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Abstract

In this paper, the method of upper and lower solutions is employed to obtain uniqueness of solutions for
a boundary value problem at resonance. The shift method is applied to show the existence of solutions.
A monotone iteration scheme is developed and sequences of approximate solutions are constructed that
converge monotonically to the unique solution of the boundary value problem at resonance. Two examples
are provided in which explicit upper and lower solutions are exhibited.
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1. Introduction

The method of upper and lower solutions and monotone methods have been useful in the study of
boundary value problems for nonlinear ordinary differential equations. For many problems, the associated
Green’s function has fixed sign that agrees with a maximum principle or an anti-maximum principle [7]. Then
monotonicity of iterates can occur naturally by assuming the nonlinearity is monotone with respect to the
unknown function or the monotonicity of iterates can be forced by various methods. We refer the reader to
[7, 8, 9, 10] for discussions and applications of maximum or anti-maximum principles or to [4, 11, 12, 14, 25]
for discussion and applications of the so-called isotone operators.
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The method of quasilinearization, introduced by Bellman [5, 6] in the 1960s, offers a numerical method
to approximate solutions of nonlinear problems with sequences of solutions of linear problems. Under suit-
able hypotheses, the sequences of approximate solutions converge monotonically and quadratically. In many
applications, the iterates converge to a unique solution of the boundary value problem. The quasilineariza-
tion method has been particularly useful in the study of boundary value problems for ordinary differential
equations and we cite a number of those applications here [1, 3, 13, 15, 19, 20, 21, 22, 23, 26]. In these works,
the monotonicity is obtained rather delicately and the uniqueness of solutions plays a key role in obtaining
the monotonicity.

To obtain the monotonicity of the iterates in, for example, [1, 3, 13, 15, 19, 23], a standard hypothesis is
that the nonlinear term is increasing as a function of the unknown function. This hypothesis is used only to
show the uniqueness of solutions. In this work, we shall assume the standard hypothesis and we shall assume
in addition that the nonlinear term is increasing as a function of the derivative of the unknown function.
The new hypothesis is only employed in the analysis at a boundary point. It is of interest to note that the
new hypothesis is used to show the uniqueness of solutions and to show the existence of solutions.

Recently [2], the method of quasilinearization was applied to a two-point boundary value problem for an
ordinary differential equation at resonance. In this article we shall consider a new two-point boundary value
problem at resonance and we shall construct the monotone iteration scheme associated with the method
quasilinearization. One key contribution of this work is that the nonlinear term depends on the unknown
function and the derivative of the unknown function. In [2], a shift argument [17] is employed to obtain
existence of solution. The shift that is employed depends on the unknown function. In this work, we shall
apply the shift argument with a shift that depends on the derivative of the unknown function. In doing
so, we shall successfully construct the monotone method; however, we currently cannot verify quadratic
convergence. We shall leave for future work the application of the shift argument employed in [2] with the
intention to obtain quadratic convergence.

The paper is organized as follows. In Section 2 we shall first employ the method of upper and lower
solutions and under suitable hypotheses obtain the uniqueness of solutions of a two-point boundary value
problem at resonance for a second order ordinary differential equation. In Section 3, we shall apply the shift
argument and obtain the existence of that unique solution. In Section 4, we shall construct the monotone
method. Sections 2, 3 and 4 apply to a problem where the nonlinear term depends on the unknown function
and the derivative of the unknown function. In Section 5, we shall show how the methods of Sections 2, 3
and 4 apply to a problem where the nonlinear term only depends on the unknown function. We close in
Section 6 with two examples in which upper and lower solutions are explicitly exhibited.

The application of the method of quasilinearization to boundary value problems at resonance is not new;
see [27, 28]. The motivation and development here is different than that in [27] or [28], since uniqueness of
solutions is a key feature in this work and multiplicity of solutions is key in [27] or [28].

2. Uniqueness of solutions

Assume f : [0, 1]× R2 → R is continuous. We shall consider the boundary value problem

y′′(t) = f(t, y(t), y′(t)), 0 ≤ t ≤ 1, (2.1)

y(0) = 0, y′(0) = y′(1). (2.2)

The boundary value problem (2.1), (2.2) is at resonance since the linear functions, y = ct, c ∈ R, are solutions
of the homogeneous problem y′′ = 0 and satisfy the homogeneous boundary conditions (2.2).

With the notation f(t, y1, y2), we begin with the assumption that f is increasing in y1 for each (t, y2) ∈
[0, 1]×R and f is increasing in y2 for each (t, y1) ∈ [0, 1]×R to obtain results for the uniqueness of solutions
of the boundary value problem (2.1), (2.2).

Theorem 2.1. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous and
∂
∂y2

f = fy2 : [0, 1]×R2 → R is continuous. Assume fy1 > 0 on [0, 1]×R2 and assume fy2 > 0 on [0, 1]×R2.
Then solutions of the boundary value problem (2.1), (2.2) are unique, if they exist.
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Proof. Assume for the sake of contradiction that y(t) and z(t) denote two distinct solutions of the boundary
value problem (2.1), (2.2). Assume without loss of generality that y−z has a positive maximum at t0 ∈ [0, 1].
(If this is not the case, then z − y has a positive maximum at some t0 ∈ [0, 1].)

First, assume, t0 ∈ (0, 1). Then (y − z)′′(t0) ≤ 0. However, y and z each satisfy (2.1), and so,

(y − z)′′(t0) = f(t0, y(t0), y
′(t0))− f(t0, z(t0), z′(t0)) > 0 (2.3)

since y′(t0) = z′(t0) and fy1 is positive on [0, 1] × R2. This is a contradiction, and we shall refer to this
contradiction as the usual contradiction. Thus, y − z does not have a positive maximum at t0 ∈ (0, 1).

Second, assume t0 = 0 and recall the boundary condition y(0) = z(0) = 0. Thus, y − z does not have a
positive maximum at t0 = 0.

Third, assume t0 = 1. Then (y − z)′(1) ≥ 0.
If (y−z)′(1) = 0, then y′(0) = z′(0). Then y and z both satisfy the initial value problem (2.1) with initial

conditions
y(0) = 0, y′(0) = z′(0),

and so, y − z does not have a positive maximum at t0 = 1 by the uniqueness of solutions of initial value
problems.

