Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 997–1006 (2019) DOI: 10.31801/cfsuasmas.501436 ISSN 1303–5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

PSEUDO PROJECTIVE CURVATURE TENSOR SATISFYING SOME PROPERTIES ON A NORMAL PARACONTACT METRIC MANIFOLD

ÜMIT YILDIRIM, MEHMET ATÇEKEN, AND SÜLEYMAN DIRIK

ABSTRACT. In the present paper we have studied the curvature tensor of a normal paracontact metric manifold satisfying the conditions $R(\xi,X)\widetilde{P}=0$, $\widetilde{P}(\xi,X)R=0$, $\widetilde{P}(\xi,X)\widetilde{P}=0$, $\widetilde{P}(\xi,X)S=0$, $\widetilde{P}(\xi,X)\widetilde{Z}=0$ and pseudo projective flatness, where R, \widetilde{P} , S and \widetilde{Z} denote the Riemannian curvature, pseudo projective curvature, Ricci and concircular curvature tensors, respectively.

1. Introduction

The study of paracontact geometry was initiated by Kenayuki and Williams [10]. Zamkovoy studied paracontact metric manifolds and their subclasses [11]. Recently, Welyczko studied curvature and torsion of Frenet Legendre curves in 3-dimensional normal almost paracontact metric manifolds [5]. In the recent years, (para) contact metric manifolds and their curvature properties have been studied by many authors. [6, 9]

In [7, 8], we studied the curvature tensors satisfying some conditions on a $C(\alpha)$ -manifold and induced cases were discussed.

In 2002, Prasad [3] defined pseudo projective curvature tensor \widetilde{P} on a Riemannian manifold (M^n,g) (n>2) of type (1,3) as follows

$$\widetilde{P}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y] - \frac{r}{n}[\frac{a}{n-1} + b][g(Y,Z)X - g(X,Z)Y],$$
(1)

where R is the Riemann curvature, S is the Ricci tensor, respectively, and a, b are constants such that $a, b \neq 0$. If a = 1 and $b = -\frac{1}{n-1}$, then (1) takes the form

Received by the editors: August 17, 2017; Accepted: June 06, 2018.

²⁰¹⁰ Mathematics Subject Classification. 53C15, 53C44, 53D10.

Key words and phrases. paracontact metric manifold, Ricci tensor, concircular curvature tensor.

$$\widetilde{P}(X,Y)Z = R(X,Y)Z - \frac{1}{n-1} [S(Y,Z)X - S(X,Z)Y],$$

$$= P(X,Y)Z$$
(2)

where P is the projective curvature tensor [9]. Hence the projective curvature tensor P can be seen as a particular case of the tensor \widetilde{P} .

Narain et. al. studied pseudo projective curvature tensor in Lorentzian para-Sasakian manifolds[4].

Let M be n-dimensional Riemannian manifold. Then the concircular curvature tensor field is defined by

$$\widetilde{Z}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y], \tag{3}$$

for any $X, Y, Z \in \chi(M)$.

2. Preliminaries

An n-dimensional differentiable manifold (M,g) is said to be an almost paracontact metric manifold if there exist on M a (1,1) tensor field ϕ , a contravariant vector ξ and a 1-form η -such that

$$\phi^2 X = X - \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1$$
 (4)

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi), \tag{5}$$

for any $X, Y \in \chi(M)$.

If in addition to the above relations, we have

$$(\nabla_X \phi) Y = -q(X, Y) \xi - \eta(Y) X + 2\eta(X) \eta(Y) \xi, \tag{6}$$

then M is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection.

We have also on a normal paracontact metric manifold M

$$\phi X = \nabla_X \xi,\tag{7}$$

for any $X \in \chi(M)$.

Moreover, if such a manifold has constant sectional curvature equal to c, then the Riemannian curvature tensor is given by

$$R(X,Y)Z = \frac{c+3}{4} \{ g(Y,Z)X - g(X,Z)Y \}$$

$$+ \frac{c-1}{4} \{ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$

$$- g(Y,Z)\eta(X)\xi + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \} \{ 8 \}$$

for any vector fields $X, Y, Z \in \chi(M)$.

