PSEUDO PROJECTIVE CURVATURE TENSOR SATISFYING SOME PROPERTIES ON A NORMAL PARACONTACT METRIC MANIFOLD

ÜMIT YILDIRIM, MEHMET ATÇEKEN, AND SÜLEYMAN DIRIK

Abstract

In the present paper we have studied the curvature tensor of a normal paracontact metric manifold satisfying the conditions $R(\xi, X) \widetilde{P}=0$, $\widetilde{P}(\xi, X) R=0, \widetilde{P}(\xi, X) \widetilde{P}=0, \widetilde{P}(\xi, X) S=0, \widetilde{P}(\xi, X) \widetilde{Z}=0$ and pseudo projective flatness, where $R, \widetilde{P}, \mathrm{~S}$ and \widetilde{Z} denote the Riemannian curvature, pseudo projective curvature, Ricci and concircular curvature tensors, respectively.

1. Introduction

The study of paracontact geometry was initiated by Kenayuki and Williams [10]. Zamkovoy studied paracontact metric manifolds and their subclasses [11]. Recently, Welyczko studied curvature and torsion of Frenet Legendre curves in 3dimensional normal almost paracontact metric manifolds 5]. In the recent years, (para) contact metric manifolds and their curvature properties have been studied by many authors. [6, 9]

In [7, 8, we studied the curvature tensors satisfying some conditions on a $C(\alpha)$-manifold and induced cases were discussed.

In 2002, Prasad [3] defined pseudo projective curvature tensor \widetilde{P} on a Riemannian manifold $\left(M^{n}, g\right)(n>2)$ of type $(1,3)$ as follows

$$
\begin{align*}
\widetilde{P}(X, Y) Z & =a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \\
& -\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] \tag{1}
\end{align*}
$$

where R is the Riemann curvature, S is the Ricci tensor, respectively, and a, b are constants such that $a, b \neq 0$. If $a=1$ and $b=-\frac{1}{n-1}$, then (1) takes the form

[^0]\[

$$
\begin{align*}
\widetilde{P}(X, Y) Z & =R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \\
& =P(X, Y) Z \tag{2}
\end{align*}
$$
\]

where P is the projective curvature tensor 9 . Hence the projective curvature tensor P can be seen as a particular case of the tensor \widetilde{P}.

Narain et. al. studied pseudo projective curvature tensor in Lorentzian paraSasakian manifolds [4].

Let M be n-dimensional Riemannian manifold. Then the concircular curvature tensor field is defined by

$$
\begin{equation*}
\widetilde{Z}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{3}
\end{equation*}
$$

for any $X, Y, Z \in \chi(M)$.

2. Preliminaries

An n-dimensional differentiable manifold (M, g) is said to be an almost paracontact metric manifold if there exist on M a $(1,1)$ tensor field ϕ, a contravariant vector ξ and a 1 -form η-such that

$$
\begin{equation*}
\phi^{2} X=X-\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi) \tag{5}
\end{equation*}
$$

for any $X, Y \in \chi(M)$.
If in addition to the above relations, we have

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{6}
\end{equation*}
$$

then M is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection.
We have also on a normal paracontact metric manifold M

$$
\begin{equation*}
\phi X=\nabla_{X} \xi \tag{7}
\end{equation*}
$$

for any $X \in \chi(M)$.

Moreover, if such a manifold has constant sectional curvature equal to c, then the Riemannian curvature tensor is given by

$$
\begin{align*}
R(X, Y) Z & =\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\}, \tag{8}
\end{align*}
$$

for any vector fields $X, Y, Z \in \chi(M)$.
In a normal paracontact metric manifold by direct calculations, we can easily to see that

$$
\begin{equation*}
S(X, Y)=\left(\frac{c(n-5)+3 n+1}{4}\right) g(X, Y)+\left(\frac{(c-1)(5-n)}{4}\right) \eta(X) \eta(Y) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
Q X=\left(\frac{c(n-5)+3 n+1}{4}\right) X+\left(\frac{(c-1)(5-n)}{4}\right) \eta(X) \xi \tag{10}
\end{equation*}
$$

for any $X, Y \in \chi(M)$, where Q is the Ricci operator of M such that $g(Q X, Y)=$ $S(X, Y)$. Thus we have the following statement.
Corollary 2.1. A normal paracontact metric manifold is always an η-Einstein manifold.