Finally assume (y−z)′(1) > 0. It is in this case that the new hypothesis fy2 > 0 on [0, 1]×R is employed.
Note that (y − z)′(0) = (y − z)′(1) > 0 and we claim that (y − z)′ does not change sign in (0, 1). Assume
for the sake of contradiction that (y − z)′ does change sign and let c ∈ (0, 1) such that (y − z)′(c) < 0. On
the interval, [0, c], y − z has a local minimum at 0 and a local minimum at c. Thus, y − z has an absolute
maximum (on the interval [0, c]) at τ ∈ (0, c). Since (y − z)(0) = 0 it follows that (y − z)(τ) > 0. Then, as
in the case t0 ∈ (0, 1), we obtain (y − z)′′(τ) ≤ 0 and (y − z)′′(τ) > 0 producing the usual contradiction.

So the claim that (y − z)′(t) does not change sign in (0, 1) is true and (y − z)′(t) ≥ 0 on [0, 1]. This
implies that (y − z)(t) is increasing on [0, 1] and since y(0) = z(0) = 0 and (y − z)′(0) > 0, it follows that
(y − z)(t) > 0 on (0, 1]. For t ∈ (0, 1] consider

(y − z)′′(t) = f(t, y(t), y′(t))− f(t, z(t), z′(t)).

Since y(t) > z(t) and y′(t) ≥ z′(t), the hypotheses fy1 > 0 on [0, 1] × R and fy2 > 0 on [0, 1] × R imply
(y − z)′′(t) > 0 for t ∈ (0, 1]. In particular, (y − z)′ is a strictly increasing function in t and (y − z)′(0) <
(y − z)′(1) which contradicts the boundary condition (y − z)′(0) = (y − z)′(1). Thus, y − z does not have a
positive maximum at t0 = 1.

We conclude that y(t) ≤ z(t) for 0 ≤ t ≤ 1. A completely analogous argument gives that z(t) ≤ y(t) for
0 ≤ t ≤ 1. Thus, solutions of (2.1), (2.2) are unique, if they exist.

Definition 2.2. We say α ∈ C2[0, 1] is a lower solution of the boundary value problem (2.1), (2.2) if α(0) = 0,
α′(0) = α′(1) and

α′′(t) ≥ f(t, α(t), α′(t)), 0 ≤ t ≤ 1.

We say β ∈ C2[0, 1] is an upper solution of the boundary value problem (2.1), (2.2) if β(0) = 0, β′(0) = β′(1)
and

β′′(t) ≤ f(t, β(t), β′(1)), 0 ≤ t ≤ 1.

Theorem 2.3. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous and
∂
∂y2

f = fy2 : [0, 1]×R2 → R is continuous. Assume fy1 > 0 on [0, 1]×R2 and assume fy2 > 0 on [0, 1]×R2.
Assume α is a lower solution of the boundary value problem (2.1), (2.2) and assume β is an upper solution
of the boundary value problem (2.1), (2.2). Then

α(t) ≤ β(t), 0 ≤ t ≤ 1.
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Proof. With the exception of the case t0 = 1, (α − β)′(1) = 0, the proof of this theorem is simply obtained
by replacing y with α, z with β and

(y − z)′′(t) = f(t, y(t), y′(t))− f(t, z(t), z′(t)),

with
(α− β)′′(t) ≥ f(t0, α(t), α′(t))− f(t0, β(t), β′(t))

in the proof of Theorem 2.1. We produce the details for the case t0 = 1, (α− β)′(1) = 0 here.
Assume α − β has a positive maximum at t0 = 1 and assume (α − β)′(1) = 0. Then (α − β)′′(1) ≤ 0.

However, since α and β are lower and upper solutions, respectively, of (2.1), (2.2), and fy1 > 0,

(α− β)′′(1) ≥ f(1, α(1), α′(1))− f(1, β(1), β′(1)) > 0,

producing the usual contradiction.

Remark 2.4. We point out here that Theorem 2.1 follows as an immediate corollary of Theorem 2.3 since
a solution of boundary value problem (2.1), (2.2) is both an upper solution of the boundary value problem
(2.1), (2.2) and a lower solution of the boundary value problem (2.1), (2.2).

Remark 2.5. The argument for the case t0 = 1, (α − β)′(1) = 0, in the proof of Theorem 2.3 can be used
for the case t0 = 1, (y − z)′(1) = 0, in the proof of Theorem 2.1.

3. Existence of solutions

To obtain existence of solutions, we shall apply the shift argument [17]. Assume λ > 0 and consider the
shifted equation

y′′(t)− λy′(t) = g(t, y(t), y′(t)) = f(t, y(t), y′(t))− λy′(t), 0 ≤ t ≤ 1. (3.1)

The boundary value problem, (3.1), (2.2) is not at resonance for any λ > 0 since Theorem 2.1 (modified
with the hypothesis fy1 ≥ 0 on [0, 1]× R) applies to the homogeneous problem

y′′(t)− λy′(t) = 0, 0 ≤ t ≤ 1,

with boundary conditions (2.2), if we rewrite y′′(t)−λy′(t) = 0 in the form y′′(t) = λy′(t). Thus, the Green’s
function for the boundary value problem (3.1), (2.2) can be constructed and has the form

G(λ; t, s) =


eλteλ(1−s)−eλ(1−s)

λ(1−eλ) , 0 ≤ t ≤ s ≤ 1,

eλteλ(1−s)−eλ(1−s)
λ(1−eλ) + eλ(t−s)−1

λ , 0 ≤ s ≤ t ≤ 1.

(3.2)

Note that

∂

∂t
G(λ; t, s) = Gt(λ; t, s) =


eλteλ(1−s)

(1−eλ) , 0 ≤ t ≤ s ≤ 1,

eλteλ(1−s)

(1−eλ) + eλ(t−s), 0 ≤ s ≤ t ≤ 1.

(3.3)

We observe the following properties of G(λ; t, s).

Theorem 3.1. Let G(λ; t, s) denote the Green’s function of the boundary value problem (3.1), (2.2). Then

• G(λ; t, s) < 0, (t, s) ∈ (0, 1]× [0, 1],

• Gt(λ; t, s) < 0, (t, s) ∈ [0, 1]× [0, 1],
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• max{max0≤t≤1
∫ 1
0 |G(λ; t, s)|ds,max0≤t≤1

∫ 1
0 |Gt(λ; t, s)|ds} =

1
λ .

