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ABSTRACT: The uni-int decision-making method constructed by and-product/or-product was defined and 

applied to a decision-making problem by Çağman and Enginoğlu [Soft Set Theory and Uni-Int Decision 

Making. European Journal of Operational Research. 207: 848-855]. The method has a potential for 

applications in several areas such as machine learning and image processing. Recently, this method has been 

configured by Enginoğlu and Memiş [A Configuration of Some Soft Decision-Making Algorithms via fpfs-

Matrices. Cumhuriyet Science Journal. 39(4): In Press] via fuzzy parameterized fuzzy soft matrices (fpfs-

matrices), faithfully to the original, because a more general form is needed for the method in the event that 

the parameters or objects have uncertainties. However, in the case that a large amount of data is processed, 

the method has a disadvantage regarding time and complexity. To deal with this problem and to be able to 

use this configured method denoted by CE10 effectively, we suggest two algorithms in this paper, i.e. 

EMO18a and EMO18o, and prove that CE10 constructed by and-product (CE10a) and constructed by or-

product (CE10o) are special cases of EMO18a and EMO18o, respectively, if first rows of the fpfs-matrices 

are binary. We then compare the running times of these algorithms. The results show that EMO18a and 

EMO18o outperform CE10a and CE10o, respectively. Particularly in problems containing a large amount of 

parameters, EMO18a and EMO18o offer up to 99.9966% and 99.9965% of time advantage, respectively. 

Afterwards, we apply EMO18o to a performance-based value assignment to the methods used in the noise 

removal, so that we can order them in terms of performance. Finally, we discuss the need for further research. 

Keywords – Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices 

1. Introduction 

The classical sets are inadequate to deal with some problems containing uncertainties. To 

that end, fuzzy set theory  was put forward by Zadeh (1965). Similar to the fuzzy sets, the 

concept of soft sets too has been produced by Molodtsov (1999) due to difficulties in 

construction of fuzzy sets. In this respect, the soft set theory is a very useful mathematical 

tool to model some problems containing uncertainties and so far many theoretical and 

applied studies from algebra to decision-making problems (Atmaca, 2017; Atmaca and 

Zorlutuna, 2014; Bera et al., 2017; Çağman et al., 2010, 2011; Çağman and Enginoğlu, 

2010a; Çağman and Enginoǧlu, 2012; Çaǧman and Enginoǧlu, 2010b; Çağman et al., 2011; 

Çıtak and Çağman, 2017; Çıtak and Çağman, 2015; Enginoǧlu, 2012; Enginoğlu et al., 

2015; Karaaslan, 2016; Maji et al., 2001, 2002, 2003; Muştuoğlu et al., 2016; Sezgin, 2016; 

Sezgin et al., 2019; Tunçay and Sezgin, 2016; Ullah et al., 2018; Zorlutuna and Atmaca, 

2016) have been conducted on this concept. 

 

Recently, some decision-making algorithms constructed by soft sets (Çağman and 

Enginoğlu, 2010a; Eraslan, 2015; Maji et al., 2002; Razak and Mohamad, 2011), fuzzy soft 
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sets (Çağman et al., 2011; Das and Borgohain, 2012; Eraslan and Karaaslan, 2015; Maji et 

al., 2001; Razak and Mohamad, 2013), fuzzy parameterized soft sets (Çağman et al., 2011; 

Çaǧman and Deli, 2012), fuzzy parameterized fuzzy soft sets (fpfs-sets) (Çağman et al., 

2010; Zhu and Zhan, 2016), soft matrices (Çaǧman and Enginoǧlu, 2010b; Vijayabalaji and 

Ramesh, 2013) and fuzzy soft matrices (Çağman and Enginoǧlu, 2012; Khan et al., 2013) 

have been configured (Enginoğlu and Memiş, 2018) via fuzzy parameterized fuzzy soft 

matrices (fpfs-matrices) (Enginoǧlu, 2012). One of the configured methods is CE10 

(Çağman and Enginoğlu, 2010a; Enginoğlu and Memiş, 2018) constructed by and-product 

(CE10a) or constructed by or-product (CE10o). In the case that a large amount of data is 

processed, these two methods still have a disadvantage regarding time and complexity. To 

deal with this problem, it is worthwhile to study the simplification of the algorithms. In the 

event that first rows of the fpfs-matrices are binary, although there exist simplified versions 

of CE10a and CE10o, they no have in the other cases. Therefore, in this study, we aim to 

develop two algorithms which have the ability of CE10a and CE10o and are also faster than 

them. 

 

In Section 2 of the present study, we introduce the concept of fpfs-matrices and present the 

soft decision-making method CE10. In Section 3, we propose two fast and simple 

algorithms, denoted by EMO18a and EMO18o, which accept CE10a and CE10o as special 

cases, respectively, provided that first rows of the fpfs-matrices are binary. A part of this 

section has been presented in (Enginoğlu et al., 2018). In Section 4, we compare the running 

times of these algorithms. In Section 5, we apply EMO18o to the decision-making problem 

in image denoising. Finally, we discuss the need for further research.  