From (9), we can easily see

$$
\begin{align*}
S(X, \xi) & =(n-1) \eta(X) \tag{11}\\
Q \xi & =(n-1) \xi \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
r=\frac{n-1}{4}[c(n-5)+3 n+5] \tag{13}
\end{equation*}
$$

Let M be an n-dimensional normal paracontact metric manifold and we denote the Riemannian curvature tensor of M by R, then we have from (8), for $X=\xi$

$$
\begin{equation*}
R(\xi, Y) Z=g(Y, Z) \xi-\eta(Z) Y \tag{14}
\end{equation*}
$$

for $Z=\xi$

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{15}
\end{equation*}
$$

In (15) choosing $Y=\xi$, we get

$$
\begin{equation*}
R(X, \xi) \xi=X-\eta(X) \xi \tag{16}
\end{equation*}
$$

Taking the inner product both of the sides (8) with $\xi \in \chi(M)$, we obtain

$$
\begin{equation*}
\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{17}
\end{equation*}
$$

In the same way we obtain from (1) and (3),

$$
\begin{align*}
& \widetilde{P}(X, Y) \xi=\left[a+b(n-1)-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][\eta(Y) X-\eta(X) Y] \tag{18}\\
& \widetilde{P}(\xi, Y) Z=\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, Z) \xi-\eta(Z) Y] \\
&+b[S(Y, Z) \xi-(n-1) \eta(Z) Y] \tag{19}\\
& \widetilde{Z}(\xi, Y) Z=\left[1-\frac{r}{n(n-1)}\right][g(Y, Z) \xi-\eta(Z) Y] \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{Z}(\xi, Y) \xi=\left[1-\frac{r}{n(n-1)}\right][\eta(Y) \xi-Y] \tag{21}
\end{equation*}
$$

for any $X, Y, Z \in \chi(M)$.

3. Pseudo Projective Curvature Tensor of a Normal Paracontact Metric Manifold

Theorem 3.1. Let $M(c)$ be an n-dimensional normal paracontact metric space form. Then $M(c)$ is pseudo projective semi-symmetric if and only if either $M(c)$ reduces an Einstein manifold or pseudo projective curvature tensor \widetilde{P} reduces projective curvature tensor.

Proof: Suppose that n-dimensional normal paracontact metric manifold $M(c)$ is pseudo projective semi symmetric. Then we have

$$
\begin{equation*}
R(X, Y) \widetilde{P}=0 \tag{22}
\end{equation*}
$$

for any $X, Y \in \chi(M)$. 22 implies that

$$
\begin{align*}
(R(X, Y) \widetilde{P})(Z, U, W) & =R(X, Y) \widetilde{P}(Z, U) W-\widetilde{P}(R(X, Y) Z, U) W \\
& -\widetilde{P}(Z, R(X, Y) U) W-\widetilde{P}(Z, U) R(X, Y) W \\
& =0 \tag{23}
\end{align*}
$$

for any $U, Z, W \in \chi(M)$. Substituting $X=\xi$ in 23), we have

$$
\begin{align*}
0 & =R(\xi, Y) \widetilde{P}(Z, U) W-\widetilde{P}(R(\xi, Y) Z, U) W \\
& -\widetilde{P}(Z, R(\xi, Y) U) W-\widetilde{P}(Z, U) R(\xi, Y) W \tag{24}
\end{align*}
$$

Using (14) in (24), we obtain

$$
\begin{align*}
0 & =g(Y, \widetilde{P}(Z, U) W) \xi-\eta(\widetilde{P}(Z, U) W) Y \\
& -g(Y, Z) \widetilde{P}(\xi, U) W+\eta(Z) \widetilde{P}(Y, U) W \\
& -g(Y, U) \widetilde{P}(Z, \xi) W+\eta(U) \widetilde{P}(Z, Y) W \\
& -g(Y, W) \widetilde{P}(Z, U) \xi+\eta(W) \widetilde{P}(Z, U) Y . \tag{25}
\end{align*}
$$

Using (18) and 19 in , choosing $Z=\xi$ in 25 it follows that

$$
\begin{align*}
0 & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, W) \eta(U) \xi-g(U, W) Y] \\
& +\left[a+b(n-1)-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, W) U-g(Y, W) \eta(U) \xi] \\
& +b[S(U, Y) \eta(W) \xi+S(Y, W) \eta(U) \xi-(n-1) g(Y, U) \eta(W) \xi-S(U, W) Y] \\
& +\widetilde{P}(Y, U) W \tag{26}
\end{align*}
$$

By choosing $W=\xi$ and taking the inner product on both sides of with $\xi \in$ $\chi(M)$, we find

$$
\begin{equation*}
b[S(U, Y)-(n-1) g(Y, U)]=0 \tag{27}
\end{equation*}
$$

This proves our assertion.
Theorem 3.2. Let $M(c)$ be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi, Y) R=0$ if and only if either $M(c)$ reduces an Einstein manifold or pseudo projective curvature tensor \widetilde{P} reduces concircular curvature tensor.