In a normal paracontact metric manifold by direct calculations, we can easily to see that

$$S(X,Y) = \left(\frac{c(n-5) + 3n + 1}{4}\right)g(X,Y) + \left(\frac{(c-1)(5-n)}{4}\right)\eta(X)\eta(Y),\tag{9}$$

and

$$QX = \left(\frac{c(n-5) + 3n + 1}{4}\right)X + \left(\frac{(c-1)(5-n)}{4}\right)\eta(X)\xi,\tag{10}$$

for any $X, Y \in \chi(M)$, where Q is the Ricci operator of M such that g(QX, Y) = S(X, Y). Thus we have the following statement.

Corollary 2.1. A normal paracontact metric manifold is always an η -Einstein manifold.

From (9), we can easily see

$$S(X,\xi) = (n-1)\eta(X),\tag{11}$$

$$Q\xi = (n-1)\xi\tag{12}$$

and

$$r = \frac{n-1}{4}[c(n-5) + 3n + 5]. \tag{13}$$

Let M be an n-dimensional normal paracontact metric manifold and we denote the Riemannian curvature tensor of M by R, then we have from (8), for $X = \xi$

$$R(\xi, Y)Z = g(Y, Z)\xi - \eta(Z)Y,\tag{14}$$

for $Z = \xi$

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y. \tag{15}$$

In (15) choosing $Y = \xi$, we get

$$R(X,\xi)\xi = X - \eta(X)\xi. \tag{16}$$

Taking the inner product both of the sides (8) with $\xi \in \chi(M)$, we obtain

$$\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y). \tag{17}$$

In the same way we obtain from (1) and (3),

$$\widetilde{P}(X,Y)\xi = \left[a + b(n-1) - \frac{r}{n}\left[\frac{a}{n-1} + b\right]\right] \left[\eta(Y)X - \eta(X)Y\right],\tag{18}$$

$$\widetilde{P}(\xi, Y)Z = \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[g(Y, Z)\xi - \eta(Z)Y\right] + b\left[S(Y, Z)\xi - (n-1)\eta(Z)Y\right], \tag{19}$$

$$\widetilde{Z}(\xi, Y)Z = \left[1 - \frac{r}{n(n-1)}\right] \left[g(Y, Z)\xi - \eta(Z)Y\right],\tag{20}$$

and

$$\widetilde{Z}(\xi, Y)\xi = \left[1 - \frac{r}{n(n-1)}\right] \left[\eta(Y)\xi - Y\right],\tag{21}$$

for any $X, Y, Z \in \chi(M)$.

3. PSEUDO PROJECTIVE CURVATURE TENSOR OF A NORMAL PARACONTACT METRIC MANIFOLD

Theorem 3.1. Let M(c) be an n-dimensional normal paracontact metric space form. Then M(c) is pseudo projective semi-symmetric if and only if either M(c) reduces an Einstein manifold or pseudo projective curvature tensor \widetilde{P} reduces projective curvature tensor.

Proof: Suppose that n-dimensional normal paracontact metric manifold M(c) is pseudo projective semi symmetric. Then we have

$$R(X,Y)\widetilde{P} = 0, (22)$$

for any $X, Y \in \chi(M)$. (22) implies that

$$(R(X,Y)\widetilde{P})(Z,U,W) = R(X,Y)\widetilde{P}(Z,U)W - \widetilde{P}(R(X,Y)Z,U)W$$
$$- \widetilde{P}(Z,R(X,Y)U)W - \widetilde{P}(Z,U)R(X,Y)W$$
$$= 0,$$
(23)

for any $U, Z, W \in \chi(M)$. Substituting $X = \xi$ in (23), we have

$$0 = R(\xi, Y)\widetilde{P}(Z, U)W - \widetilde{P}(R(\xi, Y)Z, U)W$$
$$- \widetilde{P}(Z, R(\xi, Y)U)W - \widetilde{P}(Z, U)R(\xi, Y)W. \tag{24}$$

Using (14) in (24), we obtain

$$0 = g(Y, \widetilde{P}(Z, U)W)\xi - \eta(\widetilde{P}(Z, U)W)Y$$

$$- g(Y, Z)\widetilde{P}(\xi, U)W + \eta(Z)\widetilde{P}(Y, U)W$$

$$- g(Y, U)\widetilde{P}(Z, \xi)W + \eta(U)\widetilde{P}(Z, Y)W$$

$$- g(Y, W)\widetilde{P}(Z, U)\xi + \eta(W)\widetilde{P}(Z, U)Y.$$
(25)