2. Preliminaries 

In this section, firstly, we present the definition of fpfs-sets and fpfs-matrices. Throughout 

this paper, let 𝐸 be a parameter set, 𝐹(𝐸) be the set of all fuzzy sets over 𝐸, and 𝜇 ∈ 𝐹(𝐸). 

Here, 𝜇 ≔ {𝜇(𝑥)𝑥: 𝑥 ∈ 𝐸}.  
 

Definition 2. 1.  (Çağman et al., 2010; Enginoǧlu, 2012) Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), 

and 𝛼 be a function from 𝜇 to 𝐹(𝑈). Then the graphic of 𝛼, denoted by 𝛼, defined by 

𝛼 ≔ {(𝜇(𝑥)𝑥, 𝛼(𝜇(𝑥)𝑥)): 𝑥 ∈ 𝐸} 

that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via 𝐸 over 𝑈 (or 

briefly over 𝑈).  

 

In the present paper, the set of all fpfs-sets over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). 

 

Example 2. 1.  Let 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Then,   

 𝛼 = {(0𝑥1, {
0.5𝑢1,

0.6 𝑢3}), (
0.8𝑥2, {

0.9𝑢2,
0.2 𝑢3,

0.1 𝑢5}), (
0.6𝑥3, {

0.5𝑢2,
0.7 𝑢4,

0.2 𝑢5}), (
1𝑥4, {

1𝑢3,
0.9 𝑢4})} 

 is a fpfs-set over 𝑈.  

 

Definition 2. 2.  (Enginoǧlu, 2012) Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called the matrix 

representation of 𝛼 (or briefly fpfs-matrix of 𝛼) and defined by  



Enginoğlu et al. /JNRS, 2018, 7(3), 28-43                                                                                                    30 

 [𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 
 

 

 

such that 𝑓𝑜𝑟 𝑖 = {0,1,2,⋯ } 𝑎𝑛𝑑 𝑗 = {1,2,⋯ }, 
 

 𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼(𝜇(𝑥𝑗)𝑥𝑗)(𝑢𝑖), 𝑖 ≠ 0
 

 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛.  

 

From now on, the set of all fpfs-matrices parameterized via 𝐸 over 𝑈 is denoted by 

𝐹𝑃𝐹𝑆𝐸[𝑈]. 
 

Example 2. 2. Let us consider the fpfs-set 𝛼 provided in Example 2.1. Then, the fpfs-matrix 

of 𝛼 is as follows:  

 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
0 0.8 0.6 1
0.5 0 0 0
0 0.9 0.5 0
0.6 0.2 0 1
0 0 0.7 0.9
0 0.1 0.2 0

]
 
 
 
 
 
 

 

 

Definition 2. 3. (Enginoǧlu, 2012)  Let [𝑎𝑖𝑗], [𝑏𝑖𝑘] ∈ 𝐹𝑃𝐹𝑆𝐸[𝑈] and [𝑐𝑖𝑝] ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈] 

such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘. For all 𝑖 and 𝑝,  

 

If 𝑐𝑖𝑝 = 𝑚𝑖𝑛{𝑎𝑖𝑗 , 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called and-product of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] and is denoted by 

[𝑎𝑖𝑗] ∧ [𝑏𝑖𝑘].  

 

If 𝑐𝑖𝑝 = 𝑚𝑎𝑥{𝑎𝑖𝑗 , 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called or-product of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] and is denoted by 

[𝑎𝑖𝑗] ∨ [𝑏𝑖𝑘].  

 

If 𝑐𝑖𝑝 = 𝑚𝑖𝑛{𝑎𝑖𝑗 , 1 − 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called andnot-product of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] and is 

denoted by [𝑎𝑖𝑗] ∧ [𝑏𝑖𝑘].  

 

If 𝑐𝑖𝑝 = 𝑚𝑎𝑥{𝑎𝑖𝑗 , 1 − 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called ornot-product of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] and is 

denoted by [𝑎𝑖𝑗] ∨ [𝑏𝑖𝑘].  

Secondly, we present the algorithm CE10 constructed by and-product/or-product (Çağman 

and Enginoğlu, 2010a; Enginoğlu and Memiş, 2018).  
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CE10’s Algorithm Steps 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 2. Find and-product/or-product fpfs-matrix [𝑐𝑖𝑝] of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Obtain [𝑠𝑖1] denoted by max-min(𝑐𝑖𝑝) defined by  

 𝑠𝑖1 ≔ max{max𝑗min𝑘(𝑐𝑖𝑝),max𝑘min𝑗(𝑐𝑖𝑝)} 

such that 𝑖 ∈ {1,2, … ,𝑚 − 1}, 𝐼𝑎 ≔ {𝑗 | 𝑎0𝑗 ≠ 0}, 𝐼𝑏 ≔ {𝑘 | 𝑏0𝑘 ≠ 0}, 𝑝 = 𝑛(𝑗 − 1) +

