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Abstract

Within the class of polyominoes we work on the enumeration of two subfamilies of the
family of snake polyominoes: stairs and snakes of height 2. We consider them from a graph
theoretical perspective. In the process of enumeration of these graphs, we use classical
ideas, as symmetries, and a new approach that connects these snakes with the partitions of
integers.

1. Introduction

A polyomino is a planar shape made by connecting a certain number of equal-sized squares, each joined together with at least one other
square along an edge. A snake of length n > 1, is a packing of n congruent geometrical objects, called cells, where the first and last cell have
only one neighbor and all the other cells have exactly two neighbors. A snake polyomino is a snake where all the cells are squares. In Figure
1.1 we show all the polyominoes with six cells, the snakes have been highlighted.

Figure 1.1: All polyominoes with six cells.

In this work, polyominoes are considered graphs, where every cell is a copy of the cycle C4. Moreover, these graphs are embedded in the
integral grid. This last restriction has implications on their number. Thus, snake polyominoes, or simply snakes, form a polyomino class,
which can be described by the avoidance of the polyominoes shown in Figure 1.2. This definition is slightly different of the one given in [1].
There, Battaglino et al., only consider, as forbidden substructures, the first two shapes. We included here the third one to be consistent with
the definition of snake, where the extreme cells only have one neighbor.
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Figure 1.2: Forbidden structures in snake polyominoes.

Golomb [2] introduced the concept of polyomino in 1953, since then, there has been a number of papers centered in the enumeration of
subfamilies of them. Several algorithms, that count the number of members of these subfamilies, have been created; however, the general
case remains unsolved, that is, for a given value of n, it is unknown the number of polyominoes with n cells.
In Section 2 we present some general results that are used in our counting process in the coming sections. We study two subfamilies of
snakes: stairs (Section 3) and snakes of height 2 (Section 4). In both cases, we consider the snakes inscribed into a box, i.e., the boundary of
Pa×Pb; partitions of integers are used in the enumeration process of both subfamilies.

2. General results

2.1. Quadrilateral snakes and snake polyominoes

The problem of counting snakes has been considered by several authors. Recently, Goupil et al., [3] studied the problem not only in the
plane, they also considered higher dimensions. In that work as well as in [4], the authors accept the third structure in Figure 1.2 as a valid
substructure of a snake. Pegg Jr. [4], called these combinatorial structures, 2-sided strip polyominoes with n cells. In Table 1 we show the
first values of p(n), i.e., the number of 2-sided strip polyominoes, and p(n), the number of snakes that follow our definition. As we may
expect, the difference between p(n) and p(n) increses with n.

n 1 2 3 4 5 6 7 8 9
p(n) 1 1 2 3 7 13 31 65 154
p(n) 1 1 2 3 7 13 30 64 150

Table 1: Number of quadrilateral snakes and snake polyominoes.

In [5], the first author defined a kCn-snake as a connected graph in which the k cells are isomorphic to the cycle Cn and the block-cutpoint
graph is a path. By a quadrilateral snake we understand a kC4-snake. In [6], we established a relationship between quadrilateral snakes
and snake polyominoes, showing that for every snake polyomino there exists a quadrilateral snake of the same length. We also show that
the converse of this statement is not valid. The reason is that when the number of cells is at least 7, there exist quadrilateral snakes which
associated graph is not a snake polyomino because they have a subgraph isomorphic to the third structure in Figure 1.2. In Figure 2.1 we
show three, of the 31 quadrilateral snakes of length 7, together with their associated polyomino. We can see that in the third example, the
polyomino is not a snake according to our defintion, but it is according to the one used in [3] and [4]. Hence, p(n) actually counts the number
of quadrilateral snakes of length n. Therefore, determining a formula for p(n), as well as for p(n), is still an open problem.

Figure 2.1: Quadrilateral snakes and associated polyominoes.

2.2. Partitioning n into k parts

It is well-known that the number P(n,k) of partitions of n into k parts, where the order is taken under consideration, is given by

P(n,k) =C(n−1,k−1),

where C(n−1,k−1) is the standard binomial coefficient
(n−1

k−1
)
.

