\mathscr{I}-Cesàro Summability of a Sequence of Order α of Random Variables in Probability

Ömer Kişi ${ }^{\mathrm{a}^{*}}$ and Erhan Güler ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Bartın University, Bartın, Turkey
* Corresponding author

Article Info
Keywords: Probability, Lacunary, Ideal convergence
2010 AMS: 40A35, 40G15
Received: 9 November 2018
Accepted: 29 November 2018
Available online: 25 December 2018

Abstract

In this paper, we define four types of convergence of a sequence of random variables, namely, \mathscr{I}-statistical convergence of order α, \mathscr{I}-lacunary statistical convergence of order α, strongly \mathscr{I}-lacunary convergence of order α and strongly \mathscr{I}-Cesàro summability of order α in probability where $0<\alpha<1$. We establish the connection between these notions.

1. Introduction and background

Theory of statistical convergence was firstly originated by Fast [1]. After Fridy [2] and Šalát [3] statistical convergence became a notable topic in summability theory. Lacunary statistical convergence was defined by using lacunary sequences in [4]. \mathscr{I}-convergence was fistly considered by Kostyrko et al. [5]. Also, Das et al. [6] gave new definitions by using ideal, such as \mathscr{I}-statistical convergence, \mathscr{I}-lacunary statistical convergence. Ulusu et al. [7] also studied asymptotically \mathscr{I}-Cesaro equivalence of sequences of sets.
Statistical convergence of order $\alpha(0<\alpha<1)$ was introduced using the notion of natural density of order α where n is replaced by n^{α} in [8]. This new type convergence was different in many ways from statistical convergence. Lacunary statistical convergence of order α is studied by Sengöl and M. Et [9], \mathscr{I}-statistical and \mathscr{I}-lacunary statistical convergence of order α is studied by Das and Savas [10].
In probability theory, if for $n>0$, a random variable X_{n} given on space S, a probability function $P: X \rightarrow \mathbb{R}$, then we say that $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is a sequence of random variables and it is demonstrated by $\left\{X_{n}\right\}_{n \in \mathbb{N}}$.
It is important that if there exists $c \in \mathbb{R}$ for which $P(|X-c|<\varepsilon)=1$, where $\varepsilon>0$ is sufficiently small, that is, it is means that values of X lie in a very small neighbourhood of c.
New concepts have begun to be studied in probability theory by Das et al. [6], and others ([11]-[15]).

2. Main results

Definition 2.1. $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ is said to be $\mathscr{\mathscr { I }}$-statistically convergent of order α in probability to a random variable X if for any $\varepsilon, \delta, \gamma>0$

$$
\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \in \mathscr{I},
$$

and demonstrated by $X_{k} \xrightarrow{P S(\mathscr{F})^{\alpha}} X$.
Definition 2.2. $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is said to be \mathscr{I}-lacunary statistically convergent of order α in probability to a random variable X iffor any $\varepsilon, \delta, \gamma>0$

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \in \mathscr{I},
$$

and it is demonstrated by $X_{k} \xrightarrow{P S_{\theta}(\mathscr{F})^{\alpha}} X$.

Definition 2.3. $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ is said to be strongly \mathscr{I}-lacunary convergent or $P V_{\theta}(\mathscr{I})$-convergent of order α in probability to a random variable X iffor every $\varepsilon, \delta>0$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\} \in \mathscr{I}
$$

and it is demonstrated by $X_{k} \xrightarrow{P V_{\theta}(\mathscr{F})^{\alpha}} X$.
Definition 2.4. $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ is said to be strongly \mathscr{I}-Cesàro summable of order α in probability to a random variable X iffor every $\varepsilon, \delta>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\} \in \mathscr{I}
$$

and it is demonstrated by $X_{k} \xrightarrow{P C_{1}[\mathscr{F}]^{\alpha}} X$.
Theorem 2.5. If $0<\alpha \leq \beta \leq 1$ then $P S(\mathscr{I})^{\alpha} \subseteq P S(\mathscr{I})^{\beta}$.
Proof. From the assumption, we say that

$$
\frac{1}{n^{\beta}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \leq \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|
$$

