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Abstract

In this article, we employ Lie group analysis to obtain symmetry reduction of a class
of (3+1)-dimensional nonlinear model. This nonlinear model plays a critical role in the
study of nonlinear sciences. By the exp(−ϕ(z))-expansion method, we construct explicit
solutions for the proposed equation. Four types of explicit solutions are obtained, which are
hyperbolic, exponential, trigonometric and rational function solutions.

1. Introduction

Consider the following (3+1)-dimensional nonlinear differential equation (NLDE):

ut +b1u2ux +b2uxxx +b3uxyy +b4uxss +b5uux = 0. (1.1)

where bi (i = 1,2, · · · ,5) are arbitrary constants.
It is know that many famous NLDEs are the special cases of Eq.(1.1). For example, if b1 = b3 = b4 = 0, then Eq.(1.1) is the Korteweg-de
Vries (KdV) equation [1, 2]. If b1 = b4 = 0, then Eq.(1.1) is the Zakharov-Kuznetsov (ZK) equation [3]. If b3 = b4 = b5 = 0, then Eq.(1.1)
is the modified KdV equation [4]. If b3 = b4 = 0, then Eq.(1.1) is the Gardner equation [5]. If b4 = b5 = 0, then Eq.(1.1) is the modified ZK
equation [6].
Eq.(1.1) is a significant nonlinear model which can be used to depict important phenomena and dynamic processes in physics and engineering.
It is an interesting and meaningful subject to find exact solutions of NLDEs. During the past few years, there has been extraordinary progress
in constructing explicit solutions of NLDEs, for instance, the sine-cosine method [7], the modified simple equation method [8], the bifurcation
method of dynamic systems [9], the enhanced ( G′

G )-expansion method [10], the complex method [11]-[15], the exp(−ϕ(z))-expansion
method [16]-[18], and the Lie group method [19]-[21] and so on. More related works are in Ref. [22]-[25].
The paper is organized as follows: The algorithm of the exp(−ϕ(z))-expansion method have been introduced in Section 2. Symmetry
reduction of the mentioned (3+1)-dimensional NLDE are obtained in Section 3. By the proposed method, we gain explicit solutions of
this kind of (3+1)-dimensional NLDE in Section 4. In Section 5, some computer simulations will be given to illustrate our results, and
conclusions are presented in the last Section.

2. Algorithm of the exp(−ϕ(z))-expansion method

We consider a nonlinear PDE as follows:

F(u,ux,uy,ut ,uxx,uyy,utt , · · ·) = 0, (2.1)

where F is a polynomial of an unknown function u(x,y, t) and its derivatives, and it contains highest order derivatives and nonlinear terms
are involved.
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Step 1. Substitute traveling wave transformation

u(x,y, t) = w(z), z = kx+ ly+ rt, (2.2)

into Eq.(2.1) to convert it to the ODE,

P(w,w′,w′′,w′′′, · · ·) = 0, (2.3)

where P is a polynomial of w and its derivatives, while ′ := d
dz .

Step 2. Suppose that Eq.(2.3) has the exact solutions as follows:

w(z) =
n

∑
j=0

B j(exp(−ϕ(z))) j, (2.4)

where B j, (0≤ j ≤ n) are constants to be determined latter, such that Bn 6= 0 and ϕ = ϕ(z) satisfies the ODE as below:

ϕ
′(z) = γ + exp(−ϕ(z))+µ exp(ϕ(z)). (2.5)

Eq.(2.5) has the solutions as follows:
When γ2−4µ > 0, µ 6= 0,

ϕ(z) = ln

−√(γ2−4µ) tanh(
√

γ2−4µ

2 (z+a))− γ

2µ

 , (2.6)

ϕ(z) = ln

−√(γ2−4µ)coth(
√

γ2−4µ

2 (z+a))− γ

2µ

 . (2.7)

When γ2−4µ < 0, µ 6= 0,

ϕ(z) = ln

√(4µ− γ2) tan(
√

(4µ−γ2)
2 (z+a))− γ

2µ

 , (2.8)

ϕ(z) = ln

√(4µ− γ2)cot(
√

(4µ−γ2)
2 (z+a))− γ

2µ

 . (2.9)

When γ2−4µ > 0, γ 6= 0, µ = 0,

ϕ(z) =− ln
(

γ

exp(γ(z+a))−1

)
. (2.10)

When γ2−4µ = 0, γ 6= 0, µ 6= 0,

ϕ(z) = ln
(
−2(γ(z+a)+2)

γ2(z+a)

)
. (2.11)

When γ2−4µ = 0, γ = 0, µ = 0,

ϕ(z) = ln(z+a). (2.12)

Where a is an arbitrary constant and Bn 6= 0,γ,µ are constants in Eq.(2.6)-Eq.(2.12). We determine the positive integer n through considering
the homogeneous balance between highest order derivatives and nonlinear terms of Eq.(2.3).