In order to prove this fact, the number n is represented on a line formed by n balls. There are n−1 spaces in between the balls where a
bar (or separator) can be placed. So, to separate the balls into k groups we need to introduce k−1 bars. The number of ways to do this is
C(n−1,k−1).
In Figure 2.2 we show an example of this result, exhibiting all the 3-part partitions of 5.
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Figure 2.2: 3-part partitions of 5.

In the next sections we use this type of partitions to count the number of snakes considered in each case.

2.3. Snakes in a box

As we mentioned before, our snakes are subgraphs of Pa×Pb. Suppose that a snake S of length n is a subgraph of Pa×Pb and is not a
subgraph of Pa−1×Pb nor Pa×Pb−1, then we say that S is inscribed in a box of base b−1 and height a−1, or that S has base b−1 and
height a−1. For example, the snakes in Figure 2.1 are inside the boxes P4×P8, P6×P6, and P5×P6, respectively. We use the symmetries of
these boxes to count the number of non-isomorphic snakes.

3. The number of stairs

By a block of cells of length t we understand the ladder Lt = P2 ×Pt+1. Let Lp1 ,Lp2 , . . . ,Lpk be a sequence of these blocks, where
p1 + p2 + · · ·+ pk = n and each pi 6= 0. The stair snake polyomino, or simply stair, formed by these blocks, is the graph obtained by placing
the first cell of Lpi on top of the last cell of Lpi−1 , for each 2≤ i≤ k. In Figure 3.1, we show the stair with base 11 and height 5 with blocks
of length 1,4,3,5,2.

2 1 1 2 1 2 1 1 1 2 1
1
4
3
5
2

Figure 3.1: A stair of length 15.

First, we must observe that p1, p2, . . . , pk is a partition of n into k parts. In addition, the construction given above establishes a bijection
between the set of partitions of n into k parts, where order matters, and the set of stairs built in this way. So, in order to determine the number
of stairs of length n with k steps (i.e., with k blocks of cells), we may count the distinct partitions of n into k parts.

Let S be a stair of length n with k steps built using the partition p1, p2, . . . , pk. Associated with this partition, there are three other partitions
that form the same graph. In the case of the example given in Figure 3.1, the numbers on the left of the picture can be read from top to
bottom forming a ”different” partition of n. The other two partitions are obtained by reading the numbers, on the bottom, from left to right
and vice versa. In general, for any given stair S, the other three partitions can be obtained using symmetries; the first one is a 180◦ rotation of
S, while the other two are reflections, of S, around the two diagonals of a square centered at the center of S. In other terms, if the stair is not
symmetric, there are two partitions of n into k parts and two partitions of n into n+1− k parts, associated with the same stair. Therefore, we
need to analyze the case where the stair is symmetric.

Consider any symmetric stair with n cells. If its first and last cell are deleted, the remaining graph is also a symmetric stair. Thus, all the
symmetric stairs with n+2 cells can be constructed using the symmetric stairs with n cells, by attaching a new cell, to both, the first and the
last cell.

It is easy to see that for n = 1,2 there is only one stair with n cells. In general, every stair with n cells can be inscribed inside a rectangle, that
can be a square, in such a way that the extreme cells are located in opposite corners of the rectangle.
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Figure 3.2: Extension schemes for symmetric stairs.

In Figure 3.2 we show the four ways, that exist, to extend a symmetric stair with n cells into a symmetric stair with n+2 cells. Schemes I and
II show the cases where the original stair is inscribed in a rectangle (that can be a square), and the symmetry is a 180◦ rotation around the
center of the rectangle. When the stair is inscribed in a square, schemes III and IV, the symmetry is a 180◦ rotation around the axis formed
by the main diagonal of the square.
Independently of the case, the extreme cells have one horizontal and one vertical edge where a new cell can be attached. Thus, scheme I is
the connection VV, scheme II is HH, scheme III is VH, and scheme IV is HV. Consequently, if p1, p2, . . . , pk is the partition of n into k parts
associated with a symmetric stair S, with n cells and k steps (or blocks of cells), then the partition of the new stair, for each case is shown in
Table 2.

Connection Partition Number of Steps
I: VV 1+ p1, p2, . . . ,1+ pk k
II: HH 1, p1, p2, . . . , pk,1 k+2
III: VH 1+ p1, p2, . . . , pk,1 k+1
IV: HV 1, p1, p2, . . . ,1+ pk k+1

Table 2: Types of connections and associated partitions.