Proof. The term eλteλ(1−s)−eλ(1−s)
λ(1−eλ) < 0 on [0, 1]× [0, 1]. The term

eλteλ(1−s) − eλ(1−s)

λ(1− eλ)
+
eλ(t−s) − 1

λ

is decreasing in t for 0 ≤ s ≤ t ≤ 1 and negative at t = s. And so, G(λ; t, s) < 0, on [0, 1] × [0, 1]. The sign
of Gt(λ; t, s) is determined similarly.

Note that
∫ 1
0 G(λ; t, s)ds is the solution of the boundary value problem (2.1), (2.2) for f ≡ 1. Thus,∫ 1

0 G(λ; t, s)ds =
−t
λ . Since G(λ; t, s) < 0, it follows that

∫ 1
0 |G(λ; t, s)|ds =

t
λ . So, max0≤t≤1

∫ 1
0 |G(λ; t, s)|ds =

1
λ . Since

∫ 1
0 G(λ; t, s)ds =

−t
λ , then

∫ 1
0 Gt(λ; t, s)ds =

−1
λ . Thus, Gt(λ; t, s) < 0 impliesmax0≤t≤1

∫ 1
0 |Gt(λ; t, s)|ds =

1
λ .

Remark 3.2. If we write

G(λ; t, s) =

∫ t

0
Gt(λ; r, s)dr (3.4)

then G(λ; t, s) is represented as the convolution of Green’s functions for lower order problems. Gt(λ; t, s)
denotes the Green’s function for the periodic boundary value problem

u′(t)− λu(t) = h, u(0) = u(1)

and the function

K(t, s) =


0, 0 ≤ t ≤ s ≤ 1,

1, 0 ≤ s ≤ t ≤ 1,

denotes the Cauchy function for the initial value problem

u′(t) = k, u(0) = 0.

Then

G(λ; t, s) =

∫ 1

0
K(t, r)Gt(λ; r, s)dr.

Periodic boundary value problems have been studied extensively and we refer the reader to the recent mono-
graph [7] for an authoritative account. The proof of Theorem 3.1 can be obtained as a corollary of the
observation of (3.4) as a convolution of Green’s functions for lower order problems.

Prior to obtaining existence of solutions of the boundary value problem (2.1), (2.2) we state without proof
versions of the Kamke convergence criterion for solutions of initial value problems for ordinary differential
equations [16, 18]. We also state a version of the Schauder fixed point theorem [24].

Definition 3.3. Assume g(t, y1, y2) : [0, 1]×R2 → R2 is continuous. We say g satisfies a Nagumo condition
with respect to y2 if, for each M > 0, there exists hM defined on (0,∞) such that

|g(t, y1, y2)| ≤ hM (|y2|), for all (t, y1, y2) ∈ [0, 1]× [−M,M ]× R,

and such that ∫ ∞
0

s

hM
(s)ds = +∞.
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An important consequence of the Nagumo condition is that if g satisfies a Nagumo condition, then
solutions of y′′(t) = g(t, y(t), y′(t)) either extend to the interval [0, 1] or the functional value y(t) becomes
unbounded on its maximal interval of existence. We refer the reader to [16] or [18] for further details. The
next theorem is a version of the Kamke convergence criterion and again we refer the reader to [16] or [18]
for further details.

Theorem 3.4. For k ∈ {0, 1, . . . } assume the functions fk(t, y1, y2) are continuous on [0, 1]×R2 and assume
that there exists f(t, y1, y2) such that

lim
k→∞

fk(t, y1, y2) = f(t, y1, y2)

uniformly on compact subsets of [0, 1] × R2. Assume f satisfies a Nagumo condition in y2. Assume that
{tk}∞k=0 ⊂ [0, 1] such that limk→∞ tk = t∗. Assume for each integer k ≥ 0, yk is a solution of y′′(t) =
fk(t, y(t), y

′(t)) which is defined on [0, 1]. Assume further that there exist y1, y2 ∈ R such that limk→∞ y
i−1
k (tk) =

yi, i = 1, 2. Then there exists a subsequence {ykj} of {yk} and a solution y of

y′′(t) = f(t, y(t), y′(t)), 0 ≤ t ≤ 1,

such that y(i−1)(t∗) = yi, i = 1, 2 and y(i−1)kj
(t) converges uniformly to y(i−1)(t) on [0, 1], i = 1, 2.

We shall employ the Kamke criterion in the form of the following corollary which is proved in [15].

Corollary 3.5. For k ∈ {0, 1, . . . } assume the functions fk(t, y1, y2) are continuous on [0, 1]×R2 and assume
that there exists f(t, y1, y2) such that

lim
k→∞

fk(t, y1, y2) = f(t, y1, y2)

uniformly on compact subsets of [0, 1]×R2. Assume f satisfies a Nagumo condition in y2. Assume that, for
k = 0, 1, . . . , yk(t) is a solution of y′′(t) = fk(t, y(t), y

′(t)) and assume yk(t) satisfies the boundary conditions
(2.2). Assume that {yk} is monotone decreasing and bounded below by a continuously differentiable function
α(t). Then there exists a solution y of

y′′(t) = f(t, y(t), y′(t)), 0 ≤ t ≤ 1,

such that y(i−1)k (t) converges uniformly to y(i−1)(t), i = 1, 2.

Our final preliminary result is the following version of the Schauder fixed point theorem.

Theorem 3.6. If U is a closed convex subset of a Banach space B, if T : U → U is continuous on U , and if
T (U) is a compact subset of B, then T has a fixed point in U .

We are now in a position to provide sufficient conditions for the existence of a solution of the boundary
value problem (2.1), (2.2). It is of interest to note that the hypothesis fy1 > 0 on [0, 1]×R2 is not employed
and the hypothesis fy2 > 0 on [0, 1]× R2 will be employed at the boundary point t0 = 1. In particular, the
following theorem makes no claims to uniqueness of solutions.