Hence,

$$
\begin{aligned}
& \left\{n \in \mathbb{N}: \frac{1}{n^{\beta}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \\
& \quad\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\}
\end{aligned}
$$

for $\gamma>0$. Therefore, we obtain $P S(\mathscr{I})^{\alpha} \subseteq P S(\mathscr{I})^{\beta}$.
Theorem 2.6. If $\liminf _{r} q_{r}>1$, then

$$
X_{k} \xrightarrow{P C_{1}[\mathscr{F}]^{\alpha}} X \Rightarrow X_{k} \xrightarrow{P V_{\theta}(\mathscr{F})^{\alpha}} X .
$$

Proof. If $\liminf _{r} q_{r}>1$, there exists $\gamma>0$ such that $q_{r} \geq 1+\gamma$ for all $r \geq 1$. Since $h_{r}=k_{r}-k_{r-1}$, we have $\frac{k_{r}^{\alpha}}{h_{r}^{\alpha}} \leq\left(\frac{1+\gamma}{\gamma}\right)^{\alpha}$ and $\frac{k_{r-1}^{\alpha}}{h_{r}^{\alpha}} \leq\left(\frac{1}{\gamma}\right)^{\alpha}$. Let $\varepsilon>0$ and we define set by

$$
S=\left\{k_{r} \in \mathbb{N}: \frac{1}{k_{r}^{\alpha}} \sum_{k=1}^{k_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right)<\delta\right\} .
$$

Therefore, $S \in \mathscr{F}(\mathscr{I})$.

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) & =\frac{1}{h_{r}^{\alpha}} \sum_{k=1}^{k_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right)-\frac{1}{h_{r}^{\alpha}} \sum_{k=1}^{k_{r-1}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
& =\frac{k_{r}^{\alpha}}{h_{r}^{\alpha}} \cdot \frac{1}{k_{r}^{\alpha}} \sum_{k=1}^{k_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right)-\frac{k_{r-1}^{\alpha}}{h_{r}^{\alpha}} \cdot \frac{1}{k_{r-1}^{\alpha}} \sum_{k=1}^{k_{r-1}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
& \leq\left(\frac{1+\gamma}{\gamma}\right)^{\alpha} \delta-\left(\frac{1}{\delta \gamma}\right)^{\alpha} \delta^{\prime}
\end{aligned}
$$

for each $k_{r} \in S$. Choose $\eta=\left(\frac{1+\gamma}{\gamma}\right)^{\alpha} \delta-\left(\frac{1}{\delta \gamma}\right)^{\alpha} \delta^{\prime}$. Therefore,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right)<\eta\right\} \in \mathscr{F}(\mathscr{I}) .
$$

Hence, we get $X_{k} \xrightarrow{P V_{\theta}(\mathscr{F})^{\alpha}} X$.
Theorem 2.7. If $\left\{X_{k}\right\}$ is strongly \mathscr{I}-Cesàro summable of order α then, it is \mathscr{I}-statistical convergent of order α in probability to a random variable X.

Proof. Let $X_{k} \xrightarrow{P C_{1}[\mathscr{G}]^{\alpha}} X$, and $\varepsilon>0$ given. Then

$$
\begin{aligned}
\frac{1}{n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) & \geq \frac{1}{n^{\alpha}} \sum_{\substack{k=1 \\
P\left(X X_{k}-X \mid \geq \varepsilon\right)}}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
& \geq \frac{\delta}{n^{\alpha}} \cdot\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|
\end{aligned}
$$

and so

$$
\frac{1}{\delta \cdot n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| .
$$

So for a given $\tau>0$,

$$
\begin{aligned}
& \left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \tau\right\} \\
& \quad \subseteq\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta . \tau\right\} \in \mathscr{I} .
\end{aligned}
$$