𝑘, and  

 max𝑗min𝑘(𝑐𝑖𝑝) ≔ {
max
𝑗∈𝐼𝑎

{min
𝑘∈𝐼𝑏

𝑐0𝑝𝑐𝑖𝑝} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

 max𝑘min𝑗(𝑐𝑖𝑝) ≔ {
max
𝑘∈𝐼𝑏

{min
𝑗∈𝐼𝑎

𝑐0𝑝𝑐𝑖𝑝} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

Step 4. Obtain the set {𝑢𝑘 ∈ 𝑈 | 𝑠𝑘1 = max
𝑖

𝑠𝑖1}  

 Preferably, the set { 𝑢𝑖
𝑠𝑖1  | 𝑢𝑖 ∈ 𝑈} or { 𝑢𝑘

𝑠𝑘1
max𝑠𝑖1 |𝑢𝑘 ∈ 𝑈} can be attained. 

3. The Soft Decision-Making Methods: EMO18a and EMO18o 

In this section, firstly, we propose a fast and simple algorithm denoted by EMO18a.  

 

EMO18a’s Algorithm Steps 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 2. Obtain [𝑠𝑖1] denoted by max-min(𝑎𝑖𝑗 , 𝑏𝑖𝑘) defined by  

 𝑠𝑖1 ≔ max{max𝑗min𝑘(𝑎𝑖𝑗 , 𝑏𝑖𝑘),max𝑘min𝑗(𝑎𝑖𝑗 , 𝑏𝑖𝑘)} 

such that 𝑖 ∈ {1,2, … ,𝑚 − 1}, 𝐼𝑎 ≔ {𝑗 | 𝑎0𝑗 ≠ 0}, 𝐼𝑏 ≔ {𝑘 | 𝑏0𝑘 ≠ 0}, and  

 max𝑗min𝑘(𝑎𝑖𝑗 , 𝑏𝑖𝑘) ≔ {
min {max

𝑗∈𝐼𝑎
{𝑎0𝑗𝑎𝑖𝑗},min

𝑘∈𝐼𝑏
{𝑏0𝑘𝑏𝑖𝑘}} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

 max𝑘min𝑗(𝑎𝑖𝑗 , 𝑏𝑖𝑘) ≔ {
min {max

𝑘∈𝐼𝑏
{𝑏0𝑘𝑏𝑖𝑘},min

𝑗∈𝐼𝑎
{𝑎0𝑗𝑎𝑖𝑗}} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

Step 3. Obtain the set {𝑢𝑘 ∈ 𝑈 | 𝑠𝑘1 = max
𝑖

𝑠𝑖1}  

Preferably, the set { 𝑢𝑖
𝑠𝑖1  | 𝑢𝑖 ∈ 𝑈} or { 𝑢𝑘

𝑠𝑘1
max𝑠𝑖1 |𝑢𝑘 ∈ 𝑈} can be attained. 

    

Secondly, we present a fast and simple algorithm denoted by EMO18o given in (Enginoğlu 

et al., 2018). 



Enginoğlu et al. /JNRS, 2018, 7(3), 28-43                                                                                                    32 

EMO18o’s Algorithm Steps 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗] and [𝑏𝑖𝑘]  

Step 2. Obtain [𝑠𝑖1] denoted by max-min(𝑎𝑖𝑗 , 𝑏𝑖𝑘) defined by  

 𝑠𝑖1 ≔ max{max𝑗min𝑘(𝑎𝑖𝑗 , 𝑏𝑖𝑘),max𝑘min𝑗(𝑎𝑖𝑗 , 𝑏𝑖𝑘)} 

such that 𝑖 ∈ {1,2, … ,𝑚 − 1}, 𝐼𝑎 ≔ {𝑗 | 𝑎0𝑗 ≠ 0}, 𝐼𝑏 ≔ {𝑘 | 𝑏0𝑘 ≠ 0}, and  

 max𝑗min𝑘(𝑎𝑖𝑗 , 𝑏𝑖𝑘) ≔ {
max {max

𝑗∈𝐼𝑎
{𝑎0𝑗𝑎𝑖𝑗},min

𝑘∈𝐼𝑏
{𝑏0𝑘𝑏𝑖𝑘}} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

 

 max𝑘min𝑗(𝑎𝑖𝑗 , 𝑏𝑖𝑘) ≔ {
max {max

𝑘∈𝐼𝑏
{𝑏0𝑘𝑏𝑖𝑘}, min

𝑗∈𝐼𝑎
{𝑎0𝑗𝑎𝑖𝑗}} , 𝐼𝑎 ≠ ∅ and 𝐼𝑏 ≠ ∅

0, otherwise
 

Step 3. Obtain the set {𝑢𝑘 ∈ 𝑈 | 𝑠𝑘1 = max
𝑖

𝑠𝑖1}  

Preferably, the set { 𝑢𝑖
𝑠𝑖1  | 𝑢𝑖 ∈ 𝑈} or { 𝑢𝑘

𝑠𝑘1
max𝑠𝑖1 |𝑢𝑘 ∈ 𝑈} can be attained. 