Using (18) and (19) in (25), choosing $Z = \xi$ in (25) it follows that

$$0 = \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[g(Y, W)\eta(U)\xi - g(U, W)Y\right]$$

$$+ \left[a + b(n-1) - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[g(Y, W)U - g(Y, W)\eta(U)\xi\right]$$

$$+ b\left[S(U, Y)\eta(W)\xi + S(Y, W)\eta(U)\xi - (n-1)g(Y, U)\eta(W)\xi - S(U, W)Y\right]$$

$$+ \widetilde{P}(Y, U)W$$
(26)

By choosing $W = \xi$ and taking the inner product on both sides of (26) with $\xi \in \chi(M)$, we find

$$b[S(U,Y) - (n-1)g(Y,U)] = 0. (27)$$

This proves our assertion.

Theorem 3.2. Let M(c) be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi,Y)R = 0$ if and only if either M(c) reduces an Einstein manifold or pseudo projective curvature tensor \widetilde{P} reduces concircular curvature tensor.

Proof: Suppose that $\widetilde{P}(\xi,Y)R=0$, then we have

$$0 = \widetilde{P}(\xi, Y)R(Z, U)W - R(\widetilde{P}(\xi, Y)Z, U)W$$
$$- R(Z, \widetilde{P}(\xi, Y)U)W - R(Z, U)\widetilde{P}(\xi, Y)W, \tag{28}$$

for any $Y, U, Z, W \in \chi(M)$. Using (19) in (28), choosing $Z = \xi$, we obtain

$$0 = \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[g(Y, R(\xi, U)W)\xi - \eta(R(\xi, U)W)Y\right]$$

$$- \eta(Y)R(\xi, U)W + R(Y, U)W + \eta(U)R(\xi, Y)W + \eta(W)R(\xi, U)Y\right]$$

$$+ b\left[S(Y, R(\xi, U)W)\xi - (n-1)\eta(R(\xi, U)W)Y - (n-1)\eta(Y)R(\xi, U)W\right]$$

$$+ (n-1)R(Y, U)W + (n-1)\eta(U)R(\xi, Y)W - S(Y, W)R(\xi, U)\xi$$

$$+ (n-1)\eta(W)R(\xi, U)Y\right]$$
(29)

In (29) using (14) and (15), choosing $W = \xi$, we find

$$-bS(Y,U)\xi + b(n-1)q(Y,U)\xi = 0.$$
(30)

Taking the inner product on both sides of (30) with $\xi \in \chi(M)$, we obtain

$$b[S(Y,U) - (n-1)g(Y,U)] = 0. (31)$$

The proof is completed.

Theorem 3.3. Let M(c) be an n-dimensional normal paracontact metric space form. Then, $\widetilde{P}(\xi, Y)\widetilde{P}$ is always identically zero, for any $Y \in \chi(M)$.

Proof: Let M(c) be n- dimensional a normal paracontact metric space form. Then, we have

$$(\widetilde{P}(\xi,Y)\widetilde{P})(U,W,Z) = \widetilde{P}(\xi,Y)\widetilde{P}(U,W)Z - \widetilde{P}(\widetilde{P}(\xi,Y)U,W)Z - \widetilde{P}(U,\widetilde{P}(\xi,Y)W)Z - \widetilde{P}(U,\widetilde{P}(\xi,Y)Z)$$
(32)

for any $Y, U, W, Z \in \chi(M)$. Using (19) in (32), we obtain

$$\begin{split} (\widetilde{P}(\xi,Y)\widetilde{P})(U,W,Z) &= \left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right] \left[g(Y,\widetilde{P}(U,W)Z)\xi-\eta(\widetilde{P}(U,W)Z)Y\right. \\ &- \left.g(Y,U)\widetilde{P}(\xi,W)Z+\eta(U)\widetilde{P}(Y,W)Z-g(Y,W)\widetilde{P}(\xi,U)Z\right. \\ &+ \left.\eta(W)\widetilde{P}(U,Y)Z-g(Y,Z)\widetilde{P}(U,W)\xi+\eta(Z)\widetilde{P}(U,W)Y\right] \\ &+ \left.b\left[S(Y,\widetilde{P}(U,W)Z)\xi-(n-1)\eta(\widetilde{P}(U,W)Z)Y\right. \\ &- \left.S(Y,U)\widetilde{P}(\xi,W)Z+(n-1)\eta(U)\widetilde{P}(Y,W)Z\right. \\ &- \left.S(Y,W)\widetilde{P}(U,\xi)Z+(n-1)\eta(W)\widetilde{P}(U,Y)Z\right. \\ &- \left.S(Y,Z)\widetilde{P}(U,W)\xi+(n-1)\eta(Z)\widetilde{P}(U,W)Y\right]. \end{split}$$
(33)