Therefore, $X_{k} \xrightarrow{P S(\mathscr{I})^{\alpha}} X$.
Theorem 2.8. Let a bounded $\left\{X_{k}\right\}$ is \mathscr{I}-statistical convergent of order α to X. Hence, it is strongly \mathscr{I}-Cesàro summable of order α to X. Proof. Assume that $\left\{X_{k}\right\}$ is bounded and $X_{k} \xrightarrow{P S(\mathscr{J})^{\alpha}} X$. Since $\left\{X_{k}\right\}$ is bounded, we get $P\left(\left|X_{k}-X\right|>\varepsilon\right) \leq M$ for all k. For $\varepsilon>0$, we have

$$
\begin{aligned}
\frac{1}{n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right)= & \frac{1}{n^{\alpha}} \sum_{\substack{k=1 \\
P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta}}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
+ & \frac{1}{n^{\alpha}} \sum_{\substack{k=1 \\
P\left(\left|x_{k}-X\right| \geq \varepsilon\right)<\delta}}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
\leq & \frac{1}{n^{\alpha}} M\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& +\frac{1}{n^{\alpha}} n^{\alpha} \delta
\end{aligned}
$$

Then for any $\gamma>0$,

$$
\begin{aligned}
& \left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}} \sum_{k=1}^{n} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \gamma\right\} \\
& \qquad\left\{\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \frac{\gamma}{M}\right\} \in \mathscr{I} .\right.
\end{aligned}
$$

Therefore $X_{k} \xrightarrow{P C_{1}[\mathscr{F}]^{\alpha}} X$.
Theorem 2.9. For $\boldsymbol{\theta}=\left\{k_{r}\right\}$,
(i) If $\left\{X_{k}\right\} \xrightarrow{P V_{\theta}(\mathscr{I})^{\alpha}} X$ then $\left\{X_{k}\right\} \xrightarrow{P S_{\theta}(\mathscr{I})^{\alpha}} X$, and
(ii) $P V_{\theta}(\mathscr{I})^{\alpha}$ is proper subset of $P S_{\theta}(\mathscr{I})^{\alpha}$.

Proof. (i) Let $\varepsilon, \delta>0$ and $\left\{X_{k}\right\} \xrightarrow{P V_{\theta}(\mathscr{J})^{\alpha}} X$. Then, we can write

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq & \frac{1}{h_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\
P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \\
\geq & \frac{\delta}{h_{r}^{\alpha}} \cdot\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|
\end{aligned}
$$

Therefore

$$
\frac{1}{\delta h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \frac{1}{h_{r}^{\alpha}} \cdot\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|
$$

which implies that for any $\gamma>0$,

$$
\begin{aligned}
&\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \\
& \subseteq\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta \gamma\right\} \in \mathscr{I}
\end{aligned}
$$

Hence we get $\left.X_{k}\right\} \xrightarrow{P S_{\theta}(\mathscr{F})^{\alpha}} X$.
(ii) Let $\left\{X_{k}\right\}$ be defined by

$$
X_{k}= \begin{cases}\{-1,1\} & , \\
\{0,1\} & \text { with probability } \frac{1}{2}, \text { if } n \text { is the first }\left[\sqrt{h_{r}^{\alpha}}\right] \text { integers in the interval } I_{r}, \\
{\left[\sqrt{h_{r}^{\alpha}}\right]} & \begin{array}{l}
\text { if } n \text { is other than the first } \\
\text { integers in the interval } I_{r} .
\end{array}\end{cases}
$$

Let $0<\varepsilon<1$ and $\delta<1$. Then, we obtain

$$
P\left(\left|X_{k}-0\right| \geq \varepsilon\right)= \begin{cases}1 \quad, & \text { if } n \text { is the first }\left[\sqrt{h_{r}^{\alpha}}\right] \text { integers in the interval } I_{r}, \\ \frac{1}{n} & \text { if } n \text { is other than the first }\left[\sqrt{h_{r}^{\alpha}}\right] \text { integers in the interval } I_{r} .\end{cases}
$$

