of Lanczos method,
well-known as Lanczos-type algorithms, were derived through theory of formal orthogo-
nal polynomials and realized via recurrence relationships between them, [3, 5]. Although
Lanczos-types algorithms are e�ective to solve non-symmetric and high scale of SLEs,
however, they are easily to breakdown which makes the algorithms stop before reaching a
good solution. It is therefore, a strategy to get over the breakdown so that Lanczos-types
algorithms maintain their stability to convergent, is importantly needed.

Some approaches to cure breakdown in Lanczos-types algorithms have been developed.
For instance, Brezinski and his team have established a method called Method of Re-
cursive Zoom (MRZ), which allows to jump over the non-existing orthogonal polynomial
[6]. This method is also known as a look ahead strategy. Some variants of MRZ such
as SMRZ, BMRZ, GMRZ, and BSMRZ have also been developed in [7] and [8]. Other
techniques which also deal with this concern, are the called look around strategies, [19]
and in [1]. The recent works, [15, 16], discussed the strategies of restarting and switching
between Lanczos-type algorithms. Restarting which based on qualitative points, includ-
ing a point from the last iterate, a point with the lowest residual norm, and a point with
median value, was investigated in [25]. Here, we introduce a new approach to improve the
resilience and stability of Lanczos-types algorithms for solving SLEs, by capturing some
existing patterns in the sequences of solutions generated by Lanczos-type algorithms.
This new approach is hence called the embedded interpolation and extrapolation model
in Lanczos-type algorithm (EIEMLA).

On the other hand, the solution of large scale SLEs is time consuming, particularly on
single processor machines. Therefore, we also will try to exploit multiple processors and
powerful vector-oriented hardware to tackle this issue. In general, parallel algorithms can
be created by reformulating standard algorithms or by discovering new ones, [20]. The
implementation of parallel iterative methods for solving SLE's in high dimensions and
other applications is well developed, [11, 10, 27, 28, 32, 30]. Here, we rely on a parallel
environment provided in Matlab to implement our algorithms and run them. Moreover,
we will execute the parallel program of EIEMLA on the cloud computing.

This study is organized as follow. Section 1 discusses the back ground review of
Lanczos-type algorithms, Section 2 introduces the derivation of EIEMLA. Sections 3 and
4 explain how to implement and run EIEMLA in a parallel environment and on a Cloud
computing platform, respectively. Section 5 discusses some numerical results, concludes
this work and suggests interesting and related avenues for further research.

2. Lanczos-type algorithms : review

The Lanczos-type algorithms are much e�ective iterative methods for solving di�erent
non symmetric and high dimension of systems of linear equations (SLEs). However, they
are fragile when involving high number of iterations. Here, we review the derivation of
Lanczos-type methods through Krylov subspace method, [29]. Consider the systems of
linear equations

(2.1) Ax = b,

where A ∈ Rn×n and x,b ∈ Rn. Krylov subspace method �nds the approximate solu-
tions by de�ning (1) xk −x0 ∈ Kk(A, r0) which the residual vector, (2) rk = b−Axk, is



1732

orthogonal to Krylov subspace Kk(A
T ,y), where y is an arbitrary non-zero vector. As

a result of (1) and (2), we have :

(2.2) xk − x0 = −α1r0 − α1Ar0 − · · · − αkA
k−1r0.

and

(2.3) rk = r0 + α1Ar0 + α2A
2r0 + · · ·+ αkA

kr0

If Pk(A) = 1 + α1A+ · · ·+ αkA
k, of degree k at most, then rk can be expressed as :

(2.4) rk = Pk(A)r0.

The Pk is hence called Orthogonal polynomial which is normalized by Pk(0) = 1.
To simplify the computation of coe�cients of Pk, we de�ne a linear function c, which
satisfy two conditions, [4],

(2.5) ci = c(ti), i = 0, 1, . . .,

and

(2.6) c(tiPk(t)) = 0, i = 0, 1, . . . , k − 1.

By this de�nition, we can set ci = 〈y, Air0〉 and thus the coe�cients of Pk(A) can
be computed recursively. Thus, the approximate solutions are determined by formula
xk = b−Ark, where rk = Pk(A)r0, without inverting the matrix A. Some Lanczos-type
algorithms are then implemented based on some formula derived by those approaches.