One of the consequences of this property is that if s(n) is the number of symmetric stairs with n cells, then 2s(n) is the number of symmetric
stairs with n+2 cells. Since, s(1) = s(2) = 1, we may conclude that

s(n) =

{
2

n−2
2 , if n is even,

2
n−1

2 , if n is odd.

The sequence formed by the values of s(n) corresponds to the sequence A016116 in OEIS.
Summarizing, for every stair with n cells and k steps, there is a partition of n into k parts and vice versa. A non-symmetric stair is represented
by four different partitions; every symmetric stair is represented by two different partitions.
Since there are 2n−1 partitions of n into k parts, the number e(n) of non-isomorphic stairs with n≥ 3 cells is:
When n is even:

e(n) =
1
4

(
2n−1−2 ·2

n−2
2

)
+

1
2
·2 ·2

n−2
2

= 2n−3− 1
2
·2

n−2
2 +2

n−2
2

= 2n−3 +
1
2
·2

n−2
2

= 2n−3 +2
n−4

2 .

When n is odd:

e(n) =
1
4

(
2n−1−2 ·2

n−1
2

)
+

1
2
·2 ·2

n−1
2

= 2n−3− 1
2
·2

n−1
2 +2

n−1
2

= 2n−3 +
1
2
·2

n−1
2

= 2n−3 +2
n−3

2 .

The first values of e(n) are shown in Table 3. For n≥ 2, the consecutive values of e(n) form the sequence A005418 in OEIS [7].
We can go even further, using the diagrams in Figure 3.2, we can calculate the number σ(n,k) of symmetric stair with n cells and k steps.
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n e(n) n e(n) n e(n)
1 1 11 272 21 262656
2 1 12 528 22 524800
3 2 13 1056 23 1049600
4 3 14 2080 24 2098176
5 6 15 4160 25 4196352
6 10 16 8256 26 8390656
7 20 17 16512 27 16781312
8 36 18 32896 28 33558528
9 72 19 65792 29 67117056
10 136 20 131328 30 134225920

Table 3: Number of non-isomorphic stairs with n cells.

Recall that σ(1,1) = σ(2,1) = σ(2,2) = 1. We use the conventions that σ(n,k) = 0 when k < 1 or k > n, and C(n,k) = 0 if k is not an
integer.
Thus, from I and II in Figure 3.2, we know that for all values of n≥ 3 and k 6= n+1

2 ,

σ(n,k) = σ(n−2,k)+σ(n−2,k−2).

When k = n+1
2 we get

σ(n,k) = σ(n−2,k)+σ(n−2,k−2)+2
n−1

2 .

The number 2
n−1

2 comes from III and IV in Figure 3.2.

Proposition 3.1. Let n be a positive even number and k ∈ {1,2, . . . ,n}. Given that σ(2,1) = σ(2,2) = 1, the number σ(n,k) of symmetric
stairs with n cells and k steps is

σ(n,k) =C
(

n−2
2

,

⌊
k−1

2

⌋)
.

Proof. By induction on n. Recall that σ(2,1) = σ(2,2) = 1; for n = 4:

σ(4,1) = σ(2,1) = σ(2,−1) = 1+0 = 1

σ(4,2) = σ(2,2) = σ(2,0) = 1+0 = 1

σ(4,3) = σ(2,3) = σ(2,1) = 0+1 = 1

σ(4,4) = σ(2,4) = σ(2,2) = 0+1 = 1

On the other side, C
(

4−2
2 ,
⌊

k−1
2

⌋)
=C

(
1,
⌊

k−1
2

⌋)
. Thus,

C
(

1,
⌊

1−1
2

⌋)
=C(1,0) = 1

C
(

1,
⌊

2−1
2

⌋)
=C(1,0) = 1

C
(

1,
⌊

3−1
2

⌋)
=C(1,1) = 1

C
(

1,
⌊

4−1
2

⌋)
=C(1,1) = 1.

Then, the proposition is correct for n = 2 and n = 4.
Suppose that the proposition is correct up to a certain value of n. We want to prove that is also correct for n+2; in other terms,

σ(n+2,k) =C
(

n
2
,

⌊
k−1

2

⌋)
.