Now

$$
\frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-0\right| \geq \varepsilon\right) \geq \delta\right\}\right| \leq \frac{\left[\sqrt{h_{r}^{\alpha}}\right]}{h_{r}^{\alpha}}
$$

and for any $\gamma>0$ we get

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-0\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \subseteq\left\{r \in \mathbb{N}: \frac{\left[\sqrt{h_{r}^{\alpha}}\right]}{h_{r}^{\alpha}} \geq \gamma\right\}
$$

Since the set

$$
\left\{r \in \mathbb{N}: \frac{\left[\sqrt{h_{r}^{\alpha}}\right]}{h_{r}^{\alpha}} \geq \gamma\right\}
$$

is finite and so belongs to \mathscr{I}, therefore, we obtain

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-0\right| \geq \varepsilon\right) \geq \delta\right\}\right| \geq \gamma\right\} \in \mathscr{I}
$$

which means that $X_{k} \xrightarrow{P S_{\theta}(\mathscr{F})^{\alpha}} 0$. Also,

$$
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} P\left(\left|X_{k}-0\right| \geq \varepsilon\right)=\frac{1}{h_{r}^{\alpha}} \cdot \frac{\left[\sqrt{h_{r}^{\alpha}}\right]\left(\left[\sqrt{h_{r}^{\alpha}}\right]+1\right)}{2}
$$

then

$$
\begin{aligned}
\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}} P\left(\left|X_{k}-0\right| \geq \varepsilon\right) \geq \frac{1}{4}\right\} & =\left\{r \in \mathbb{N}: \frac{\left[\sqrt{h_{r}^{\alpha}}\right]\left(\left[\sqrt{h_{r}^{\alpha}}\right]+1\right)}{h_{r}} \geq \frac{1}{2}\right\} \\
& =\{m, m+1, m+2, \ldots\} \in \mathscr{F}(\mathscr{I})
\end{aligned}
$$

for some $m \in \mathbb{N}$. Hence, $X_{k}{\stackrel{P S_{\theta}(\mathscr{F})}{ }{ }^{\alpha}}^{\text {a }} 0$.
Theorem 2.10. \mathscr{I}-statistical convergence in probability of order α implies \mathscr{I}-lacunary statistical convergence in probability of order α $\liminf _{r} q_{r}>1$.
Proof. By assumption $\liminf _{r} q_{r}>1$, then there exists a $\sigma>0$ such that $q_{r} \geq 1+\sigma$ for sufficiently large r, that is,

$$
\frac{h_{r}}{k_{r}} \geq \frac{\sigma}{1+\sigma} \Rightarrow \frac{1}{h_{r}^{\alpha}} \leq \frac{1}{k_{r}^{\alpha}}\left(\frac{1+\sigma}{\sigma}\right)^{\alpha}
$$

If $\left\{X_{k}\right\} \xrightarrow{P S(\mathscr{F})^{\alpha}} X$, then for $\varepsilon>0$ and for $r>0$, we have

$$
\frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \leq \frac{1}{k_{r}^{\alpha}}\left(\frac{1+\sigma}{\sigma}\right)^{\alpha}\left|\left\{k \leq k_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|
$$

Then for any $\gamma>0$, we get

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right)\right\} \geq \delta\right| \geq \gamma\right\} \\
& \qquad \subseteq\left\{r \in \mathbb{N}: \frac{1}{k_{r}^{\alpha}}\left|\left\{k \leq k_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right)\right\} \geq \delta\right| \geq \frac{\gamma \sigma^{\alpha}}{(1+\sigma)^{\alpha}}\right\} \in \mathscr{I} .
\end{aligned}
$$

Theorem 2.11. \mathscr{I}-lacunary statistical convergence in probability of order α implies \mathscr{I}-statistical convergence in probability of order α, $0<\alpha<1$, if $\sup _{r} \sum_{i=0}^{r-1} \frac{h_{i=0}^{\alpha}}{\left(k_{r-1}\right)^{\alpha}}=B<\infty$.
Proof. Suppose that $\left\{X_{k}\right\} \xrightarrow{P S_{\theta}(\mathscr{F})^{\alpha}} X$, and for $\varepsilon, \delta, \gamma_{1}, \gamma_{2}>0$ define the sets

$$
C=\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|<\gamma_{1}\right\}
$$

and

$$
T=\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|<\gamma_{2}\right\} .
$$