Those derivations allow us to explore more and more formula which Lanczos-type al-
gorithms based. Some of them have been discussed in [2],[3], and [9], which are expressed
in a table containing formulas Ai and Bj . The new Lanczos-types implementation dis-
covered by Farooq, [14], which involve the polynomials with the di�erence in degrees
between left and right sides is at most two or three.

3. Embedding interpolation and extrapolation in Lanczos-type al-
gorithms (EIEMLA)

Embedding an interpolation model within a Lanczos-type algorithm is a novel strategy
which produces sequences of solutions which are better than those generated by the
original Lanczos algorithm.

Suppose we run a Lanczos-type algorithm , [2, 3], and stop after k iterations and
before breakdown occurs. Let k ≤ n, where n is the dimension of the SLE in hand. Let
S = {x1,x2, . . . ,xk} be the set of iterates generated so far. Let xm, be the iterate with
the lowest residual norm, ‖rm‖, where m ≤ k. Assume that some good iterates, namely
those with small residual norms, are concentrated in interval [m− j, k], for some integer
j. Set

(3.1) V1 = {xm−j ,xm−j+1, . . . ,xk} ,

which is a subset of S. Write the components of each iterate in S as

v1 =
{
xm−j

(1), xm−j+1
(1), . . . , xk

(1)
}

v2 =
{
xm−j

(2), xm−j+1
(2), . . . , xk

(2)
}

(3.2)

...

vn =
{
xm−j

(n), xm−j+1
(n1), . . . , xk

(n)
}



1733

namely, each vi contains all of the i
th entries of iterates xl, for l = m−j,m−j+1, · · · , k,

and for i = 1, 2, · · · , n. It is now possible to �nd a function which interpolates each set
of vi's using the PCHIP interpolant package, [18, 17]. We assume that each sequence of

xm−j
(i), xm−j+1

(i), . . . , xk
(i) is monotonic and convergent for some j and i = 1, 2, . . . , n,

to its limit, [31], i.e.

(3.3) lim
k→∞

xk
(i) = x∗

(i).

Let t be elements in R. Set

w1 =
{(
tm−j , xm−j

(1)
)
,
(
tm−j+1, xm−j+1

(1)
)
, . . . ,

(
tk, xk

(1)
)}

w2 =
{(
tm−j , xm−j

(2)
)
,
(
tm−j+1, xm−j+1

(2)
)
, . . . ,

(
tk, xk

(2)
)}

(3.4)

...

wn =
{(
tm−j , xm−j

(n)
)
,
(
tm−j+1, xm−j+1

(n)
)
, . . . ,

(
tk, xk

(n)
)}

.

Using PCHIP, [17, 18] to interpolate each wi, for i = 1, 2, . . . , n, yields functions fi.
As it is a regular interpolation process in R, then for some t = m − j,m − j + 1, . . . , k,
fi satis�es

(3.5) fi(t) ≈ x(i)t for i = 1, 2, . . . , n.

For instance,

fi(m− j) ≈ x(i)m−j

fi(m− j + 1) ≈ x(i)m−j+1(3.6)

...

fi(k) ≈ x(i)k for i = 1, 2, . . . , n.

Since we use an appropriate interpolant to interpolate the data, i.e. the one that
preserves the monotonicity of the data, then the extrapolation based on this interpolation
process enables us to get the next point outside of the range. It means that if we calculate
fi(t
∗) with t∗ ∈ [k + 1, s] ⊂ R, where s ≥ k + 1 , then we obtain

(3.7) fi(t
∗) ≈ x(i)r for i = 1, 2, . . . , n,

where each x
(i)
r has a similar property as x

(i)
t in (3.5). In other words, if the sequence

of x
(i)
t is monotonically increasing/decreasing, so is x

(i)
r . Thus arranging vector xr, with

xr
(i) being the ith entries of the vector, yields an approximate solution of the system.
Since PCHIP captures the persistent pattern of the data, this process also enables us

to generate a new sequence of solutions beyond the last one produced by the Lanczos
algorithm. Of course, we know that extrapolation will not produce many good points.
Consequently, we choose the integer s such that the residual norms of the iterates gen-
erated by this process, xk+1,xk+2, . . . ,xs are small enough. It is assumed that these
iterates replace the "missing" iterates not generated by the Lanczos-type algorithm due
to breakdown. This is basically what EIEMLA does. However, s may be very close to k,
in which case the Xs may not have a residual norm small enough to achieve convergence.
This, therefore, calls for a more robust approach which is that of restarting.