 

Theorem 3. 1.  CE10a is a special case of EMO18a provided that first rows of the fpfs-

matrices are binary.  

 

PROOF. Suppose that first rows of the fpfs-matrices are binary. The functions 𝑠𝑖1 provided 

in CE10a and EMO18a are equal in the event that 𝐼𝑎 = ∅ or 𝐼𝑏 = ∅. Assume that 𝐼𝑎 ≠ ∅ 

and 𝐼𝑏 ≠ ∅. Since 𝑎0𝑗 = 1 and 𝑏0𝑘 = 1, for all 𝑗 ∈ 𝐼𝑎 ≔ {𝑎1, 𝑎2, . . . , 𝑎𝑠} and 𝑘 ∈ 𝐼𝑏 ≔

{𝑏1, 𝑏2, . . . , 𝑏𝑡},  

max𝑗min𝑘(𝑐𝑖𝑝) = max
𝑗∈𝐼𝑎

{min
𝑘∈𝐼𝑏

𝑐0𝑝𝑐𝑖𝑝} 

 = max
𝑗∈𝐼𝑎

{min
𝑘∈𝐼𝑏

{min{𝑎0𝑗 , 𝑏0𝑘}.min{𝑎𝑖𝑗 , 𝑏𝑖𝑘}}} 

 = max
𝑗∈𝐼𝑎

{min
𝑘∈𝐼𝑏

{min{𝑎𝑖𝑗 , 𝑏𝑖𝑘}}} 

 = max{min{min{𝑎𝑖𝑎1
, 𝑏𝑖𝑏1

},min{𝑎𝑖𝑎1
, 𝑏𝑖𝑏2

}, … ,min{𝑎𝑖𝑎1
, 𝑏𝑖𝑏𝑡

}}, 

              min{min{𝑎𝑖𝑎2
, 𝑏𝑖𝑏1

},min{𝑎𝑖𝑎2
, 𝑏𝑖𝑏2

}, … ,min{𝑎𝑖𝑎2
, 𝑏𝑖𝑏𝑡

}}, 

               … ,min{min{𝑎𝑖𝑎𝑠
, 𝑏𝑖𝑏1

},min{𝑎𝑖𝑎𝑠
, 𝑏𝑖𝑏2

}, … ,min{𝑎𝑖𝑎𝑠
, 𝑏𝑖𝑏𝑡

}}} 

 = max{min{𝑎𝑖𝑎1
, min{𝑏𝑖𝑏1

, 𝑏𝑖𝑏2
, … , 𝑏𝑖𝑏𝑡

}},min{𝑎𝑖𝑎2
, min{𝑏𝑖𝑏1

, 𝑏𝑖𝑏2
, … , 𝑏𝑖𝑏𝑡

}}, 

               … ,min{𝑎𝑖𝑎𝑠
, min{𝑏𝑖𝑏1

, 𝑏𝑖𝑏2
, … , 𝑏𝑖𝑏𝑡

}}} 

 = min{max{𝑎𝑖𝑎1
, 𝑎𝑖𝑎2

, … , 𝑎𝑖𝑎𝑠
},min{𝑏𝑖𝑏1

, 𝑏𝑖𝑏2
, … , 𝑏𝑖𝑏𝑡

}} 

 = min {max
𝑗∈𝐼𝑎

{𝑎𝑖𝑗},min
𝑘∈𝐼𝑏

{𝑏𝑖𝑘}} 
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 = min {max
𝑗∈𝐼𝑎

{𝑎0𝑗𝑎𝑖𝑗},min
𝑘∈𝐼𝑏

{𝑏0𝑘𝑏𝑖𝑘}} 

 = max𝑗min𝑘(𝑎𝑖𝑗 , 𝑏𝑖𝑘) 

 

In a similar way, max𝑘min𝑗(𝑐𝑖𝑝) = max𝑘min𝑗(𝑎𝑖𝑗 , 𝑏𝑖𝑘). Consequently,  

 max-min(𝑎𝑖𝑗 , 𝑏𝑖𝑘) = max-min(𝑐𝑖𝑝) 

□   

 

Theorem 3. 2. (Enginoğlu et al., 2018) CE10o is a special case of EMO18o provided that 

first rows of the fpfs-matrices are binary.  

4. Simulation Results 

In this section, we compare the running times of CE10a-EMO18a and CE10o-EMO18o by 

using MATLAB R2017b and a workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 

GHz and 64 GB RAM in this study. 

 

We, firstly, present the running times of CE10a and EMO18a in Table 1 and Fig. 1 for 10 

objects and the parameters ranging from 10 to 100. We then give their running times in 

Table 2 and Fig. 2 for 10 objects and the parameters ranging from 1000 to 10000, in Table 

3 and Fig. 3 for 10 parameters and the objects ranging from 10 to 100, in Table 4 and Fig. 