We know that

σ(n+2,k) = σ(n,k)+σ(n,k−2)

= C
(

n−2
2

,

⌊
k−1

2

⌋)
+C

(
n−2

2
,

⌊
k−3

2

⌋)
= C

(
n
2
,

⌊
k−1

2

⌋)
.

Therefore, the proposition is true for every even value of n.
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Proposition 3.2. Let n be a positive odd number and k ∈ {1,2, . . . ,n}. Given that σ(1,1) = 1, the number σ(n,k) of symmetric stairs with
n cells and k steps is

σ(n,k) =C
(

n−1
2

,
k−1

2

)
+ ε(k),

where

ε(k) =

{
2

n−1
2 , when k = n+1

2 ,

0, otherwise.

Proof. Suppose that n≥ 3 is odd. Note that when k is even, k−1
2 is not an integer, then C

(
n−1

2 , k−1
2

)
= 0. Thus, from this point we are

assuming that k is odd.
The term ε(k) is the number of symmetric stairs with n cells and k = n+1

2 steps that are originated by the corresponding stairs with n−2 cells
and n−1

2 steps. Based on the diagrams III and IV in Figure 3.2 and the fact that σ(1,1) = 1, we know that these stairs increase by a factor of

2 in the next generation, so ε
( n+1

2
)
= 2

n−1
2 . In addition, we must observe that this ε(k) is positive only when k = n+1

2 , otherwise is 0.
For any other value of k, any symmetric stair with n−2 cells can be inscribed into a rectangle, that is not a square, implying that this stair
produces two stairs with n cells, one with k steps (diagram I) and the other one with k+2 steps (diagram II). Since σ(1,1) = 1, we can see that

the sequence of values of σ(n,k) is exactly the sequence of binomial coefficients, adjusted conveniently. Therefore, σ(n,k) =C
(

n−1
2 , k−1

2

)
for all odd values of n and k, except when k = n+1

2 where we need to add the power 2
n−1

2 .

In Table 4 we show the first values of σ(n,k). The triangular arrangement produced by the vales of σ(n,k) is quite similar to the one found in
the sequence A051159 in OEIS. Both triangles, only differ when n is odd and k = n+1

2 , that is when we added ε(k). Thus, T (n,k) = σ(n,k)
for all n and k except when n is odd and k = n+1

2 , where T (n,k) are the entries of the triangle in A051159.

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1
2 1 1
3 1 0+2 1
4 1 1 1 1
5 1 0 3+4 0 1
6 1 1 2 2 1 1
7 1 0 3 0+8 3 0 1
8 1 1 3 3 3 3 1 1
9 1 0 4 0 6+16 0 4 0 1

10 1 1 4 4 6 6 4 4 1 1
11 1 0 5 0 10 0+32 10 0 5 0 1
12 1 1 5 5 10 10 10 10 5 5 1 1
13 1 0 6 0 15 0 20+64 0 15 0 6 0 1
14 1 1 6 6 15 15 20 20 15 15 6 6 1 1
15 1 0 7 0 21 0 35 0+128 35 0 21 0 7 0 1
16 1 1 7 7 21 21 35 35 35 35 21 21 7 7 1 1
17 1 0 8 0 28 0 56 0 70+256 0 56 0 28 0 8 0 1
18 1 1 8 8 28 28 56 56 70 70 56 56 28 28 8 8 1 1
19 1 0 9 0 36 0 84 0 126 0+512 126 0 84 0 36 0 9 0 1
20 1 1 9 9 36 36 84 84 126 126 126 126 84 84 36 36 9 9 1 1

Table 4: σ(n,k) number of symmetric stairs with n cells and k steps.

There is another alternative to present the problem of counting stairs. We show it for the case where k = n+1
2 .

Consider the integral grid N×N. Determine the number of non-equivalent paths between the points (0,0) and (n,n). Two paths are
equivalent if one can be obtained from the other by any of the symmetries of the square where it is inscribed. In Figure 3.2 we show the first
instances of these paths, that is, for every n ∈ {1,2,3,4}.