1734

3.1. Restarting EIEMLA. Restarting from a point generated by EIEMLA has been
proposed for the �rst time in [26]. This is an implementation of the restarting strategy
from some speci�c points advocated in [25]. The idea, checked in [25], is that re-starting
algorithms of the Lanczos-type with better points results in better approximate solutions.
Since EIEMLA generates approximate solutions which are always better than the iterates
generated by the Lanczos-type algorithm itself up to then, these points are, therefore,
good restarting points. This idea is illustrated in Figure 1, while the restarting approach
is described as Algorithm 1, [26].

Figure 1. The process of REIEMLA on SLE's

Algorithm 1 REIEMLA

1: Initialization. Choose x0 and y. Set r0 = b−Ax0, y0 = y, and z0 = r0.
2: Fix the number of iterations to, say k, and the tolerance, ε, to 1E − 13.
3: Run EIEMLA for k iterations. Obtain a sequence of iterates {xk+1,xk+2, . . . ,xs},

where s ≥> k + 1, and calculate the residual norms of these iterates.
4: Compute the minimum of the residual norms, call it ‖rmodel‖.
5: if ‖rmodel‖ ≤ ε then
6: The solution is obtained, and it is the iterate which is associated with this residual

norm, call it xmodel.
7: Stop.
8: else

9: Initialize the algorithm with

x0 = xmodel

y = b−Ax0

10: Go to 3.
11: end if

12: Take xmodel as the approximate solution.
13: Stop.

4. Running EIEMLA and REIEMLA in parallel Matlab

We are concerned with the stability of the new approach when solving large scale
problems (up to 1000000 variables). To run EIEMLA using the cloud computing service,
the code should �rst be parallelized. Often parallelisation is done by hand by the user
as in [30]. Here, the pain of parallelisation is taken away by the parallel environment. In
Matlab, it is achieved using the parfor -loop function. This is illustrated in Fig. 2.



1735

Figure 2. The embedded process in Lanczos algorithms

First, the system Ax = b is processed by Lanczos algorithm to generate a sequence
{x1,x2, · · · ,xk}, of approximate solutions. The sequence is then used as an input to the
embedded process. In the client box, the re-arranged sequence is sent to the workers where
the interpolation and extrapolation of the sequence by using PCHIP, [18], is carried out.
There are a number of data sets that need to be interpolated in this stage. As said earlier,
the order of computations is not preset. The amount of processing carried out on a given
worker depends on the speed of the processor and the load balancing implemented by the
master processor. After the whole embedded process is �nished, the new approximate
solution and the corresponding residual norm are produced and then sent back to the
client as the �nal output.

4.1. Numerical results. This section is an account of the computational experiments
carried out and the numerical results obtained with the implementation of EIEMLA in
a parallel environment. The comparison of the computation times needed when using
for -loop and parfor -loop is presented. We also present results obtained by restarting
EIEMLA (REIEMLA) in a parallel environment. We particularly focus on comparing
the performance of REIEMLA, in terms of CPU time, when run on a parallel machine
and on a sequential one. The test problems are solved under MATLAB 2012b on Unix0
system provided by the University of Essex which includes hardware that consists of 4 x
AMD Opteron(tm) processors with 2.20 GHz speed and 48 cores, 128 GB RAM, and a
1000 Mbps ethernet interface. The Matlab PCT license is available in this system with
a maximum of 8 local workers. For running the sequential algorithm, we used Matlab
2013a on a machine with 12 GB RAM.

Table 1 presents the computation time of EIEMLA in both parallel and serial envi-
ronments. Several problems of dimensions ranging from 10000 to 1000000 were solved.
As we can see here, the table consists of 5 columns each of which presents respectively
the dimensions of the problems, the residual norms, the computation time of EIEM Or-
thodir with for -loops and parfor -loops, and the speed up achieved. The speed up is
calculated by taking the ratio of EIEM Orthodir with for -loops CPU times and those of
parfor -loops.

In general, the use of parfor -loops is able to reduce the execution time signi�cantly.
To solve SLE's with dimensions 10000, for instance, EIEMLA with parfor -loops runs four



1736

Figure 3. Comparison of for -loop and parfor -loop execution speeds

times faster than with for -loops. In addition, for dimensions 20000 and 30000, the speed
up is 5 fold. For dimensions 40000 to 1000000, the parallel program is 5 times, sometimes
6 times, faster than the sequential one. These comparisons are clearly seen in Fig. 3.