Substituting $U = \xi$ and using (18) and (19) in (33), we obtain

$$\begin{split} (\widetilde{P}(\xi,Y)\widetilde{P})(U,W,Z) &= \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right]^2 \left[g(Y,Z)W - g(W,Z)Y\right] \\ &+ \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \widetilde{P}(Y,W)Z + b(n-1)\widetilde{P}(Y,W)Z \\ &+ \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[S(W,Z)Y - (n-1)g(W,Z)Y \right] \\ &+ S(Y,Z)W + (n-1)g(Y,Z)W \right] \\ &+ b^2(n-1) \left[S(Y,Z)W - S(W,Z)Y\right]. \end{split} \tag{34}$$

In(34), choosing $Z = \xi$, we obtain

$$\widetilde{P}(\xi, Y)\widetilde{P} = 0.$$

This proves our assertion.

Theorem 3.4. Let M(c) be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi, Y)S = 0$ if and only if M(c) either reduces an Einstein manifold or the scalar curvature

$$r = \frac{an(n-1)}{a+b(n-1)},$$

provided that $(a + b(n-1)) \neq 0$.

Proof: Assume that $\widetilde{P}(\xi, Y)S = 0$. This implies that

$$S(\widetilde{P}(\xi, Y)Z, W) + S(Z, \widetilde{P}(\xi, Y)W) = 0, \tag{35}$$

for any $Y, Z, W \in \chi(M)$. In (35) using (19), we obtain

$$0 = \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b \right] \right] \left[g(Y, Z) S(\xi, W) - \eta(Z) S(Y, W) \right]$$

$$+ g(Y, W) S(\xi, Z) - \eta(W) S(Y, Z) \right]$$

$$+ b \left[S(Y, Z) S(\xi, W) - (n-1) \eta(Z) S(\xi, W) \right]$$

$$+ S(Y, W) S(\xi, Z) - (n-1) \eta(W) S(Y, Z) \right].$$
(36)

Substituting $Z = \xi$ and using (11) in (36), we can infer

$$\left[a - \frac{r}{n} \left[\frac{a}{n-1} + b \right] \right] \left[S(Y, W) - (n-1)g(Y, W) \right] = 0.$$

So either M(c) reduces an Einstein manifold or the scalar curvature

$$r = \frac{an(n-1)}{a+b(n-1)}.$$

On the other hand, if a + b(n - 1) = 0 then, one can easily to see that the pseudo projective curvature tensor reduces projective curvature tensor.

Theorem 3.5. Let M(c) be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi, Y)\widetilde{Z} = 0$ if and only if M(c) satisfies one of the least following conditions

- i) M(c) is an Einstein Manifold,
- \widetilde{P} pseudo projective curvature tensor reduces the concircular curvature tensor,
- iii) The scalar curvature r of M(c) is r = n(n-1).

Proof: Suppose that $\widetilde{P}(\xi, Y)\widetilde{Z} = 0$, then we have

$$(\widetilde{P}(\xi,Y)\widetilde{Z})(U,W,Z) = \widetilde{P}(\xi,Y)\widetilde{Z}(U,W)Z - \widetilde{Z}(\widetilde{P}(\xi,Y)U,W)Z - \widetilde{Z}(U,\widetilde{P}(\xi,Y)W)Z - \widetilde{Z}(U,W)\widetilde{P}(\xi,Y)Z = 0,$$

$$(37)$$

for any $Y, U, W, Z \in \chi(M)$. Using (20) in (37), we obtain

$$0 = \left[a - \frac{r}{n} \left[\frac{a}{n-1} + b\right]\right] \left[g(Y, \widetilde{Z}(U, W)Z)\xi - \eta(\widetilde{Z}(U, W)Z)Y\right]$$

$$- g(Y, U)\widetilde{Z}(\xi, W)Z + \eta(U)\widetilde{Z}(Y, W)Z - g(Y, W)\widetilde{Z}(\xi, U)Z$$

$$+ \eta(W)\widetilde{Z}(U, Y)Z - g(Y, Z)\widetilde{Z}(U, W)\xi + \eta(Z)\widetilde{Z}(U, W)Y\right]$$

$$+ b\left[S(Y, \widetilde{Z}(U, W)Z)\xi - (n-1)\eta(\widetilde{Z}(U, W)Z)Y\right]$$

$$- S(Y, U)\widetilde{Z}(\xi, W)Z + (n-1)\eta(U)\widetilde{Z}(Y, W)Z$$

$$- S(Y, W)\widetilde{Z}(U, \xi)Z + (n-1)\eta(W)\widetilde{Z}(U, Y)Z$$

$$- S(Y, Z)\widetilde{Z}(U, W)\xi + (n-1)\eta(Z)\widetilde{Z}(U, W)Y\right]. \tag{38}$$