4 for 10 parameters and the objects ranging from 1000 to 10000, in Table 5 and Fig. 5 for 

the parameters and the objects ranging from 10 to 100, and in Table 6 and Fig. 6 for the 

parameters and the objects ranging from 100 to 1000. The results show that EMO18a 

outperforms CE10a in any number of data under the specified condition. 

 

  

Table 1. The results for 10 objects and the parameters ranging from 10 to 100 
 10 20 30 40 50 60 70 80 90 100 

CE10a 0.02150 0.00932 0.00279 0.00366 0.00922 0.01224 0.00956 0.00947 0.01622 0.02317 

EMO18a 0.00913 0.00231 0.00085 0.00043 0.00209 0.00120 0.00033 0.00023 0.00020 0.00035 

Difference 0.0124 0.0070 0.0019 0.0032 0.0071 0.0110 0.0092 0.0092 0.0160 0.0228 

Advantage (%) 57.5357 75.1660 69.4789 88.1353 77.3262 90.2223 96.5866 97.5746 98.7938 98.4727 

 

 

Fig.  1. The figure for Table 1 
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Table  2. The results for 10 objects and the parameters ranging from 1000 to 10000 
  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE10a 1.4126 4.9158 10.5733 18.2499 28.8022 39.2240 54.8238 71.3663 92.1878 117.1658 

EMO18a 0.0072 0.0032 0.0017 0.0021 0.0041 0.0037 0.0030 0.0032 0.0036 0.0040 

Difference 1.4054 4.9127 10.5716 18.2478 28.7981 39.2203 54.8208 71.3631 92.1842 117.1618 

Advantage (%) 99.4908 99.9356 99.9838 99.9886 99.9858 99.9907 99.9946 99.9955 99.9961 99.9966 

 

 
Fig.  2. The figure for Table 2 

 

Table  3. The results for 10 parameters and the objects ranging from 10 to 100 
  10 20 30 40 50 60 70 80 90 100 

CE10a 0.0174 0.0069 0.0019 0.0020 0.0057 0.0078 0.0023 0.0033 0.0057 0.0039 

EMO18a 0.0063 0.0024 0.0006 0.0007 0.0024 0.0016 0.0007 0.0008 0.0008 0.0009 

Difference 0.0110 0.0045 0.0013 0.0013 0.0032 0.0062 0.0016 0.0025 0.0050 0.0030 

Advantage (%) 63.5402 65.6632 69.1512 65.4336 56.9135 79.9089 68.9759 77.1017 86.2588 77.6234 

   

 

 
Fig.  3. The figure for Table 3 

 

Table  4. The results for 10 parameters and the objects ranging from 1000 to 10000 
  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE10a 0.0596 0.1619 0.2678 0.4543 0.5862 0.8606 1.0839 1.3455 1.7614 2.2319 

EMO18a 0.0148 0.0199 0.0276 0.0384 0.0499 0.0631 0.0752 0.0855 0.0994 0.1134 

Difference 0.0448 0.1420 0.2402 0.4159 0.5363 0.7975 1.0087 1.2600 1.6620 2.1185 

Advantage (%) 75.1099 87.6852 89.6930 91.5504 91.4930 92.6671 93.0655 93.6467 94.3553 94.9205 
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Fig.  4. The figure for Table 4 

Table  5. The results for the parameters and the objects ranging from 10 to 100 
  10 20 30 40 50 60 70 80 90 100 

CE10a 0.0175 0.0078 0.0073 0.0141 0.0227 0.0500 0.0683 0.0936 0.1104 0.1536 

EMO18a 0.0061 0.0023 0.0007 0.0007 0.0026 0.0020 0.0008 0.0010 0.0010 0.0011 

Difference 0.0115 0.0055 0.0066 0.0134 0.0201 0.0480 0.0675 0.0926 0.1094 0.1525 

Advantage (%) 65.3281 70.1501 90.6707 95.0966 88.6854 96.0033 98.8679 98.9627 99.1043 99.2978 

 

 
Fig.  5. The figure for Table 5 

Table  6. The results for the parameters and the objects ranging from 100 to 1000 
   100 200 300 400 500 600 700 800 900 1000 

CE10a 0.2100 2.1134 8.4209 23.7731 56.3553 105.5166 188.7614 297.5683 485.1053 724.1639 

EMO18a 0.0089 0.0048 0.0050 0.0075 0.0125 0.0155 0.0179 0.0225 0.0275 0.0331 

Difference 0.2011 2.1086 8.4159 23.7656 56.3428 105.5011 188.7435 297.5458 485.0777 724.1308 

Advantage (%) 95.7673 99.7739 99.9404 99.9683 99.9778 99.9853 99.9905 99.9924 99.9943 99.9954 

 

 
Fig.  6. The figure for Table 6 
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Secondly, we present the running times of CE10o and EMO18o in Table 7 and Fig. 7 for 

10 objects and the parameters ranging from 10 to 100. We then give their running times in 

Table 8 and Fig. 8 for 10 objects and the parameters ranging from 1000 to 10000, in Table 

9 and Fig. 9 for 10 parameters and the objects ranging from 10 to 100, in Table 10 and Fig. 