Table 1. Comparison of EIEMLA in parallel and sequential environments.

Dim Res.Norm Processing Time (sec.) Speed Up

n ‖rmodel‖ Sequential Parallel x(times)

10000 4.0804 5.2229 1.2959 4.03

20000 2.0776 10.5466 2.2446 4.69

30000 14.4011 15.8540 3.2166 4.92
40000 6.7584 20.8902 3.9129 5.34

50000 3.3782 26.2809 4.9604 5.29
60000 12.3680 31.5569 5.8258 5.42

70000 5.1140 36.7257 6.8410 5.37

80000 1.3536 41.9938 7.8136 5.37
90000 5.8349 47.4259 8.8534 5.36

100000 1.0606 52.5293 9.7401 5.39

200000 5.0090 105.7368 19.2961 5.48
300000 30.4925 157.4330 28.4763 5.53

400000 30.8407 210.8508 38.6017 5.46

500000 44.7364 262.4477 49.2533 5.33
600000 71.9335 316.1252 56.3174 5.61

700000 62.2338 368.3247 65.9906 5.58
800000 16.7394 422.8909 74.7826 5.65

900000 34.0717 476.6024 83.9225 5.67

1000000 18.1782 549.0482 101.2656 5.42

4.2. Running REIEMLA on parallel platforms. To run REIEMLA in parallel, the
parfor -loop is used as a means to parallelize our codes. Comparisons are on computation
times of the algorithms with parfor -loop and without it, i.e. by just sticking with for -
loops of the sequential code. Here again, problems are ranging from 100000 to 1000000
dimensions.



1737

Table 2. Comparison of REIEMLA in parallel and in sequential en-
vironments

Dim Res.Norms Processing Time (sec.) Speed up

n ‖rmodel‖ Sequential Parallel x (times)

100000 6.7572E − 14 3.9749E + 02 98.3595 4.04
200000 7.3917E − 14 9.0306E + 02 2.3294E + 02 3.88

300000 5.7715E − 14 1.0328E + 03 3.6675E + 02 2.82

400000 6.2753E − 14 3.3668E + 04 4.9720E + 02 6.77
500000 7.5120E − 14 3.5596E + 03 5.5249E + 02 6.44

600000 6.9701E − 14 2.8829E + 03 7.2046E + 02 4.00

700000 9.6797E − 14 4.0071E + 03 8.8016E + 02 4.55
800000 9.0274E − 14 4.5529E + 03 9.8848E + 02 4.61

900000 7.8603E − 14 5.5275E + 03 1.1893E + 03 4.65

1000000 7.8631E − 14 6.1636E + 03 1.2373E + 03 4.98

It can be seen in Table 2, that in general, REIEMLA runs in parallel signi�cantly
faster than sequentially. For instance, speed up is 4.04 for dimensions 100000, meaning
REIEMLA solved the problems in a parallel environment 4 times faster than restarting
in a sequential environment. Also, when solving 400000 and 500000 variables, REIEMLA
with parfor -loops was about 7 times and 6 times faster respectively than the sequential
code.

5. Running EIEMLA and REIEMLA on a cloud computing plat-
form

Cloud computing is a new way of providing computing power on demand. It is poten-
tially the future of computing since the current ownership of computers means that a lot
of the computing power is really wasted while we pay a lot to acquire it and to maintain
it, [24].

There are several cloud providers, such as Amazon EC2, Google Cloud, and Microsoft
Azure, which generally provide three services, including infrastructure as a service (IIaS),
the platform as a service (PaS), and software as a service (SaS), [10, 21]. Furthermore,
there are di�erent types of cloud platforms that we can subscribe to: (1) public cloud,
(2) private cloud, (3) community cloud, and (4) hybrid cloud, [21, 24].

5.1. An exemplar cloud computing provider: The domino data lab. Domino
Data Lab, founded by Nick Elprin in 2014, is a cloud service that allows us to run R,
Python, and Matlab codes, [12]. Its service is a platform-as-a-service (PaaS) for data
analysis, to provide equipments for a larger group of users which has typically been
inaccessible to people without engineering abilities. Domino runs R code (or Python,
Julia, Matlab, and more) on the cloud without any set-up or con�guration. It also
handles Amazon Machine Images (AMI) and package management, job distribution and
secure data transfer. For other advantages of Domino can be read in [13].