Theorem 3.7. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous and
∂
∂y2

f = fy2 : [0, 1] × R2 → R is continuous. Assume fy2 > 0 on [0, 1] × R2. Assume f satisfies a Nagumo
condition in y2. Assume α is a lower solution of the boundary value problem (2.1), (2.2) and assume β is an
upper solution of the boundary value problem (2.1), (2.2) and assume

α(t) ≤ β(t), 0 ≤ t ≤ 1.

Then there exists a solution y of (2.1), (2.2) satisfying

α(t) ≤ y(t) ≤ β(t), 0 ≤ t ≤ 1.
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Proof. Let λ > 0 and first define a truncation, F, of g(t, y(t), y′(t)) = f(t, y(t), y′(t))− λy′(t) by

F (t, y(t), y′(t)) =


f(t, β(t), y′(t))− λy′(t) + y(t)−β(t)

1+y(t)−β(t) , y(t) > β(t),

f(t, y(t), y′(t))− λy′(t), α(t) ≤ y(t) ≤ β(t),
f(t, α(t), y′(t))− λy′(t) + y(t)−α(t)

1+α(t)−y(t) , y(t) < α(t).

Now, let L > 0 be such that
|α′(t)| ≤ L, |β′(t)| ≤ L, 0 ≤ t ≤ 1.

Define a further truncation Fk, for k = 0, 1, . . . by

Fk(t, y(t), y
′(t)) =


F (t, y(t), L+ k), y′(t) > L+ k,

F (t, y(t), y′(t)), |y′(t)| ≤ L+ k,

F (t, y(t), L+ k), y′(t) < −L− k.

For each integer k ≥ 0, Fk(t, y1, y2) is continuous and bounded on [0, 1]× R2 and

lim
k→∞

Fk(t, y1, y2) = F (t, y1, y2)

uniformly on compacts subsets of [0, 1]× R2. More importantly, in order to apply Corollary 3.5 note that

lim
k→∞

Fk(t, y1, y2) + λy2 = F (t, y1, y2) + λy2

uniformly on compacts subsets of [0, 1]× R2. For each integer k ≥ 0, define an operator

Tk : C1[0, 1]→ C1[0, 1]

by

Tky(t) =

∫ 1

0

G(λ; t, s)Fk(s, y(s), y
′(s))ds

where G(λ; t, s) is given by (3.2). The purpose of the Green’s function is to provide the following equivalent statements.
A function y ∈ C2[0, 1] is a solution of the boundary value problem

y′′(t)− λy′(t) = Fk(t, y(t), y
′(t)), 0 ≤ t ≤ 1, (3.5)

with boundary conditions (2.2) if, and only if, y ∈ C1[0, 1] and

y(t) =

∫ 1

0

G(λ; t, s)Fk(s, y(s), y
′(s))ds, 0 ≤ t ≤ 1.

That is, y ∈ C2[0, 1] is a solution of the boundary value problem (3.5), (2.2) if, and only if, y ∈ C ′[0, 1] and

y(t) = Tky(t), 0 ≤ t ≤ 1.

Since G(λ; t, s) and Gt(λ; t, s) are continuous on [0, 1] × [0, 1] if follows that Tk : C1[0, 1] → C1[0, 1]. Since the
further truncation, Fk, is bounded and continuous on [0, 1] × R2 it is a straightforward application of the Schauder
fixed point theorem to show that the boundary value problem (3.5), (2.2) has a solution. To see this, let

M = sup{|Fk(t, y1, y2)| : 0 ≤ t ≤ 1, y ∈ R}

and recall
1

λ
= max{max

0≤t≤1

∫ 1

0

|G(λ; t, s)|ds, max
0≤t≤1

∫ 1

0

|Gt(λ; t, s)|ds}.

If y ∈ C1[0, 1], with
||y||1 = max{max

0≤t≤1
|y′(t)|, max

0≤t≤1
|y′(t)|},

then Tky ∈ C1[0, 1] and

||Tky||1 ≤
M

λ
.
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Define
U = {y ∈ C1[0, 1] : ||y||1 ≤

M

λ
}.

Then U is a closed convex subset of C1[0, 1] and Tk : U → U . To show that T (U) is compact, we apply the Arzela-Ascoli
Theorem to each set {(Tky)′ : y ∈ U} and {(Tky) : y ∈ U}. Each of the sets {(Tky)′ : y ∈ U} and {(Tky) : y ∈ U}
is uniformly bounded by M

λ . Since {(Tky)
′ : y ∈ U} is uniformly bounded, an application of the mean value theorem

implies that {(Tky) : y ∈ U} is equicontinuous. Moreover, note that if y ∈ U then

(Tky)
′′(t) = Fk(t, y(t), y

′(t)) + λy′(t), 0 ≤ t ≤ 1,

and so, if y ∈ U ,
|(Tky)′′(t)| ≤ 2M.

Thus, {(Tky)′′ : y ∈ U} is uniformly bounded and a further application of the mean value theorem implies that
{(Tky)′ : y ∈ U} is equicontinuous. Thus, T (U) is compact and the Schauder fixed point theorem implies there exists
a fixed point, yk ∈ U of the operator Tk. Let yk denote a fixed point of Tk and so yk satisfies the boundary value
problem

y′′(t)− λy′(t) = Fk(t, y(t), y
′(t)), 0 ≤ t ≤ 1,

y(0) = 0, y′(0) = y′(1).

We now argue that
α(t) ≤ yk(t) ≤ β(t), 0 ≤ t ≤ 1.

Details are similar to the proof of Theorem 2.1 and we highlight the differences in the details due to the truncation,
Fk.

To see that yk(t) ≤ β(t), 0 ≤ t ≤ 1, first assume without loss of generality that yk − β has positive maximum at
t0 ∈ (0, 1). Then (yk − β)′′(t0) ≤ 0. Moreover, y′k(t0) = β′(t0) implies |y′k(t0)| ≤ L; in particular,

Fk(t0, yk(t0), y
′
k(t0)) = F (t0, yk(t0), y

′
k(t0)).