Proof: Suppose that $\widetilde{P}(\xi, Y) R=0$, then we have

$$
\begin{align*}
0 & =\widetilde{P}(\xi, Y) R(Z, U) W-R(\widetilde{P}(\xi, Y) Z, U) W \\
& -R(Z, \widetilde{P}(\xi, Y) U) W-R(Z, U) \widetilde{P}(\xi, Y) W \tag{28}
\end{align*}
$$

for any $Y, U, Z, W \in \chi(M)$. Using (19) in (28), choosing $Z=\xi$, we obtain

$$
\begin{align*}
0 & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, R(\xi, U) W) \xi-\eta(R(\xi, U) W) Y \\
& -\eta(Y) R(\xi, U) W+R(Y, U) W+\eta(U) R(\xi, Y) W+\eta(W) R(\xi, U) Y] \\
& +b[S(Y, R(\xi, U) W) \xi-(n-1) \eta(R(\xi, U) W) Y-(n-1) \eta(Y) R(\xi, U) W \\
& +(n-1) R(Y, U) W+(n-1) \eta(U) R(\xi, Y) W-S(Y, W) R(\xi, U) \xi \\
& +(n-1) \eta(W) R(\xi, U) Y] \tag{29}
\end{align*}
$$

In 29 using (14) and 15 , choosing $W=\xi$, we find

$$
\begin{equation*}
-b S(Y, U) \xi+b(n-1) g(Y, U) \xi=0 \tag{30}
\end{equation*}
$$

Taking the inner product on both sides of with $\xi \in \chi(M)$, we obtain

$$
\begin{equation*}
b[S(Y, U)-(n-1) g(Y, U)]=0 \tag{31}
\end{equation*}
$$

The proof is completed.
Theorem 3.3. Let $M(c)$ be an n-dimensional normal paracontact metric space form. Then, $\widetilde{P}(\xi, Y) \widetilde{P}$ is always identically zero, for any $Y \in \chi(M)$.

Proof: Let $M(c)$ be n - dimensional a normal paracontact metric space form. Then, we have

$$
\begin{align*}
(\widetilde{P}(\xi, Y) \widetilde{P})(U, W, Z) & =\widetilde{P}(\xi, Y) \widetilde{P}(U, W) Z-\widetilde{P}(\widetilde{P}(\xi, Y) U, W) Z \\
& -\widetilde{P}(U, \widetilde{P}(\xi, Y) W) Z-\widetilde{P}(U, W) \widetilde{P}(\xi, Y) Z \tag{32}
\end{align*}
$$

for any $Y, U, W, Z \in \chi(M)$. Using (19) in (32), we obtain

$$
\begin{align*}
(\widetilde{P}(\xi, Y) \widetilde{P})(U, W, Z) & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, \widetilde{P}(U, W) Z) \xi-\eta(\widetilde{P}(U, W) Z) Y \\
& -g(Y, U) \widetilde{P}(\xi, W) Z+\eta(U) \widetilde{P}(Y, W) Z-g(Y, W) \widetilde{P}(\xi, U) Z \\
& +\eta(W) \widetilde{P}(U, Y) Z-g(Y, Z) \widetilde{P}(U, W) \xi+\eta(Z) \widetilde{P}(U, W) Y] \\
& +b[S(Y, \widetilde{P}(U, W) Z) \xi-(n-1) \eta(\widetilde{P}(U, W) Z) Y \\
& -S(Y, U) \widetilde{P}(\xi, W) Z+(n-1) \eta(U) \widetilde{P}(Y, W) Z \\
& -S(Y, W) \widetilde{P}(U, \xi) Z+(n-1) \eta(W) \widetilde{P}(U, Y) Z \\
& -S(Y, Z) \widetilde{P}(U, W) \xi+(n-1) \eta(Z) \widetilde{P}(U, W) Y] \tag{33}
\end{align*}
$$

Substituting $U=\xi$ and using (18) and (19) in (33), we obtain

$$
\begin{align*}
(\widetilde{P}(\xi, Y) \widetilde{P})(U, W, Z) & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right]^{2}[g(Y, Z) W-g(W, Z) Y] \\
& +\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right] \widetilde{P}(Y, W) Z+b(n-1) \widetilde{P}(Y, W) Z \\
& +\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][S(W, Z) Y-(n-1) g(W, Z) Y \\
& +S(Y, Z) W+(n-1) g(Y, Z) W] \\
& +b^{2}(n-1)[S(Y, Z) W-S(W, Z) Y] \tag{34}
\end{align*}
$$