Step 3. Inserting Eq.(2.4) into Eq.(2.3) and then considering the function exp(−ϕ(z)) yields a polynomial of exp(−ϕ(z)). Let the coefficients
of same power about exp(−ϕ(z)) equal to zero, then we get a set of algebraic equations. We solve the algebraic equations to obtain the
values of Bn 6= 0,γ,µ and then we put these values into Eq.(2.4) along with Eq.(2.6)-Eq.(2.12) to finish the determination of the solutions for
the given PDE.
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3. Symmetry reduction

With the aim of obtaining the symmetry σ = σ(x,y,s, t,u) of Eq.(1.1), we let

σ = aux +buy + cus +dut + eu+ f , (3.1)

where u is the solution of Eq.(1.1), a,b,c,d,e, f are unknown functions of real variables x,y,s, t. By the Lie group method [19, 20], σ

satisfies

σt +b1σ
2ux +b1u2

σx +b2σxxx +b3σxyy +b4σxss +b5σux +b5uσx = 0. (3.2)

Putting Eq.(3.1) into Eq.(3.2), we obtain a new differential equation, where

b2uxxx =−b1u2ux−b3uxyy−b4uxss−b5uux−ut . (3.3)

By Eq.(3.1), Eq.(3.2) and Eq.(3.3), we get

a = a5,b = (a2s+a3),c = (a4−
b4

b3
a2y),d = a1,e = 0, f = 0, (3.4)

where ai(i = 1,2, · · · ,5) are real constants. Inserting Eqs.(3.4) into Eq.(3.1), we obtain the symmetry of Eq.(1.1)

σ = a5ux +(a2s+a3)uy +(a4−
b4

b3
a2y)us +a1ut .

To solve the above characteristic equation of σ

dx
a5

=
dy

a2s+a3
=

ds

a4− b4
b3

a2y
=

dt
a1

=
du
0
,

we get symmetry reduced equations.
Setting a1 = a3 = a4 = a5 = 0, a2 = 1, we obtain one similarity solution of Eq.(1.1)

u = φ(ξ ,η), (3.5)

in which η = y2

2b3
+ s2

2b4
, ξ = x+ t. Substituting Eq.(3.5) into Eq.(1.1), we get one symmetry reduced equation of Eq.(1.1), which is

φξ +b1φ
2
φξ +(b2 +b3)φξ ξ ξ +2φξ ηη +b5φφξ = 0.

Setting a1 = a2 = 0, a3 = a4 = a5 = 1, solving σ = 0, we obtain the other similarity solution of Eq.(1.1)

u = φ(ξ ,η), (3.6)

in which η = s, ξ = x+ y. Substituting Eq.(3.6) into Eq.(1.1), we get the other symmetry reduced equation of Eq.(1.1), which is

b1φ
2
φξ +(b2 +b3)φξ ξ ξ +b4φξ ηη +b5φφξ = 0. (3.7)

4. Application of the exp(−ϕ(z))-expansion method to the nonlinear model

Substitute traveling wave transform
φ(ξ ,η) = w(z), z = kξ + lη ,

into Eq.(3.7), and integrate it with respect to z, then

(b2k2 +b3k2 +b4l2)w′′+
b5

2
w2 +

b1

3
w3−λ = 0, (4.1)

where λ is the integration constant.
Taking the homogeneous balance between w3 and w′′ in Eq.(4.1), we have

w(z) = B0 +B1 exp(−ϕ(z)), (4.2)

where B1 6= 0, B0 are constants.
Substituting w2,w3,w′′ into Eq.(4.1) and equating the coefficients of exp(−ϕ(z)) to zero, we get

B1 b4 l2
µ γ +B1 k2b3 µ γ +B1 k2b2 µ γ +

1
3

b1 B0
3 +

1
2

b5 B0
2−λ = 0,

B1 l2b4 γ
2 +B1 b2 k2

γ
2 +B1 b3 k2

γ
2 +2B1 b2 k2

µ +2B1 b3 k2
µ +2B1 l2b4 µ

+B0
2B1 b1 +B0 B1 b5 = 0,

3B1 b4l2
γ +b1 B0 B1

2 +
1
2

b5 B1
2 +3B1 k2b2 γ +3B1 k2b3 γ = 0,

2B1b4 l2 +2B1 k2b2 +2B1 k2b3 +
1
3

b1 B1
3 = 0.
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Solving the above algebraic equations yields

λ =−

√
(4µ− γ2)3(b2 k2 +b3 k2 +b4 l2)3

18b1
,

B0 =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b4 l2 +b3 k2 +b2 k2

)
2b1

,

B1 =

√
−6
(
b4 l2 +b3 k2 +b2 k2

)
b1

, (4.3)

where γ and µ are arbitrary constants.
We substitute Eqs.(4.3) into Eq.(4.2), then

w(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b2 k2 +b3 k2 +b4 l2

)
2b1

+

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

exp(−ϕ(z)). (4.4)