10 for 10 parameters and the objects ranging from 1000 to 10000, in Table 11 and Fig. 11 

for the parameters and the objects ranging from 10 to 100, and in Table 12 and Fig. 12 for 

the parameters and the objects ranging from 100 to 1000. The results show that EMO18o 

outperforms CE10o in any number of data under the specified condition.  

 

Table  7. The results for 10 objects and the parameters ranging from 10 to 100 
    10 20 30 40 50 60 70 80 90 100 

CE10o 0.01904 0.00705 0.00297 0.00400 0.00843 0.01377 0.01018 0.01433 0.02359 0.04069 

EMO18o 0.00662 0.00213 0.00044 0.00045 0.00215 0.00144 0.00028 0.00021 0.00054 0.00034 

Difference 0.0124 0.0049 0.0025 0.0035 0.0063 0.0123 0.0099 0.0141 0.0231 0.0403 

Advantage (%) 65.2227 69.7850 85.0606 88.7429 74.4344 89.5674 97.2488 98.5327 97.7243 99.1575 

 

 

Fig.  7. The figure for Table 7 

Table  8. The results for 10 objects and the parameters ranging from 1000 to 10000 
    1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE10o 1.4542 5.1004 10.5845 18.3512 28.8547 39.7985 54.9162 73.4039 93.8602 117.4047 

EMO18o 0.0075 0.0044 0.0018 0.0020 0.0041 0.0039 0.0031 0.0032 0.0044 0.0041 

Difference 1.4468 5.0960 10.5828 18.3492 28.8505 39.7946 54.9131 73.4007 93.8557 117.4006 

Advantage (%) 99.4859 99.9131 99.9834 99.9890 99.9857 99.9901 99.9944 99.9957 99.9953 99.9965 

 

 

Fig.  8. The figure for Table 8 
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Table  9. The results for 10 parameters and the objects ranging from 10 to 100 
    10 20 30 40 50 60 70 80 90 100 

CE10o 0.0190 0.0068 0.0019 0.0022 0.0074 0.0086 0.0035 0.0040 0.0038 0.0049 

EMO18o 0.0067 0.0025 0.0006 0.0007 0.0020 0.0026 0.0007 0.0010 0.0012 0.0009 

Difference 0.0124 0.0044 0.0012 0.0015 0.0054 0.0060 0.0028 0.0031 0.0026 0.0040 

Advantage (%) 64.8977 63.9534 65.7049 67.5994 73.0544 69.3178 80.7455 76.2758 67.9499 81.0780 

   

 

 

Fig.  9. The figure for Table 9 

 

Table  10. The results for 10 parameters and the objects ranging from 1000 to 10000 
    1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE10o 0.0455 0.1582 0.2538 0.4141 0.6190 0.9392 1.1141 1.3166 1.7072 2.1520 

EMO18o 0.0105 0.0214 0.0282 0.0385 0.0504 0.0637 0.0735 0.0853 0.1006 0.1139 

Difference 0.0350 0.1368 0.2256 0.3755 0.5686 0.8755 1.0406 1.2312 1.6066 2.0380 

Advantage (%) 76.9072 86.4928 88.8727 90.6937 91.8561 93.2180 93.4048 93.5174 94.1086 94.7052 

 

 
Fig.  10. The figure for Table 10 

 

Table  11. The results for the parameters and the objects ranging from 10 to 100 
    10 20 30 40 50 60 70 80 90 100 

CE10o 0.0128 0.0151 0.0109 0.0162 0.0425 0.0472 0.0682 0.0956 0.1185 0.2012 

EMO18o 0.0048 0.0051 0.0023 0.0006 0.0034 0.0007 0.0008 0.0010 0.0011 0.0012 

Difference 0.0080 0.0101 0.0086 0.0156 0.0391 0.0465 0.0674 0.0946 0.1174 0.1999 

Advantage (%) 62.6342 66.5763 78.7540 96.2336 91.9715 98.5117 98.8262 99.0022 99.1040 99.3912 
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Fig.  11. The figure for Table 11 

Table  12. The results for the parameters and the objects ranging from 100 to 1000 
     100 200 300 400 500 600 700 800 900 1000 

CE10o 0.1923 2.0348 8.3202 25.3170 58.2243 105.5598 190.4531 320.2249 503.3607 751.5572 

EMO18o 0.0079 0.0048 0.0051 0.0080 0.0132 0.0149 0.0187 0.0228 0.0308 0.0336 

Difference 0.1844 2.0300 8.3151 25.3090 58.2111 105.5450 190.4344 320.2021 503.3300 751.5236 

Advantage (%) 95.8737 99.7642 99.9383 99.9684 99.9773 99.9859 99.9902 99.9929 99.9939 99.9955 

 

 

Fig.  12. The figure for Table 12 

5. An Application of EMO18o 

In this section, we apply EMO18o to a performance-based value assignment to the methods 

used in the noise removal, so that we can order them in terms of performance. 