Then

(yk − β)′′(t0) ≥ f(t0, β(t0), y′k(t0))− λy′k(t0) (3.6)

+
yk(t0)− β(t0)

1 + yk(t0)− β(t0)
+ λy′k(t0)− f(t0, β(t0), β(t0))

=
yk(t0)− β(t0)

1 + yk(t0)− β(t0)
> 0,

producing the usual contradiction. So, t0 /∈ (0, 1). It is important to note that the hypothesis fy1 > 0 on [0, 1]×R2 is
not required to obtain the usual contradiction.

Second, t0 6= 0 by the boundary condition (2.2).
Finally assume yk − β has a positive maximum at t0 = 1 and so (yk − β)′(1) ≥ 0. If (yk − β)′(1) = 0, then

(yk − β)′′(1) ≤ 0. Then the calculation in (3.6) is valid at t0 = 1 and (yk − β)′′(1) > 0, which produces the usual
contradiction.

For the final case, assume t0 = 1 and (yk − β)′(1) > 0. As in the proof of Theorem 2.1, we show there (yk − β)′(t)
does not change sign in (0, 1). If (yk − β)′(t) does change sign, there exist 0 < τ < c < 1 such that (yk − β)(t) has
a positive absolute maximum on [0, c] at τ and so, (yk − β)′′(τ) ≤ 0. The calculation in (3.6) at t0 = τ produces the
usual contradiction and so (yk − β)′(t) does not change sign in (0, 1). As in the proof of Theorem 2.1, (yk − β)′(t) > 0
for t ∈ [0, 1] implies (yk − β)(t) is increasing; in particular, (yk − β)(t) > 0, for t ∈ (0, 1].

To see that (yk−β)′(t) is monotone increasing (which contradicts (yk−β)′(0) = (yk−β)′(1) and hence completes
the proof) we argue that (yk − β)′′(t) > 0 for 0 ≤ t ≤ 1. Note that (yk − β)′(t) > 0 implies y′k(t) > L + k or
|y′k(t)| ≤ L+ k. If y′k(t) > L+ k then

(yk − β)′′(t) ≥ f(t, β(t), L+K)− λ(L+ k) +
yk(t)− β(t)

1 + yk(t)− β(t)
+ λy′k(t)− f(t, β(t), β′(t))

≥ yk(t)− β(t)
1 + yk(t)− β(t)

> 0
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and if |y′k(t)| ≤ L+ k then

(yk − β)′′(t) ≥ f(t, β(t), y′k(t))− λy′k(t) +
yk(t)− β(t)

1 + yk(t)− β(t)
+ λy′k(t)− f(t, β(t), β′(t))

≥ yk(t)− β(t)
1 + yk(t)− β(t)

> 0.

So, (yk − β)′ is monotone increasing which implies the contradiction (yk − β)′(0) < (yk − β)′(1).
Thus, yk − β does not have a positive maximum on [0, 1] and yk(t) ≤ β(t), 0 ≤ t ≤ 1. Similarly, α(t) ≤ yk(t),

0 ≤ t ≤ 1 and we conclude
α(t) ≤ yk(t) ≤ β(t), 0 ≤ t ≤ 1.

For each k = 0, 1, . . . , there exists tk ∈ (0, 1) such that

|y′k(tk)| = |yk(1)− yk(0)| ≤ max{|β(0)− α(1)|, |β(1)− α(0)|}.

Thus, each sequence {yk(tk)} and {y′k(tk)} is bounded. Hence, there exists a subsequence of {tk}, relabeled as the
original sequence, and y1, y2 ∈ R, such that

lim tk = t∗, lim y
(i−1)
k (tk) = yi, i = 1, 2.

Theorem 3.4 applies and there exists a solution, y, of y′′(t) − λy′(t) = F (t, y(t), y′(t)) on [0, 1] and a subsequence of
{yk} converging in C1[0, 1] to y. Thus

α(t) ≤ yk(t) ≤ β(t), 0 ≤ t ≤ 1

implies
α(t) ≤ y(t) ≤ β(t), 0 ≤ t ≤ 1

and F (t, y(t), y′(t)) = g(t, y(t), y′(t)). Moreover, y satisfies (2.2) (since each yk satisfies (2.2)). Thus, y is a solution of
the boundary value problem (3.1), (2.2) which implies y is a solution of the boundary value problem (2.1), (2.2).

4. The monotone method

In this section we develop the monotone method. The construction is modeled after the construction in
[15].

Theorem 4.1. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous
and ∂

∂y2
f = fy2 : [0, 1] × R2 → R is continuous. Assume fy1 > 0 on [0, 1] × R2 and assume fy2 > 0 on

[0, 1]×R2. Assume f satisfies a Nagumo condition in y2. Assume further that ∂2

∂y21
f = fy1y1 : [0, 1]×R2 → R

is continuous. Assume α0 is a lower solution of the boundary value problem (2.1), (2.2) and assume β0 is
an upper solution of the boundary value problem (2.1), (2.2). Then there exists a unique solution y of (2.1),
(2.2) satisfying

α0(t) ≤ y(t) ≤ β0(t), 0 ≤ t ≤ 1.

Moreover, there exist sequences {αn}, {βn} of lower and upper solutions, respectively, of the boundary value
problem (2.1), (2.2), each of which converges in C[0, 1] to the unique solution y, of the boundary value problem
(2.1), (2.2) and satisfy

αn(t) ≤ αn+1(t) ≤ y(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.

Proof. The existence of a unique solution y satisfying

α0(t) ≤ y(t) ≤ β0(t), 0 ≤ t ≤ 1,

follows from Theorems 2.1, 2.3 and 3.7.



J. Aljedani, P. Eloe, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 168–183. 177

Let F (t, y1) : [0, 1]× R→ R be such that F, Fy1 , Fy1y1 are continuous on [0, 1]× R and

Fy1y1(t, y1) ≥ 0, (t, y1) ∈ [0, 1]× R. (4.1)

Define φ(t, y1, y2) = F (t, y1) − f(t, y1, y2) on [0, 1] × R2. It follows from (4.1) that if y1, z1 ∈ R, then
F (t, z1) ≥ F (t, y1) + Fy1(t, y1)(z1 − y1). Thus, for y1, z1, y2, z2 ∈ R,

f(t, z1, z2) ≥ f(t, y1, y2) + Fy1(t, y1)(z1 − y1)− (φ(t, z1, z2)− φ(t, y1, y2)). (4.2)

The proof proceeds by induction on n and so for the base case argument, define the function

h(t, y1, y2;α0, β0, α
′
0) = f(t, α0(t), α

′
0(t)) + Fy1(t, β0(t))(y1 − α0)(t)

− (φ(t, y1, y2)− φ(t, α0(t), α
′
0(t))

and

k(t, y1, y2;β0, β
′
0) = f(t, β0(t), β

′
0(t)) + Fy1(t, β0(t))(y1 − β0)(t)

− (φ(t, y1, y2)− φ(t, β0(t), β′0(t)).