Figure 3.3: Non-equivalent paths from (0,0) to (n,n)

Before closing this section, we want to note a connection between stairs and caterpillars. Suppose that the rows, of the box containing
the stair, are labeled 0,1, . . . ,λ from the top to the bottom, and the columns are labeled, from left to right, λ +1,λ +2, . . . ,n. Thus, this
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representation of the stair corresponds to the α-labeling of a caterpillar. This labeling scheme was given by Rosa [8]; he proved that all
caterpillars admit an α-labeling. Barrientos and Minion [9] used an extension of the adjacency matrix of α-labeled graphs and realized that
all the adjacencies lie in a rectange. In the case of Rosa’s labeling of caterpillars, the distribution of the adjacencies follows the stair pattern
of these polyominoes. This fact is ratified in [7], where one of the interpretations of the sequence A005418 is that it represents the number of
caterpillars of order n. For more information about labelings and, in particular, α-labelings, the interested reader is referred to [10].

4. Snakes in P3×Pt+1

In this section we determine the number of snakes that can be inscribed in a box of base t and height 2. Consider the six snakes shown in
Figure 4.1. Each of them is formed by blocks of cells of the form Lp = P2×Pp+1, where p≥ 1. For example, the snake in part E is formed
by the sequence of blocks L4,L3,L5,L2. In general, when Lp1 ,Lp2 , . . . ,Lpk is the sequence of blocks of cells associated to a snake polyomino
of height 2, the last cell (from left to right) of Lpi is adjacent to the first cell of Lpi+1 . We use the convention that the odd numbered blocks are
placed on the top row, as shown in Figure 4.1; in this figure we show all the different posibilites for the end blocks Lp1 and Lpk . Note that for
every 2≤ i≤ k−1, each Lpi must have at least three cells, otherwise, the associated polyomino would not be a snake because it would have
a subgraph isomorphic to the second graph in Figure 1.2.

A : B : C :

D : E : F :

Figure 4.1: All general configurations for snakes of height 2.

Hence, if a snake of height 2 with n cells is represented by the sequence of blocks Lp1 ,Lp2 , . . . ,Lpk , the associated sequence p1, p2, . . . , pk is
a partition of n into k parts where p2, p3, . . . , pk−1 are at least 3. Thus, instead of counting snakes we may count partitions that satisfy these
conditions.
In [11], Deutsch showed that in the OEIS sequence A102547, the term T (n,k) is the number of compositions of n+3 with k+1 parts, all at
least 3. He calculated this number to be

T (n,k) =C(n−2k,k)

where n≥ 0 and 0≤ k ≤ n
3 . Adjusting this expression to our terminology we can say that for every n≥ 3 and 1≤ k ≤

⌊ n
3
⌋
, the number of

partitions of n into k parts, where every part is at least 3 is given by

π3(n,k) =C(n−2k−1,k−1).

Therefore the number of partitions of n where every part is at least three is:

b n
3c

∑
k=1

π3(n,k) =
b n

3c
∑
k=1

C(n−2k−1,k−1).

Table 5 shows the values of π3(n,k) from n = 3 up to n = 29.
Before completing the counting process, we need to calculate the number s3(n,k) of symmetric partitions of n into k parts where every part
is at least three.
Let p1, p2, . . . , pk be a partition of n into k parts. We say that this partition is symmetric (or reversible) if for every 1≤ i≤ k, pi = pk1−i.

Proposition 4.1. If n is odd and k is even, then s3(n,k) = 0.

Proof. By contradiction. Suppose that s3(n,k) 6= 0, that is, there exists a symmetric partition of n into k parts, where each part is at least 3.
Since the partition is symmetric and k is even

k
2

∑
i=1

pi =
k

∑
i= k

2 +1

pi

and

k

∑
i=1

pi =

k
2

∑
i=1

pi +
k

∑
i= k

2 +1

pi = 2

k
2

∑
i=1

pi

which is even. But this is a contradiction because n = ∑
k
i=1 pi is odd. Therefore s3(n,k) = 0.