 

Meaning  to be removed the noises which occur during the acquisition or transfer of an 

image, the image denoising is a necessary pre-process for image processing. One of the 

most common tools in this subfield is non-linear filters. However, since the filters 

outperform in different noise densities and have different running times, to be sorted by the 

performances of these filters has made difficult. To overcome this problem, in this section, 

we use the soft decision-making method EMO18o. For this reason, we evaluated the results 

of some salt-and-pepper noise removal methods, well-known in the literature, Progressive 

Switching Median Filter (PSMF) (Wang and Zhang, 1999), Decision Based Algorithm 

(DBA)  (Pattnaik et al., 2012), Modified Decision Based Unsymmetrical Trimmed Median 

Filter (MDBUTMF)  (Esakkirajan et al., 2011), Noise Adaptive Fuzzy Switching Median 

Filter (NAFSMF) (Toh and Isa, 2010), Different Applied Median Filter (DAMF) (Erkan et 

al., 2018) by using 2 traditional images Cameraman and Lena with 512 × 512 pixels, 

ranging in noise densities from 10% to 90%, and an image quality metric Structural 
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Similarity (SSIM) (Wang et al., 2004), commonly used in literature. These simulation 

results are as follows:  

Table  13. The SSIM results for the Cameraman image 

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90% 

PSMF 0.9722 0.9454 0.9044 0.8036 0.6215 0.1178 0.0576 0.0290 0.0129 

DBA 0.9883 0.9664 0.9324 0.8795 0.8167 0.7413 0.6650 0.5841 0.4858 

MDBUTMF 0.9501 0.8388 0.7740 0.8249 0.9014 0.9178 0.8954 0.7864 0.4062 

NAFSMF 0.9797 0.9642 0.9494 0.9340 0.9198 0.8975 0.8745 0.8344 0.7246 

DAMF 0.9963 0.9911 0.9844 0.9760 0.9659 0.9511 0.9323 0.9008 0.8373 

 

Table  14. The SSIM results for the Lena image 

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90% 

PSMF 0.9840 0.9631 0.9163 0.7854 0.5640 0.1115 0.0542 0.0263 0.0123 

DBA 0.9758 0.9422 0.8952 0.8308 0.7549 0.6651 0.5673 0.4442 0.3458 

MDBUTMF 0.9542 0.8686 0.8137 0.8449 0.8841 0.8835 0.8521 0.7392 0.3395 

NAFSMF 0.9838 0.9667 0.9481 0.9293 0.9055 0.8809 0.8495 0.8043 0.6868 

DAMF 0.9902 0.9792 0.9652 0.9503 0.9303 0.9090 0.8788 0.8382 0.7697 

 

Suppose that the success in high noise densities is more important than in the others. In that 

case, the values given in Table 13 and 14 can be represented with two fpfs-matrices as 

follows: 

 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9722 0.9454 0.9044 0.8036 0.6215 0.1178 0.0576 0.0290 0.0129

0.9883 0.9664 0.9324 0.8795 0.8167 0.7413 0.6650 0.5841 0.4858

0.9501 0.8388 0.7740 0.8249 0.9014 0.9178 0.8954 0.7864 0.4062

0.9797 0.9642 0.9494 0.9340 0.9198 0.8975 0.8745 0.8344 0.7246

0.9963 0.9911 0.9844 0.9760 0.9659 0.9511 0.9323 0.9008 0.8373]
 
 
 
 
 
 
 

 

and 

[𝑏𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9840 0.9631 0.9163 0.7854 0.5640 0.1115 0.0542 0.0263 0.0123

0.9758 0.9422 0.8952 0.8308 0.7549 0.6651 0.5673 0.4442 0.3458

0.9542 0.8686 0.8137 0.8449 0.8841 0.8835 0.8521 0.7392 0.3395

0.9838 0.9667 0.9481 0.9293 0.9055 0.8809 0.8495 0.8043 0.6868

0.9902 0.9792 0.9652 0.9503 0.9303 0.9090 0.8788 0.8382 0.7697]
 
 
 
 
 
 
 

 

 

If we apply EMO18o to the fpfs-matrices [𝑎𝑖𝑗] and [𝑏𝑖𝑗], then the score matrix and the 

decision set are as follows:  

 

 [𝑠𝑖1] = [0.3214  0.4673  0.6291    0.6675    0.7536]𝑇 

and  

 {0.4266PSMF,  0.6201DBA,  0.8349MDBUTMF,  0.8858NAFSMF,  1DAMF} 
 

The scores show that DAMF outperforms the other methods and the order DAMF, 

NAFSMF, MDBUTMF, DBA, and PSMF is valid. 