First, consider the boundary value problem

y′′(t) = h(t, y(t), y′(t);α0, β0, α
′
0), 0 ≤ t ≤ 1, (4.3)

with boundary conditions (2.2). Since f satisfies a Nagumo condition with respect to y2 it is readily seen
that h satisfies a Nagumo condition with respect to y2. Moreover, hy2 = fy2 > 0 on [0, 1]× R2.

We shall show that α0 and β0 are lower and upper solutions of the boundary value problem (4.3), (2.2)
and apply Theorem 3.7 to obtain a solution, α1(t), of the boundary value problem (4.3), (2.2) satisfying

α0(t) ≤ α1(t) ≤ β0(t), 0 ≤ t ≤ 1.

Note that
h(t, α0(t), α

′
0(t);α0, β0, α

′
0) = f(t, α0(t), α

′
0(t)), 0 ≤ t ≤ 1,

and so,
α′′0(t) ≥ f(t, α0(t), α

′
0(t)) = h(t, α0(t), α

′
0(t);α0, β0, α

′
0), 0 ≤ t ≤ 1.

Moreover, (4.2) implies since

f(t, β0(t), β
′
0(t)) ≤ f(t, α0(t), α

′
0(t))− Fy1(t, β0(t))(α0 − β0)(t)

+ (φ(t, α0(t), α
′
0(t))− φ(t, β0(t), β′0(t))

= h(t, β0(t), β
′
0(t);α0, β0, α

′
0), 0 ≤ t ≤ 1.

By assumption, each of α0 and β0 satisfy the boundary conditions, (2.2) and so, α0 and β0 are lower and
upper solutions of the boundary value problem (4.3), (2.2). Thus, by Theorem 3.7 there exists a solution,
α1(t), of the boundary value problem (4.3), (2.2) satisfying

α0(t) ≤ α1(t) ≤ β0(t), 0 ≤ t ≤ 1.

Second, consider the boundary value problem

y′′(t) = k(t, y(t), y′(t);β0, β
′
0), 0 ≤ t ≤ 1, (4.4)

with boundary conditions (2.2). Again k satisfies a Nagumo condition with respect to y2. Moreover, ky2 =
fy2 > 0 on [0, 1]× R2. Note that

f(t, β0(t), β
′
0(t)) = k(t, β0(t), β

′
0(t);β0, β

′
0), 0 ≤ t ≤ 1,
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and so, β0 is an upper solution of the boundary value problem (4.4), (2.2). Moreover, (4.2) readily implies
that

f(t, α0(t), α
′
0(t)) ≥ k(t, α0(t), α

′
0(t);β0, β

′
0), 0 ≤ t ≤ 1,

and so, α0 is a lower solution of the boundary value problem (4.4), (2.2). Thus, by Theorem 3.7 there exists
a solution, β1(t), of the boundary value problem (4.3), (2.2) satisfying

α0(t) ≤ β1(t) ≤ β0(t), 0 ≤ t ≤ 1.

For the final step of the base case argument, we show that α1 and β1 are lower and upper solutions,
respectively, of the boundary value problem (2.1), (2.2) and then it will follow by Theorem 2.3 that α1(t) ≤
β1(t), 0 ≤ t ≤ 1, and so

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), 0 ≤ t ≤ 1.

Employ (4.1) and (4.2) and obtain

α′′1(t) = h(t, α1(t), α
′
1(t);α0, β0, α

′
0)

= f(t, α0(t), α
′
0(t)) + Fy1(t, β0(t))(α1(t)− α0(t))

− (φ(t, α1(t), α
′
1(t))− φ(t, α0(t), α

′
0(t))

≥ f(t, α1(t), α
′
1(t)) + Fy1(t, α1(t))(α0(t)− α1(t))

− (φ(t, α0(t), α
′
0(t))− φ(t, α1(t), α

′
1(t))

+ Fy1(t, β0(t))(α1(t)− α0(t))− (φ(t, α1(t), α
′
1(t))− φ(t, α0(t), α

′
0(t)))

= f(t, α1(t), α
′
1(t)) + (Fy1(t, β0(t))− Fy1(t, α1(t)))(α1(t)− α0(t))

≥ f(t, α1(t), α
′
1(t).

In a similar way, (4.2) implies that

β′′1 (t) ≤ f(t, β1(t), β′1(t)), 0 ≤ 1 ≤ t.

Apply Theorem 2.3 to obtain α1(t) ≤ β1(t), 0 ≤ t ≤ 1, and so

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), 0 ≤ t ≤ 1.

For the induction hypotheses, assume that each of the sequences,

{αk}nk=1 and {βk}nk=1,

have been constructed inductively such that for each k,

h(t, y1, y2;αk, βk, α
′
k) = f(t, αk(t), α

′
k(t)) + Fy1(t, βk(t))(y1 − αk)(t))

− (φ(t, y1, y2)− φ(t, αk(t), α′k(t))

and

k(t, y1, y2;βk, β
′
k) = f(t, βk(t), β

′
k(t)) + Fy1(t, βk(t))(y1 − βk)(t))

− (φ(t, y1, y2)− φ(t, βk(t), β′k(t)),

αk is a solution of the boundary value problem

y′′(t) = h(t, y(t), y′(t);αk−1, βk−1, α
′
k−1), 0 ≤ t ≤ 1,

with boundary conditions (2.2) and βk is a solution of the boundary value problem

y′′(t) = k(t, y(t), y′(t);βk, β
′
k), 0 ≤ t ≤ 1,
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with boundary conditions (2.2). Assume αk, βk, k = 1, . . . , n denote a lower solution and an upper solution,
respectively of (2.1), (2.2) and for each k = 0, . . . , n,

αk−1(t) ≤ αk(t) ≤ y(t) ≤ βk(t) ≤ βk−1(t), 0 ≤ t ≤ 1,

where y is the unique solution of the boundary value problem (2.1), (2.2).
To finish the induction argument, consider the ordinary differential equation

y′′(t) = h(t, y(t), y′(t);αn, βn, β
′
n), 0 ≤ t ≤ 1. (4.5)

Note that
h(t, αn(t), α

′
n(t);αn, βn, α

′
n) = f(t, αn(t), α

′
n(t)), 0 ≤ t ≤ 1

and (4.1) and (4.2) imply

h(t, βn(t), β
′
n(t);αn, βn, α

′
n) ≥ f(t, βn(t), β′n(t)), 0 ≤ t ≤ 1.