From our assumption we get $C \in \mathscr{F}(\mathscr{I})$. Further observe that

$$
K_{j}=\frac{1}{h_{j}^{\alpha}}\left|\left\{k \in I_{j}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right|<\gamma_{1}
$$

for all $j \in C$. Let $n \in \mathbb{N}$ be such that $k_{r-1}<n \leq k_{r}$ for some $r \in C$. Hence, we obtain

$$
\begin{aligned}
& \frac{1}{n^{\alpha}}\left|\left\{k \leq n: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& \leq \frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \leq k_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& =\frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \in I_{1}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& +\frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \in I_{2}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& +\ldots+\frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& =\frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{1}^{\alpha}}\left|\left\{k \in I_{1}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& +\frac{\left(k_{2}-k_{1}\right)^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{2}^{\alpha}}\left|\left\{k \in I_{2}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& +\ldots+\frac{\left(k_{r}-k_{r-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}: P\left(\left|X_{k}-X\right| \geq \varepsilon\right) \geq \delta\right\}\right| \\
& =\frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}} K_{1}+\frac{\left(k_{2}-k_{1}\right)^{\alpha}}{k_{r-1}^{\alpha}} K_{2}+\ldots+\frac{\left(k_{r}-k_{r-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} K_{r} \\
& \leq\left\{\sup _{j \in C} K_{j}\right\} \sup _{r} \sum_{i=0}^{r-1} \frac{h_{i+1}^{\alpha}}{\left.k_{r-1}\right)^{\alpha}} \\
& <\gamma_{1} B .
\end{aligned}
$$

Choosing $\gamma_{2}=\frac{\gamma_{1}}{B}$ and by $\bigcup\left\{n: k_{r-1}<n \leq k_{r}, r \in C\right\} \subset T$ where $C \in \mathscr{F}(\mathscr{I})$ Then the set T belongs to $\mathscr{F}(\mathscr{I})$ and this completes the proof.

References

[1] H. Fast, Sur la convergence statistique, Coll. Math., 2 (1951), 241-244.
[2] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[3] T. Śalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
[4] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
[5] P. Kostyrko, T. Šalát, W. Wilezyński, \mathscr{I}-Convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
[6] P. Das, E. Savaş, S. Ghosal, On generalization of certain summability methods using ideals, Appl. Math. Lett., 24 (2011), 1509-1514.
[7] U. Ulusu, E. Dundar, Asymptotically I-Cesaro equivalence of sequences of sets, Univers. J. Math. Appl., 1(2) (2018), 101-105.
[8] R. Çolak, Statistical convergence of order α, Modern methods in analysis and its applications, Anamaya Pub., New Delhi, India, (2010), 121-129.
[9] H. Şengöl, M. Et, On lacunary statistical convergence of order α, Acta Math. Sci., 34B(2) (2014), 473-482.
[10] P. Das, E. Savas, On \mathscr{I}-statistical and \mathscr{I}-lacunary statistical convergence of order α, Bull. Iranian Math. Soc., 40(2) (2014), 459-472.
[11] S. Ghosal, Statistical convergence of a sequence of random variables and limit theorems, Appl. Math., 4(58) (2013), 423-437.
[12] S. Ghosal, \mathscr{I}-statistical convergence of a sequence of random variables in probability, Afrika Mat., http://dx.doi.org/10.1007/s13370-013-0142-x.
[13] S. Ghosal, S_{λ}-statistical convergence of a sequence of random variables, J. Egypt. Math. Soc., (2014), http://dx.doi.org/10.1016/j.joems.2014.03.007.
[14] S. Ghosal, Statistical convergence of order α in probability, Arab J. Math. Sci., 21 (2015), 253-265.
[15] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.