In (38), using (20) and (21) and substituting $U = Z = \xi$, we have

$$b \left[1 - \frac{r}{n(n-1)} \right] \left[S(Y,W) - (n-1)g(Y,W) \right] = 0.$$

This proves our assertion.

Definition 3.1. An n-dimensional normal paracontact metric manifold M is called pseudo projective flat if the condition

$$\widetilde{P}(X,Y)Z = 0$$

holds on M(c).

Let us consider the space form M(c) under consideration is pseudo projective flat, then we have from Definition 3.1. and relation (1)

$$aR(X,Y)Z = [S(X,Z)Y - S(Y,Z)X] + \frac{r}{n} [\frac{a}{n-1} + b] [g(Y,Z)X - g(X,Z)Y].$$
 (39)

In (39), substituting $Z = \xi$ and using (11) and (15), we have

$$a\left[\eta(Y)X - \eta(X)Y\right] = b(n-1)\left[\eta(X)Y - \eta(Y)X\right] + \frac{r}{n}\left[\frac{a}{n-1} + b\right]\left[\eta(Y)X - \eta(X)Y\right]. (40)$$

Taking the inner product on both sides of (40) with $\xi \in \chi(M)$, we obtain

$$r = \frac{n(n-1)[a+b(n-1)]}{a+b(n-1)}. (41)$$

This leads to the following statement:

Theorem 3.6. An n-dimensional ($n \ge 3$) normal paracontact metric manifold is pseudo projective flat if and only if the scalar curvature of M(c) is given by

$$r = \frac{n(n-1)[a+b(n-1)]}{a+b(n-1)}$$
(42)

provided that $(a + b(n - 1)) \neq 0$.

Example 3.7. Let us consider a 7-dimensional manifold $M^7 = \{(x_1, x_2, x_3, y_1, y_2, y_3, z) \in \mathbb{R}^7\}$, where $(x_1, x_2, x_3, y_1, y_2, y_3, z)$ are standard coordinates in $\in \mathbb{R}^7$. Taking the vector fields

$$e_i = e^z \frac{\partial}{\partial x_i}, \qquad e_j = e^z \frac{\partial}{\partial y_i}, \qquad 1 \le i, j \le 3, \qquad e_7 = \frac{\partial}{\partial z},$$

which are linearly independent at each point of M. Let g be the Riemannian metric i-on M defined by

$$g = e^{-2z} \sum_{n=1}^{3} \{ dx_i \otimes dy_i + dy_i \otimes dy_i \} + dz + dz.$$

We note that $g(e_i, e_j) = \delta_{ij}$. Thus the set e_i , $1 \le i, j \le 7$, is an orthonormal basis of M. Let

$$X = \sum_{i=1}^{3} (X_i \frac{\partial}{\partial x_i} + Y_i \frac{\partial}{\partial y_i}) + Z \frac{\partial}{\partial z}$$

be a vector field on M. We define the almost paracontact structure ϕ and 1-form η

$$\phi X = \sum_{i=1}^{3} \left(-X_i \frac{\partial}{\partial x_i} - Y_i \frac{\partial}{\partial y_i} \right) \text{ and } \eta(X) = g(X, e_7).$$
 (43)

Thus we have

$$\phi e_i = -e_i, \quad \phi e_7 = 0, \quad 1 < i < 6.$$
 (44)

It is easy to see that $\phi^2 X = X - \eta(X)e_7$, $g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y)$, and $\eta(e_7) = 1$, for any $X, Y \in \Gamma(TM)$. Thus $(\phi, \xi = e_7, \eta, g)$ is an almost paracontact metric structure on M. By direct calculations, we have

$$[e_i, e_7] = -e_i, \quad 1 \le i \le 6, \quad [e_i, e_j] = 0, \quad 1 \le j \le 6.$$