So, αn, and βn denote a lower and an upper solution of the boundary value problem (4.5), (2.2) respectively
as well. Since h satisfies the hypotheses of Theorem 3.7, there exists a solution, αn+1(t), of the boundary
value problem (4.5), (2.2) satisfying

αn(t) ≤ αn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.

Moreover, for 0 ≤ t ≤ 1,

α′′n+1(t) = h(t, αn+1(t), α
′
n+1(t);αn, βn, α

′
n) ≥ f(t, αn+1(t), α

′
n+1(t)),

and αn+1 is a lower solution (2.1), (2.2).
Similarly, consider the ordinary differential equation

y′′(t) = k(t, y(t), y′(t);βn, β
′
n), 0 ≤ t ≤ 1. (4.6)

Note that
k(t, βn(t), β

′
n(t);βn, β

′
n) = f(t, βn(t), β

′
n), 0 ≤ t ≤ 1,

and (4.2) implies
k(t, αn(t), α

′
n(t);βn, β

′
n) ≤ f(t, αn(t), α′n(t)), 0 ≤ t ≤ 1.

So, αn and βn denote a lower and an upper solution of the boundary value problem (4.6), (2.2) respectively
as well. Since k satisfies the hypotheses of Theorem 3.7, there exists a solution, βn+1(t), of the boundary
value problem (4.6), (2.2) satisfying

αn(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.

Moreover, for 0 ≤ t ≤ 1,

β′′n+1(t) = k(t, βn+1(t), β
′
n+1(t);βn, β

′
n) ≤ f(t, βn+1(t), β

′
n+1),

and βn+1 is an upper solution of (2.1), (2.2).
Finally, apply Theorem 2.3 and Theorem 3.7 to obtain

αn(t) ≤ αn+1(t) ≤ y(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1,

where y is the unique solution of the boundary value problem (2.1), (2.2).
To complete the proof, {αn} and {βn} are monotone sequences of continuous functions bounded above or

below, respectively, on a compact domain. So by Dini’s theorem, each converges uniformly to α(t), β(t)
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respectively on [0, 1]. We can not apply Corollary 3.5 directly since neither h(t, y1, y2;αn, βn, β′n) nor
k(t, y1, y2;βn, β

′
n) converge uniformly to f(t, y1, y2) uniformly on compact domains of [0, 1] × R2. To see

this, write

h(t, y1, y2;αn, βn, β
′
n) = f(t, y1, y2) + Fy1(t, βn(t))(y1 − αn(t))

+ F (t, αn(t))− F (t, y1)

and

k(t, y1, y2;βn, β
′
n) = f(t, y1, y2) + Fy1(t, βn(t))(y1 − βn(t))

+ F (t, βn(t))− F (t, y1).

Define

ĥ(t, y1, y2;αn, βn, β
′
n) = f(t, y1, y2) + Fy1(t, βn(t))(αn+1(t)− αn(t))

+ F (t, αn(t))− F (t, αn+1(t))

and

k̂(t, y1, y2;βn, β
′
n) = f(t, y1, y2) + Fy1(t, βn(t))(βn+1(t)− βn(t))

+ F (t, βn(t))− F (t, βn+1(t)).

Corollary 3.5 applies to the boundary value problem

y′′(t) = ĥ(t, y(t), y′(t);αn, βn, β
′
n) 0 ≤ t ≤ 1, (4.7)

with boundary conditions (2.2) and αn+1 is a solution of the boundary value problem (4.7), (2.2). Now by
Corollary 3.5, {αn} converges in C1[0, 1] to y, the unique solution of the boundary value problem (2.1), (2.2).
Similarly {βn} converges in C1[0, 1] to y, the unique solution of the boundary value problem (2.1), (2.2) and
the proof is complete.

5. A simplified problem

We have proved the main results in this paper for the case where f depends on the derivative of the
unknown function. The results are also valid if f is independent of the derivative of the unknown function.

Assume f : [0, 1]× R→ R is continuous and consider the boundary value problem

y′′(t) = f(t, y(t)), 0 ≤ t ≤ 1, (5.1)

with the boundary conditions (2.2).
We state the following three theorems without proof as the proofs follow in a straightforward way from

the proofs of Theorems 2.1, 2.3 and 3.7 very closely and are more simple.

Theorem 5.1. Assume f : [0, 1] × R → R is continuous and ∂
∂y1

f = fy1 : [0, 1] × R → R is continuous.
Assume fy1 > 0 on [0, 1] × R. Then solutions of the boundary value problem (5.1), (2.2) are unique, if they
exist.

Definition 5.2. We say α ∈ C2[0, 1] is a lower solution of the boundary value problem (5.1), (2.2) if α(0) = 0,
α′(0) = α′(1) and

α′′(t) ≥ f(t, α(t)), 0 ≤ t ≤ 1.

We say β ∈ C2[0, 1] is an upper solution of the boundary value problem (5.1), (2.2) if β(0) = 0, β′(0) = β′(1)
and

β′′(t) ≤ f(t, β(t)), 0 ≤ t ≤ 1.
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Theorem 5.3. Assume f : [0, 1] × R → R is continuous and ∂
∂y1

f = fy1 : [0, 1] × R → R is continuous.
Assume fy1 > 0 on [0, 1] × R. Assume α is a lower solution of the boundary value problem (5.1), (2.2) and
assume β is an upper solution of the boundary value problem (5.1), (2.2). Then

α(t) ≤ β(t), 0 ≤ t ≤ 1.