Using Eq.(2.6) to Eq.(2.12) into Eq.(4.4) respectively, we gain traveling wave solutions to the nonlinear model in the following.
When γ2−4µ > 0, µ 6= 0,

w1(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b2 k2 +b3 k2 +b4 l2

)
2b1

−

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

2µ√
(γ2−4µ) tanh(

√
γ2−4µ

2 (z+a))+ γ

,

w2(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b2 k2 +b3 k2 +b4 l2

)
2b1

−

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

2µ√
(γ2−4µ)coth(

√
γ2−4µ

2 (z+a))+ γ

.

When γ2−4µ < 0, µ 6= 0,

w3(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b2 k2 +b3 k2 +b4 l2

)
2b1

+

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

2µ√
(4µ− γ2) tan(

√
4µ−γ2

2 (z+a))− γ

,

w4(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√

2b1 (4µ− γ2)
(
b2 k2 +b3 k2 +b4 l2

)
2b1

+

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

2µ√
(4µ− γ2)cot(

√
4µ−γ2

2 (z+a))− γ

.

When γ2−4µ > 0, γ 6= 0, µ = 0,

w5(z) =

√
−6b1

(
b2 k2 +b3 k2 +b4 l2

)
γ−
√
−2b1 γ2

(
b2 k2 +b3 k2 +b4 l2

)
2b1

+

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

γ

exp(γ(z+a))−1
.

When γ2−4µ = 0, γ 6= 0, µ 6= 0,

w6(z) =

√
−3
(
b2 k2 +b3 k2 +b4 l2

)
2b1

γ−

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

γ2(z+a)
2(γ(z+a)+2)

.

When γ2−4µ = 0, γ = 0, µ = 0,

w7(z) =

√
−6
(
b2 k2 +b3 k2 +b4 l2

)
b1

1
z+a

.



188 Fundamental Journal of Mathematics and Applications

Figure 5.1: 3D profile of w1(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 4, and µ = 3.

Figure 5.2: 2D profile of w1(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 4, µ = 3 and η = 0.

Figure 5.3: 3D profile of w2(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 2, and µ = 2.
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Figure 5.4: 2D profile of w2(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 2, µ = 2 and η = 0.

5. Computer simulations

In this section, the computer simulations are given to illustrate our results by the figures.

6. Conclusion

The exp(−ϕ(z))-expansion method allows us to express the explicit solutions of NLDEs as a polynomial of exp(−ϕ(z)), in which ϕ(z)
satisfies the ODE (2.5). We can determine the degree of the polynomial via the homogeneous balance and get the coefficients of the
polynomial via the simple calculation from the process of this method, and then we obtain the exact solutions.
In this article, symmetry reduction of a class of (3+1)-dimensional nonlinear model are obtained via Lie group analysis. Then, we achieve to
reduce the dimension of the NLDEs that is meaningful in engineering and mathematical physics. By the exp(−ϕ(z))-expansion method, we
obtain four kinds of explicit solutions. The results demonstrate that the applied method is direct and efficient method, which allow us to do
tedious and complicated algebraic calculation.

Acknowledgement

This work is supported by Big data and Educational Statistics Application Laboratory (2017WSYS001), Guangdong Natural Science
Foundation (2018A030313954), Guangdong Universities (Basic Research and Applied Research) Major Project (2017KZDXM038).

References

[1] J. Q. Mei, H. Q. Zhang, New soliton-like and periodic-like solutions for the KdV equation, Appl. Math. Comput., 169 (2005), 589-599.
[2] A. G. Cui, H. Y. Li, C. Y. Zhang, A splitting method for shifted skew-Hermitian linear system, J. Inequal. Appl., 2016, 160 (2016); doi: 10.1186/s13660-

016-1105-1.
[3] V. E. Zakharov, E. A. Kuznetsov, On three-dimensional solitons, Sov. Phys. JETP 39 (1974), 285-288.
[4] D. J. Zhang, The N-soliton solutions for the modified KdV equation with self-consistent Sources, J. Phys. Soc. Japan, 71(11) (2002), 2649-2656.
[5] A. M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 1395-1404.
[6] F. Tascan, A. Bekir, M. Koparan, Travelling wave solutions of nonlinear evolution equations by using the first integral method, Commun. Nonlinear Sci.

Numer. Simul., 14(5) (2009), 1810-1815.
[7] S. Tang, Y. Xiao, Z. Wang, Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation, Appl.

Math. Comput., 210(1) (2009), 39-47.
[8] A. J. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217(2) (2010),

869-877.
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