Proposition 4.2. If both n and k are odd, then s3(n,k) = s3(n+1,k).
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n\k 1 2 3 4 5 6 7 8 9 Total
3 1 1
4 1 1
5 1 1
6 1 1 2
7 1 2 3
8 1 3 4
9 1 4 1 6
10 1 5 3 9
11 1 6 6 13
12 1 7 10 1 19
13 1 8 15 4 28
14 1 9 21 10 41
15 1 10 28 20 1 60
16 1 11 36 35 5 88
17 1 12 45 56 15 129
18 1 13 55 84 35 1 189
19 1 14 66 120 70 6 277
20 1 15 78 165 126 21 406
21 1 16 91 220 210 56 1 595
22 1 17 105 286 330 126 7 872
23 1 18 120 364 495 252 28 1278
24 1 19 136 455 715 462 84 1 1873
25 1 20 153 560 1001 792 210 8 2745
26 1 21 171 680 1365 1287 462 36 4023
27 1 22 190 816 1820 2002 924 120 1 5896
28 1 23 210 969 2380 3003 1716 330 9 8641
29 1 24 231 1140 3060 4368 3003 792 45 12664

Table 5: Partitions of n into k parts pi, where pi ≥ 3.

Proof. Suppose that both n and k are odd numbers. Let p1, p2, . . . , pk be a symmetric partition of n into k parts where every part is at least 3.
This partition can be transformed into a symmetric partition of n+1 by adding one unit to the part p k+1

2
. Thus, every symmetric partition of

n corresponds to a symmetric partition of n+1, where each pi ≥ 3.
Let p′1, p′2, . . . , p′k be a symmetric partition of n+1 where each p′i ≥ 3. Then, for every 1≤ i≤ k−1

2 , p′i = p′k+1−i. Hence, p′k+1
2
≥ 3 must be

an even number. So, by making p k+1
2

= p′k+1
2
−1 and pi = p′i for every 1≤ i≤ k−1

2 , we obtain a symmetric partition of n. That is, every

symmetric partition of n+1 corresponds to a symmetric partition of n.
Therefore, s3(n,k) = s3(n+1,k) when n and k are odd.

Proposition 4.3. If both n and k are odd, then s3(n,k) = π3

(
n+3

2 , k+1
2

)
.

Proof. Let us assume that k = 3 and p1, p2, p3 is a symmetric partition of n where each part is at least 3. Because of the symmetry, we know
that p2 is odd; so p2 ∈ {3,5, . . . ,n−6}. This implies that p1 = p3 and it belongs to {3,4, . . . , n−3

2 }. Then, there are n−3
2 −3+1 = n−7

2
partitions of n; that is, s3(n,3) = n−7

2 .
On the other side,

π3

(
n+3

2
,2
)
=C

(
n+3

2
−4−1,1

)
=

n+3
2
−5 =

n−7
2

.

So, s3 = (n,3) = π3
( n+3

2 ,2
)

as we claimed.
Suppose now that k > 3. If p1, p2, . . . , pk is a symmetric partition of n into k parts where every part is at least 3. Then p k+1

2
is odd and

belongs to {3,5, . . . ,n−6}. Moreover, p1, p2, . . . , p k−1
2

is a partition of 1
2

(
n− p k+1

2

)
into k−1

2 parts. Thus,

∑
p k+1

2
∈{3,5,...,n−5}

π3

(
1
2

(
n− p k+1

2

)
,

k−1
2

)
= π3

(
n−3

2
,

k−1
2

)
+π3

(
n−5

2
,

k−1
2

)
+ · · ·+π3

(
n−n+6

2
,

k−1
2

)

= π3

(
3,

k−1
2

)
+π3

(
5,

k−1
2

)
+ · · ·+π3

(
n−3

2
,

k−1
2

)

=

n−3
2

∑
i=3

π3

(
i,

k−1
2

)
=

n+3
2 −3

∑
i=3

π3

(
i,

k+1
2
−1
)

=

n+3
2 −3

∑
i=3· k+1

2 −3

π3

(
i,

k+1
2
−1
)
= π3

(
n+3

2
,

k+1
2

)



Fundamental Journal of Mathematics and Applications 153

because π3

(
i, k+1

2 −1
)
= 0 for all the values of i such that 3≤ i < 3

(
k+1

2 −1
)

.

Proposition 4.4. For every n < 3k, π3(n,k) = 0.