 



Enginoğlu et al. /JNRS, 2018, 7(3), 28-43                                                                                                    40 

Suppose that the success in low noise densities is more important than in the others. In that 

case, the values given in Table 13 and 14 can be represented with two fpfs-matrices as 

follows: 

[𝑐𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9722 0.9454 0.9044 0.8036 0.6215 0.1178 0.0576 0.0290 0.0129

0.9883 0.9664 0.9324 0.8795 0.8167 0.7413 0.6650 0.5841 0.4858

0.9501 0.8388 0.7740 0.8249 0.9014 0.9178 0.8954 0.7864 0.4062

0.9797 0.9642 0.9494 0.9340 0.9198 0.8975 0.8745 0.8344 0.7246

0.9963 0.9911 0.9844 0.9760 0.9659 0.9511 0.9323 0.9008 0.8373]
 
 
 
 
 
 
 

  

and 

[𝑑𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9840 0.9631 0.9163 0.7854 0.5640 0.1115 0.0542 0.0263 0.0123

0.9758 0.9422 0.8952 0.8308 0.7549 0.6651 0.5673 0.4442 0.3458

0.9542 0.8686 0.8137 0.8449 0.8841 0.8835 0.8521 0.7392 0.3395

0.9838 0.9667 0.9481 0.9293 0.9055 0.8809 0.8495 0.8043 0.6868

0.9902 0.9792 0.9652 0.9503 0.9303 0.9090 0.8788 0.8382 0.7697]
 
 
 
 
 
 
 

 

 

If we apply EMO18o to the fpfs-matrices [𝑐𝑖𝑗] and [𝑑𝑖𝑗], then the score matrix and the 

decision set are as follows: 

  

 [𝑠𝑖1] = [0.8856  0.8895  0.8588    0.8854    0.8967]𝑇 

and  

 {0.9877PSMF,  0.9920DBA,  0.9577MDBUTMF,  0.9875NAFSMF,  1DAMF} 
 

The scores show that DAMF performs better than the other methods and the order DAMF, 

DBA, PSMF, NAFSMF, and MDBUTMF is valid.  

6. Conclusion 

The uni-int decision-making method was defined in 2010  (Çağman and Enginoğlu, 2010a). 

Afterwards, this method has been configured (Enginoğlu and Memiş, 2018) via fpfs-

matrices (Enginoǧlu, 2012). However, the method suffers from a drawback, i.e. its 

incapability of processing a large amount of parameters on a standard computer, e.g. with 

2.6 GHz i5 Dual Core CPU and 4GB RAM. For this reason, simplification of such methods 

is significant for a wide range of scientific and industrial processes. In this study, firstly, we 

have proposed two fast and simple soft decision-making methods EMO18a and EMO18o 

which one of them has first been presented in (Enginoğlu et al., 2018). Moreover, we have 

proved that these two methods accept CE10 as a special case, under the condition that the 

first rows of the fpfs-matrices are binary. It is also possible to investigate the simplifications 

of the other products such as andnot-product and ornot-product (see Definition 2.3). 

 

We then have compared the running times of these algorithms. In addition to the results in 

Section 4, the results in Table 15 and 16 too show that EMO18a and EMO18o outperform 

CE10a and CE10o, respectively, in any number of data under the specified condition. 

Finally, we have applied EMO18o to the determination of the performance of the methods 

used in (Erkan et al., 2018). It is clear that EMO18o, which is a fast and simple method, can 

be successfully applied to the decision-making problems in various areas such as machine 

learning and image enhancement. 
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Table  15. The mean/max advantage and max difference values of EMO18a over CE10a 

Location Objects Parameters Mean Advantage % Max Advantage % Max Difference 

Table 1 10 10-100 84.9292 98.7938 0.0228 

Table 2 10 1000-10000 99.9358 99.9966 117.1618 

Table 3 10-100 10 71.0570 86.2588 0.0110 

Table 4 1000-10000 10 90.4186 94.9205 2.1185 

Table 5 10-100 10-100 90.2167 99.2978 0.1525 

Table 6 100-1000 100-1000 99.5386 99.9954 724.1308 

Table  16.  The mean/max advantage and max difference values of EMO18o over CE10o 

Location Objects Parameters Mean Advantage % Max Advantage % Max Difference 

Table 1 10 10-100 86.5476 99.1575 0.0403 

Table 2 10 1000-10000 99.9329 99.9965 117.4006 

Table 3 10-100 10 71.0577 81.0780 0.0124 

Table 4 1000-10000 10 90.3777 94.7052 2.0380 

Table 5 10-100 10-100 89.1005 99.3912 0.1999 

Table 6 100-1000 100-1000 99.5480 99.9955 751.5236 

 

Furthermore, other decision-making methods constructed by a different decision function 

such as minimum-maximum (min-max), max-max, and min-min can also be studied by the 

similar way. 
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