5.2. EIEMLA on domino cloud platform. Domino has several options of hardware,
from 1 GB RAM and 1 core only, to the XX large which contains 60 GB RAM and 32
cores. If the users need more RAM than those available the Domino team will set up a
special hardware, the so-called "Custome hardware". In this study, we used the X-large
and the XX-large hardware which respectively contain 16 and 32 cores with 30 and 60
GB RAM. We compared with Unix2 available at the university of Essex super computer
with 48 cores and 256 GB shared RAM.



1738

Table 3. Performance of EIEMLA on the Cloud when solving SLEs
with δ = 0.2

Dim Computational Time (seconds)

n Domino Cloud (16 cores) Domino Cloud (32 cores)

100000 61.234 64.613
200000 1.2294E + 02 1.3160E + 02
300000 1.8518E + 02 1.9988E + 02

400000 1.9288E + 02 2.0844E + 02
500000 3.0886E + 02 3.1468E + 02

600000 3.6125E + 02 4.1542E + 02

700000 4.4078E + 02 4.4470E + 02
800000 4.9064E + 02 4.9886E + 02

900000 5.4645E + 02 4.8818E + 02

1000000 5.9574E + 02 5.6232E + 02

Table 4. CPU times of EIEMLA on the local platform and on the
Domino Cloud

Dim Local Platform (8 workers) Speed up 1* Speed up 2*

n Computational Time (seconds) x(times) x(times)

100000 9.7401 6.29 6.63
200000 19.2961 6.37 6.82
300000 28.4763 6.5 7.02
400000 38.6017 4.9 5.39
500000 49.2533 6.27 6.39
600000 56.3174 6.41 7.38
700000 65.9906 6.68 6.74
800000 74.7826 6.56 6.67
900000 83.9225 6.51 5.82
1000000 101.2656 5.88 5.55

5.2.1. EIEMLA on domino cloud : Numerical results. The results are recorded in Tables
3 and 4. Note, Speed up 1* is the ratio of the Domino Cloud with 16 cores CPU time and
the CPU time of the local parallel machine; Speed 2* is the ratio of Domino Cloud with
32 cores CPU time and that of this same local parallel machine. This platform is the
Unix2 machine of the University of Essex which supports Matlab. The way we access it
is similar to the way we access the Domino cloud platform or any cloud providers for that
matter. Here we present experimental results comparing performance of EIEM Orthodir
on this local machine and on the Domino cloud computing.

As can be seen in Table 3, in most cases, the processing time of 32 cores on Domino
cloud is slower than 16 cores. This appears, for instance, on dimensions ranging from
100000, to 800000. For problems of dimensions 900000 and 1000000, however, the 32 cores
is slightly faster than the 16 cores. This means that more processors do not necessarily
translate into performance because of many factors including communication costs.

Interestingly, the local platform is more e�cient than the Domino Cloud, with both
16 cores and 32 cores, as can be seen in Table 4. The processing time in the local
machine is consistently less than that of the Domino Cloud. For instance, when solving
100000 dimensional problems, the execution time of the EIEM Orthodir on the university
machine is 6.29x faster than the processing time on the Domino cloud with 16 cores. This
factor is even bigger when we used 32 cores on Domino cloud; it is 6.6x faster. Speed up 1
and speed up 2, however, fell to 4.9 and 5.39 respectively, when solving 400000 problems.
The rest of the results show the same trend.



1739

Table 5. Performance of Parallel REIEMLA on SLEs with δ = 0.2

Dim Computational Time (sec.) Speed1* Speed2*

n Unix 0(8 nodes) Cloud(16 cores) Cloud(32 cores) x(times) x(times)

50000 49.9953 2.48E + 02 2.79E + 02 4.96 5.58
60000 66.3108 2.99E + 02 3.37E + 02 4.51 5.08
70000 75.5876 3.17E + 02 3.56E + 02 4.19 4.71
80000 79.946 4.02E + 02 4.46E + 02 5.03 5.58
90000 100.6326 4.75E + 02 4.65E + 02 4.72 4.62
100000 98.3595 4.67E + 02 5.11E + 02 4.75 5.19
200000 2.3294E + 02 1.052E + 03 9.97E + 02 4.52 4.28
300000 3.6675E + 02 1.544E + 03 1.650E + 03 4.21 4.49
400000 4.9720E + 02 2.325E + 03 2.409E + 03 4.68 4.85
500000 5.5249E + 02 2.866E + 03 2.650E + 03 5.19 4.79