Proof. By contradiction. Suppose that n < 3k and π3(n,k)> 0. Then, there exists a partition of n into k parts where every part is at least 3.
Let p1, p2, . . . , pk be this partition. Thus, p1+ p2+ · · ·+ pk = n. Since pi ≥ 3 for every i∈ {1,2, . . . ,k}, we have that p1+ p2+ · · ·+ pk ≥ 3k.
Hence 3k = n, which is a contradiction.
Therefore, for every n < 3k, π3(n,k) = 0.

Proposition 4.5. If n and k are even, then s3(n,k) = π3

(
n
2 ,

k
2

)
.

Proof. Suppose that both, n and k, are even. Let p1, p2, . . . , pk be a symmetric partition of n into k parts, where each part is at least 3. Then,
for every 1≤ i≤ k

2 , pi = pk+1−i and p1, p2, . . . , p k
2

is a partition of n
2 where every part is at least 3. There are π3

(
n
2 ,

k
2

)
of these partitions.

Therefore, when n and k are even, s3(n,k) = π3

(
n
2 ,

k
2

)
.

We summarize these results in the next theorem.

Theorem 4.6. Let n≥ 3 be an integer and 1≤ k≤
⌊ n

3
⌋
. The number of symmetric partitions of n into k parts where each part is at least 3 is

given by

s3(n,k) =



0 if n is odd and k is even,

π3

(
n+3

2 , k+1
2

)
=C

(
n−1

2 − k, k−1
2

)
if n is odd and k is odd,

π3

(
n+2

2 , k+1
2

)
=C

(
n−2

2 − k, k−1
2

)
if n is even and k is odd,

π3

(
n
2 ,

k
2

)
=C

(
n−2

2 − k, k−2
2

)
if n is even and k is even.

Table 6 contains the first values of s3(n,k). This sequence of numbers can be found in the OEIS, sequence A317489. The column of totals,
obtained by adding the s3(n,k) for all possible values of k, can be also found in OEIS, sequence A226916, see [12].

n\k 1 2 3 4 5 6 7 8 9 Total
3 1 1
4 1 1
5 1 1
6 1 1 2
7 1 0 1
8 1 1 2
9 1 0 1 2

10 1 1 1 3
11 1 0 2 3
12 1 1 2 1 5
13 1 0 3 0 4
14 1 1 3 2 7
15 1 0 4 0 1 6
16 1 1 4 3 1 10
17 1 0 5 0 3 9
18 1 1 5 4 3 1 15
19 1 0 6 0 6 0 13
20 1 1 6 5 6 3 22
21 1 0 7 0 10 0 1 19
22 1 1 7 6 10 6 1 32
23 1 0 8 0 15 0 4 28
24 1 1 8 7 15 10 4 1 47
25 1 0 9 0 21 0 10 0 41
26 1 1 9 8 21 15 10 4 69
27 1 0 10 0 28 0 20 0 1 60
28 1 1 10 9 28 21 20 10 1 101
29 1 0 11 0 36 0 35 0 5 88

Table 6: Number of symmetric partitions of n into k parts, where pi ≥ 3.

Similarly to what we did in the previous section, we use the values of π3(n,k) and s3(n,k) to find the number of non-isomorphic snake
polyominoes with n cells and height 2. Note that any of these snakes must fit in exactly one of the six cases shown in Figure 4.1; so we
analyze six cases:
Case I: The snake has the shape A, i.e., every block of cells has length at least 3. Thus, the number β2(n) of snake polyominoes of length n
and height 2 is the same that the number of different partitions of n where every part is at least 3. In order to determine this number, we must
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remember that the graphs produced by the partition p1, p2, . . . , pk and its reverse, pk, pk−1, . . . , p1, are isomorphic; furthermore, some of
these partitions are symmetric, thus for a fixed value of k

1
2
(π3(n,k)− s3(n,k))

is the number of different non-symmetric partitions of n into k parts where each part is at least 3. So, adding s3(n,k) to this expression we get

1
2
(π3(n,k)+ s3(n,k)) .

Adding these numbers over all the possible values of k we obtain

β
1
2 (n) =

1
2

b n
3c

∑
k=2

(π3(n,k)+ s3(n,k)).