Theorem 5.4. Assume f : [0, 1] × R → R is continuous and ∂
∂y1

f = fy1 : [0, 1] × R → R is continuous.
Assume fy1 > 0 on [0, 1] × R. Assume α is a lower solution of the boundary value problem (5.1), (2.2) and
assume β is an upper solution of the boundary value problem (5.1), (2.2). Then there exists a unique solution
y of (5.1), (2.2) satisfying

α(t) ≤ y(t) ≤ β(t), 0 ≤ t ≤ 1.

Recall that in the proof of Theorem 4.1, the function F satisfying (4.1) was arbitrary. To develop the
monotone method for the boundary value problem, (5.1), (2.2), set F = f, and so, F is not arbitrary. Then
the function φ ≡ 0 and the proof of Theorem 4.1 applies to obtain the monotone method for the boundary
value problem (5.1), (2.2). We specify the h and k functions employed in the proof of the following theorem.

h(t, y1;αn, βn) = f(t, αn(t)) + fy1(t, βn(t))(y1 − αn)(t))

and
k(t, y1;βn) = f(t, βn(t)) + fy1(t, βn(t))(y1 − βn)(t)).

Theorem 5.5. Assume f : [0, 1] × R → R is continuous and ∂
∂y1

f = fy1 : [0, 1] × R → R is continuous.

Assume fy1 > 0 on [0, 1]× R. Assume further that ∂2

∂y21
f = fy1y1 : [0, 1]× R2 → R is continuous and

fy1y1(t, y1) ≥ 0 (t, y1) ∈ [0, 1]× R.

Assume α0 is a lower solution of the boundary value problem (5.1), (2.2) and assume β0 is an upper solution
of the boundary value problem (5.1), (2.2). Then there exists a unique solution y of (5.1), (2.2) satisfying

α0(t) ≤ y(t) ≤ β0(t), 0 ≤ t ≤ 1.

Moreover, there exist sequences {αn}, {βn} of lower and upper solutions, respectively, of the boundary value
problem (5.1), (2.2), each of which converges in C[0, 1] to the unique solution y, of the boundary value problem
(5.1), (2.2) and satisfy

αn(t) ≤ αn+1(t) ≤ y(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.

6. Two examples

The method of upper and lower solutions is only as good as one’s ability to exhibit the existence of upper
and lower solutions. In general, algorithms do not exist to construct upper or lower solutions. It was shown
in [4] that the shift method implies that the nontrivial solutions of the homogeneous boundary value problem
at resonance provide excellent candidates as upper or lower solutions.

Theorem 6.1. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous
and ∂

∂y2
f = fy2 : [0, 1] × R2 → R is continuous. Assume fy1 > 0 on [0, 1] × R2 and assume fy2 > 0 on

[0, 1]×R2. Assume f satisfies a Nagumo condition in y2. Assume further that ∂2

∂y21
f = fy1y1 : [0, 1]×R2 → R

is continuous. Assume there exists a continuous and bounded function σ : [0, 1]×R→ R such that |σ(t, y2)| ≤
M1 on [0, 1]× R. Assume there exists a nondecreasing function ψ : R+ → R+ such that

|f(t, y1, y2)− λy2| 6 σ(t, y2)ψ(|y1|), (t, y1, y2) ∈ [0, 1]× R2
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and there exists M > 0 such that
λM

M1ψ(M)
> 1.

Then there exist sequences {αn}, {βn} of lower and upper solutions, respectively, of the boundary value prob-
lem (2.1), (2.2), each of which converges in C1[0, 1] to the unique solution y, of the boundary value problem
(2.1), (2.2) and satisfy

αn(t) ≤ αn+1(t) ≤ y(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.

Now Theorem 4.1 applies.

Proof. To exhibit β0, an upper solution, set
β0 =Mt.

Then
β′′0 (t)− λβ′0(t) = −λM ≤ −M1ψ(M) ≤ f(t, β0(t), β′0(t))− λβ′0(t).

To exhibit α0 a lower solution, set
α0(t) = −Mt.

To provide a more specific example, let a(t) ∈ C[0, 1], a(t) > 0, and set

f(t, y1, y2) = λy2 + a(t) tan−1(y2 + 1)(y31 + y1 + 1).

LetK = π
2 max0≤t≤1 |a(t)|. ThenM1 = K, and ψ(y1) = y31+y1+1. Consider the linear function, u(M) = λM

and the cubic function v(M) = K(M3 +M + 1). If

λ > K((
1

2
)
2
3 + 1 + (

1

2
)
−1
3 ),

then there exist 0 < M1 < M2 such that (u − v)(M1) = (u − v)(M2) = 0 and (u − v)(M) > 0 for
M1 < M < M2. Thus, Theorem 6.1 applies if

λ > K((
1

2
)
2
3 + 1 + (

1

2
)
−1
3 ).

In a similar way, if the growth condition |f(t, y1, y2)−λy2| 6 σ(t, y2)ψ(|y1|) is replaced by a boundedness
condition, there exists M > 0 such that

|f(t, y1, y2)− λy2| 6M, (t, y1, y2) ∈ [0, 1]× R2

then upper and lower solutions are readily exhibited. Set β0 = M
λ t and set α0 = −β0.

Theorem 6.2. Assume f : [0, 1] × R2 → R is continuous, ∂
∂y1

f = fy1 : [0, 1] × R2 → R is continuous
and ∂

∂y2
f = fy2 : [0, 1] × R2 → R is continuous. Assume fy1 > 0 on [0, 1] × R2 and assume fy2 > 0 on

[0, 1]×R2. Assume f satisfies a Nagumo condition in y2. Assume further that ∂2

∂y21
f = fy1y1 : [0, 1]×R2 → R

is continuous. Assume there exists M > 0 such that

|f(t, y1, y2)− λy2| 6M, (t, y1, y2) ∈ [0, 1]× R2.

Then there exist sequences {αn}, {βn} of lower and upper solutions, respectively, of the boundary value prob-
lem (2.1), (2.2), each of which converges in C1[0, 1] to the unique solution y, of the boundary value problem
(2.1), (2.2) and satisfy

αn(t) ≤ αn+1(t) ≤ y(t) ≤ βn+1(t) ≤ βn(t), 0 ≤ t ≤ 1.
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