5.3. REIEMLA on the domino cloud: Numerical results. Looking at Table 5,
overall, the trend is similar to that of the previous section; the execution time on the
University Cloud is consistently less than that on Domino Cloud. One thing to highlight
is that, the 32 cores on Domino Cloud seems to be slower than the 16 cores in some
cases, while in some others it is faster. For instance, for dimensions ranging from 50000
to 80000, 100000, 300000, and 400000, the 32 cores is slower than the 16 cores. However,
for dimensions 90000, 200000, and 500000, the 32 cores is faster than the 16 cores. So far,
we do not have enough evidence to explain why this is the case, although communications
overheads, and sharing of the platform with other users may be the reason. We also
suspect that our code is accessing some shared resource (e.g., a global matrix). So, it is
possible that the underlying operating system is doing some locking to prevent multiple
threads from accessing that resource at the same time. If that is really happening, then
more threads could slow things down, [12].

6. Conclusion

We have introduced a novel approach to addressing the inherent fragility of Lanczos-
type algorithms by way of interpolating and extrapolating sequences of iterates generated
by the Lanczos-type algorithm used prior to it breaking down. This approach, namely
EIEMLA, although robust, does not achieve the expected convergence. A restarting strat-
egy is thus implemented into it leading to REIEMLA which is very robust and e�cient.
Because of the ubiquitous and common nature of SLEs, we set out to solve problems of
large scale to test our approach. Moreover, given now the advent of cloud computing,
we decided to implement and run both EIEMLA and REIEMLA on a standard parallel
processing platform as provided by the University of Essex where this work has been
carried out and also on a commercial cloud computing platform, namely Domino Data
Lab. Very good computational results have been obtained showing that the approach
does indeed address the issue of breakdown in Lanczos-type algorithms and does it in an
e�cient way. Moreover, it can be run in parallel on the most up-to-date platforms quite
straightforwardly.

There is a slight problem, however. At the moment we have to choose k, the length of
the sequence of iterates generated by the algorithm used in an arbitrary fashion. This is
because we really do not know when the Lanczos-type algorithm is going to break down.
If we wait until the algorithm breaks down then we will have to pick up the pieces, so
to speak, reset everything and try again which can be costly. If we stop the process too
early, then we would have wasted potentially a number of useful iterations. It is therefore
worthwhile to investigate preemptive restarting which can deliver the appropriate values
of k. We are currently working on this. Our �nding will be included in forthcoming paper.



1740

Acknowledgments This project is supported by BATCH I Research Grant University
of Jenderal Soedirman, Indonesia, 2017. Thanks to University of Essex for providing us
a massive computing systems.

References

[1] Ayachour, E., Avoiding Look-Ahead in Lanczos Method and Pade Approximation, Applica-
tiones Mathematica, 1999.

[2] Baheux, C. New implementations of Lanczos method, Journal of Computational and Applied
Mathematics 57 (1-2), 3-15, 1995.

[3] Brezinski, C., Sadok, H., Lanczos-type algorithms for solving systems of linear equations,
Applied Numerical Mathematics 11 (6), 443-473, 1993.

[4] Brezinski, C. and Zaglia, R. A New Presentation of Orthogonal Polynomials with Applica-

tions to Their Computation, Numerical Algorithms 1 (2), 207-221, 1991.
[5] Brezinski, C. and Zaglia, R. Breakdowns in the Computation of Orthogonal Polynomials,

Springer, Dordrech 296, 49-59, 1994.
[6] Brezinski, C. and Zaglia, R. and Sadok, H., Avoiding Breakdown and Near-Breakdown in

Lanczos-type Algorithms, Numerical Algorithms 1 (2), 261-284, 1991.
[7] Brezinski, C. and Zaglia, R. and Sadok, H., A Breakdown-Free Lanczos-type Algorithm for

Solving Linear Systems, Numerical Mathematics 63 (1), 29-38, 1992.
[8] Brezinski, C. and Zaglia, R. and Sadok, H., New Look - Ahead Lanczos - type Algorithms

for Linear Systems, Numerical Mathematics 83, 53-85, 2000.
[9] Brezinski, C. and Zaglia, R. and Sadok, H., The Matrix and Polynomial Approaches to

Lanczos-type Algorithms, Journal Of Computational and Applied Mathematics 123 (1-2),
241-260, 2000.