Note that the case k = 1 cannot be used here because the resulting snake has height 1.
Case II: The snake has the shape B, i.e., every block of cells has length at least 3 except the first and the last one that have length 1. Thus,
the number of non-isomorphic snakes is the same that the number of different partitions of n−2 where every part is at least 3. Following the
same steps than the previous case, we get

β
2
2 (n) =

1
2

b n−2
3 c

∑
k=1

(π3(n−2,k)+ s3(n−2,k)).

Case III: The snake has the shape C, i.e., every block of cells has length 3 except the first and the last one that have length 2. Thus, the
number of non-isomorphic snakes is the same that the number of different partitions of n−4 where every part is at least 3. This number is
given by

β
3
2 (n) =

1
2

b n−4
3 c

∑
k=1

(π3(n−4,k)+ s3(n−4,k)).

Case IV: The snake has the shape D, i.e., every block of cells has length 3 except the first one that has length 1. Thus, the number of
non-isomorphic snakes is the same that the number of different partitions of n−1 where every part is at least 3. This number is given by

β
4
2 (n) =

b n−1
3 c

∑
k=1

π3(n−1,k).

Case V: The polyomino has the shape E, i.e., every block of cells has length 3 except the last one that has length 2. Thus, the number of
non-isomorphic snakes is the same that the number of partitions of n−2 whre every part is at least 3. This number is given by

β
5
2 (n) =

b n−2
3 c

∑
k=1

π3(n−2,k).

Case VI: The polyomino has the shape F, i.e., every block of cells has length 3 except the first one that has length 1 and the last one that has
length 2. Thus, the number of non-isomorphic snakes is the same that the number of different partitions of n−3 where every part is at least 3.
This number is given by

β
6
2 (n) =

b n−3
3 c

∑
k=1

π3(n−3,k).

Adding all these quantities we obtain the total number of non-isomorphic snake polyominoes of length n and width 2. In this way we have
proven the following theorem.

Theorem 4.7. The number β2(n) of non-isomorphic snake polyominoes of length n and height 2 is

β2(n) =
6

∑
i=1

β
i
2(n).

In Figure 4.2 we show a complete example for the case n = 12. In this case we have: β 1
2 (12) = 11,β 2

2 (12) = 6,β 3
2 (12) = 3,β 4

2 (12) =
13,β 5

2 (12) = 9,β 6
2 (12) = 6, and β2(12) = 48.
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Figure 4.2: Non-isomorphic snake polyominoes of length 12 and height 2.

In Table 7 we show the inital values of these numbers. The last column, that corresponds to β2(n), can be obtained from A102543 in OEIS
[13]. In fact, for n≥ 5, β2(n) = a(n+1)−1, where the values of a(n) form the sequence A102543. We must also observe that the values of
β 4

2 (n),β
5
2 (n), and β 6

2 (n) can be found, with some shiftings, in A078012 [14].

n β 1
2 (n) β 2

2 (n) β 3
2 (n) β 4

2 (n) β 5
2 (n) β 6

2 (n) β2(n)

3 0 0 0 0 0 0 0
4 0 0 0 1 0 0 1
5 0 1 0 1 1 0 3
6 1 1 0 1 1 1 5
7 1 1 1 2 1 1 7
8 2 2 1 3 2 1 11
9 3 2 1 4 3 2 15
10 5 3 2 6 4 3 23
11 7 4 2 9 6 4 32
12 11 6 3 13 9 6 48
13 15 8 4 19 13 9 68
14 23 12 6 28 19 13 101
15 32 16 8 41 28 19 144
16 48 24 12 60 41 28 213
17 68 33 16 88 60 41 306
18 101 49 24 129 88 60 451
19 144 69 33 189 129 88 652
20 213 102 49 277 189 129 959
21 306 145 69 406 277 189 1392
22 451 214 102 595 406 277 2045
23 652 307 145 872 595 406 2977
24 959 452 214 1278 872 595 4370
25 1392 653 307 1873 1278 872 6375
26 2045 960 542 2745 1873 1278 9353
27 2977 1393 653 4023 2745 1873 13664
28 4370 2046 960 5896 4023 2745 20040
29 6375 2978 1393 8641 5896 4023 29306

Table 7: β2(n) is the number of non-isomorphic snake polyominoes of length n and height 2.
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