By using Kozsul formula, we can easily to find that

$$\nabla_{e_i} e_i = e_7, \quad \nabla_{e_i} e_j = 0, \quad i \neq j, 1 \le i, j \le 6.$$

$$\nabla_{e_i} e_7 = \phi e_i = -e_i, \quad \nabla_{e_7} e_7 = 0, \quad \nabla_{e_7} e_i = 0, \quad 1 < i < 6.$$

Using the Kozsul's formula, we get

$$(\nabla_X \phi)Y = -g(X, Y)\xi - \eta(Y)X + 2\eta(X)\eta(Y)\xi \tag{45}$$

for any $X,Y \in \Gamma(TM)$. Thus $M^n(\phi,\xi,\eta,g)$ is a normal paracontact metric manifold. By R we denote the Riemannian curvature tensor of M, it can be easily too seen that

$$R(e_i, e_j)e_j = -e_i, \quad 1 \le i \ne j \le 7, R(e_i, e_j)e_k = 0, \quad 1 \le i, j, k \le 6, \quad i \ne j \ne k.$$
 (46)

Let $X = X_i e_i, Y = Y_j e_j$ and $Z = Z_k e_k, 1 \le i, j, k \le n$, be vector fields on M. By using the properties of R, we get

$$R(X,Y)Z = X_{i}Y_{j}Z_{k}R(e_{i},e_{j})e_{k} = Y_{j}Z_{j}X_{i}R(e_{i}e_{j}e_{j}) + X_{i}Y_{j}Z_{i}R(e_{i},e_{j})e_{i}$$
$$= Y_{i}Z_{j}X_{i}e_{i} + X_{i}Z_{i}Y_{j}e_{j} = -\{g(Y,Z)X - g(X,Z)Y\}$$

that is, M has a constant curvature -1 and

$$S(X,Y) = -(n-1)g(X,Y) = -6g(X,Y), \quad \tau = -42. \tag{47}$$

Conclusion 3.1. In this paper, the curvature tensors act to each other cases are discussed and normal paracontact metric space form is characterized with respect to these cases.

References

- Acet, B.E., Kılıç E. and Yüksel Perktaş, S., Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection, *International Journal of Mathematics and Mathematical Sciences*, Volume 2012, (2012) Article ID 395462, 24 pages.
- [2] Acet, B.E. and Yüksel Perktaş, S., On para-Sasakian manifolds with a canonical paracontact connection, New Trends in Math. Sci. 4, No. 3, 162-173.
- [3] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc., 94, (2002), 163-166.
- [4] Narain, D., Prakash, A. and Prasad, B., A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold. Analele Stuntifice Ale Universitatii "All.Cuza" Din Iași (S.N) Mathemmatica, Tomul LV, (2009). f.2.
- [5] Welczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54, (2009), 377-387.
- [6] Welczko, J., Slant curves in 3-dimensional normal paracontact metric manifolds. Mediterr. J. Math. 11, (2014), 965-978.
- [7] Atçeken, M. and Yıldırım, Ü., Almost C(α)-Manifolds Satisfying Certain Curvature Conditions. Advanced Studies in Contemporary Mathematics, 26 (3), (2016), 567-578.
- [8] Atçeken, M. and Yıldırım, Ü., On Almost C(α)—Manifolds Satisfying Certain Conditions on Quasi-Conformal Curvature Tensor. Proceedings of the Jangjeon Mathematical Society, 19(1), (2016), 115-124.
- [9] Mishra, R. S., Structure on a differentiable manifold and their applications, Chandrama Prakashan, 50 A, Balrampur House, Allahabad, India, 1984.
- [10] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds. Nagoya Math. J., Vol. 99, (1985), 173-187.
- [11] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann Glob. Anal. Geom., 36, (2009), 37-60.

Current address: Ümit Yıldırım :Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey

E-mail address: umit.yildirim@gop.edu.tr

ORCID Address: http://orcid.org/0000-0002-7178-4223

Current address: Mehmet Atçeken :Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey

E-mail address: mehmet.atceken@gop.edu.tr

ORCID Address: http://orcid.org/0000-0001-8665-5945

Current address: Süleyman Dirik: Department of Statistic, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey

 $E ext{-}mail\ address: }$ suleyman.dirik@amasya.edu.tr

ORCID Address: http://orcid.org/0000-0001-9093-1607