[10] Buyya, R., Broberg, J., Goscinski, A., Cloud Computing Principles and Paradigms, John
Wiley and Sons, (1-2), 241-260, 2011.

[11] Du�, L.S., Van der Vorst, H. A., Developments and Trends in the Parallel Solution of Linear

Systems, Parallel Computing 25, 1931-1970, 1999.
[12] Elprin, Nick Private Discussion, 11 August 2014.
[13] Elprin, Nick Domino: A Platform-as-a-Service for Industrialized Data Analysi,

http:/www.help.dominodatalab.com/keyConcepts, 2014.
[14] Farooq, M., Salhi, A., TNew Recurrence Relationships between Orthogonal Polynomials

which Lead to New Lanczos-type Algorithms, Journal of Prime Research in Mathematics 8,
61-75, 20012.

[15] Farooq, M., Salhi, A., A Preemptive Restarting Approach to Beating Inherent Instability,
Iranian Journal of Science and Technology Transaction a Science 37, (Special Issue) 349-358,
2013.

[16] Farooq, M., Salhi, A., A Switching Approach to Avoid Breakdown in Lanczos-type Algo-

rithms, Applied Mathematics and Information Sciences 8, (5) 2161-2169, 2014.
[17] Fritsch, F. N., Butland, J., A Method for Constructing Local Monotone Piecewise Cubic

Interpolants, SIAM J. Sci. Stat. Comput. 5, (2) 300-304, 1984.
[18] Fritsch, F. N., Carlson, R.E., Monotone Piecewise Cubic Interpolation, SIAM Journal Nu-

merical Analysis 17, (2) 239-248, 1980.
[19] Grave-Morris, P., A Look-Around Lanczos Algorithm for Solving a System of Linear Equa-

tions, Numerical Algorithm 15, 247-274, 1997.
[20] Heller, D., A Survey of Parallel Algorithms in Numerical Linear Algebra, Techni-

cal report, Department of Computer Science, Carnegie Mellon University 1-1-1976,
http://repository.cmu.edu/compsci, 1976.

[21] Huth, A., Cebula The Basics of Cloud Computing, Technical re-
port, Produced for US-CERT, Carnegie Mellon University, www.us-
cert.gov/sites/default/�les/.../CloudComputingHuthCebula.pdf, 2011.

[22] Lanczos, C., An Iteration Method for The Solution of the Eigenvalue Problem of Linear

Di�erential and Integral Operator, J.Res.Natl.Bur.Stand 45, (4), 255-282, 1958.
[23] Lanczos, C., Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl

.Bur. Stand 49, (1), 33-53, 1952.



1741

[24] Landis, C., Blacharski, D., Cloud Computing Made Easy, Virtual Global Inc., 2013.
[25] Maharani, M., Salhi, A., Restarting from Speci�c Points to Cure Breakdown in Lanczos-type

Algorithms, Journal of Mathematical and Fundamental Sciences 2, (47), 167-184, 2015.
[26] Maharani, M., Salhi, A., Khan, W., Enhanced the Stability of Lanczos-type Algorithms

by Restarting The Point Generated by EIEMLA for the Solution of Systems of Linear

Equations, Sci.Int.(Lahore) 28, (4), 3325-3335, 2016.
[27] Rajalakshami, K., Parallel Algorithm for Solving Large Systems of Simultaneous Linear

Equations, IJCSNS 9, (7), 276-279, 2009.
[28] Rashid, M., Crowcroft, J., Parallel Iterative Solution Method for Large Sparse Linear Equa-

tion Systemss, Tech. Rep. 650, Technical report, University of Cambridge, Computer Lab-
oratory, October 2005.

[29] Saad, Y., Iterative Methods for Sparse Linear Systems, Philadelphia: Society for Industrial
and Applied Mathematics, 2003.

[30] Salhi, A., Proll, L. G., Rios Insua, D., Parallelising an Optimisation-based Framework

for Sensitivity Analysis in MultiCriteria Decision Making, Tech. Rep. 98-15, Mathematics
Department, University of Essex, UK, 1998.

[31] Sidi, A., William Ford, F., David Smith, A., Acceleration of Convergence of Vector Se-

quences, SIAM Journal on Numerical Analysis 23, (1), 178�196, 1986.
[32] Torp, A., Sparse Linear Algebra on a GPU with Applications to Flow in Porous Media,

Ph.D. thesis, Department of Physics and Mathematics, Norwegian University of Science
and Technology, 2009.