$\operatorname{In}(34$, choosing $Z=\xi$, we obtain

$$
\widetilde{P}(\xi, Y) \widetilde{P}=0
$$

This proves our assertion.
Theorem 3.4. Let $M(c)$ be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi, Y) S=0$ if and only if $M(c)$ either reduces an Einstein manifold or the scalar curvature

$$
r=\frac{a n(n-1)}{a+b(n-1)}
$$

provided that $(a+b(n-1)) \neq 0$.
Proof: Assume that $\widetilde{P}(\xi, Y) S=0$. This implies that

$$
\begin{equation*}
S(\widetilde{P}(\xi, Y) Z, W)+S(Z, \widetilde{P}(\xi, Y) W)=0 \tag{35}
\end{equation*}
$$

for any $Y, Z, W \in \chi(M)$. In (35) using (19), we obtain

$$
\begin{align*}
0 & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, Z) S(\xi, W)-\eta(Z) S(Y, W) \\
& +g(Y, W) S(\xi, Z)-\eta(W) S(Y, Z)] \\
& +b[S(Y, Z) S(\xi, W)-(n-1) \eta(Z) S(\xi, W) \\
& +S(Y, W) S(\xi, Z)-(n-1) \eta(W) S(Y, Z)] \tag{36}
\end{align*}
$$

Substituting $Z=\xi$ and using (11) in (36), we can infer

$$
\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][S(Y, W)-(n-1) g(Y, W)]=0
$$

So either $M(c)$ reduces an Einstein manifold or the scalar curvature

$$
r=\frac{a n(n-1)}{a+b(n-1)} .
$$

On the other hand, if $a+b(n-1)=0$ then, one can easily to see that the pseudo projective curvature tensor reduces projective curvature tensor.
Theorem 3.5. Let $M(c)$ be an n-dimensional normal paracontact metric space form. Then $\widetilde{P}(\xi, Y) \widetilde{Z}=0$ if and only if $M(c)$ satisfies one of the least following conditions
i) $M_{\widetilde{P}}(c)$ is an Einstein Manifold,
ii) \widetilde{P} pseudo projective curvature tensor reduces the concircular curvature tensor, iii) The scalar curvature r of $M(c)$ is $r=n(n-1)$.

Proof: Suppose that $\widetilde{P}(\xi, Y) \widetilde{Z}=0$, then we have

$$
\begin{align*}
(\widetilde{P}(\xi, Y) \widetilde{Z})(U, W, Z) & =\widetilde{P}(\xi, Y) \widetilde{Z}(U, W) Z-\widetilde{Z}(\widetilde{P}(\xi, Y) U, W) Z \\
& -\widetilde{Z}(U, \widetilde{P}(\xi, Y) W) Z-\widetilde{Z}(U, W) \widetilde{P}(\xi, Y) Z \\
& =0 \tag{37}
\end{align*}
$$

for any $Y, U, W, Z \in \chi(M)$. Using 20) in (37, we obtain

$$
\begin{align*}
0 & =\left[a-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right][g(Y, \widetilde{Z}(U, W) Z) \xi-\eta(\widetilde{Z}(U, W) Z) Y \\
& -g(Y, U) \widetilde{Z}(\xi, W) Z+\eta(U) \widetilde{Z}(Y, W) Z-g(Y, W) \widetilde{Z}(\xi, U) Z \\
& +\eta(W) \widetilde{Z}(U, Y) Z-g(Y, Z) \widetilde{Z}(U, W) \xi+\eta(Z) \widetilde{Z}(U, W) Y] \\
& +b[S(Y, \widetilde{Z}(U, W) Z) \xi-(n-1) \eta(\widetilde{Z}(U, W) Z) Y \\
& -S(Y, U) \widetilde{Z}(\xi, W) Z+(n-1) \eta(U) \widetilde{Z}(Y, W) Z \\
& -S(Y, W) \widetilde{Z}(U, \xi) Z+(n-1) \eta(W) \widetilde{Z}(U, Y) Z \\
& -S(Y, Z) \widetilde{Z}(U, W) \xi+(n-1) \eta(Z) \widetilde{Z}(U, W) Y] \tag{38}
\end{align*}
$$

In (38), using 20) and 21) and substituting $U=Z=\xi$, we have

$$
b\left[1-\frac{r}{n(n-1)}\right][S(Y, W)-(n-1) g(Y, W)]=0
$$

This proves our assertion.
Definition 3.1. An n-dimensional normal paracontact metric manifold M is called pseudo projective flat if the condition

$$
\widetilde{P}(X, Y) Z=0
$$

holds on $M(c)$.
Let us consider the space form $M(c)$ under consideration is pseudo projective flat, then we have from Definition 3.1. and relation (1)
$a R(X, Y) Z=[S(X, Z) Y-S(Y, Z) X]+\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y]$.
In (39), substituting $Z=\xi$ and using (11) and 15), we have
$a[\eta(Y) X-\eta(X) Y]=b(n-1)[\eta(X) Y-\eta(Y) X]+\frac{r}{n}\left[\frac{a}{n-1}+b\right][\eta(Y) X-\eta(X) Y]$.
Taking the inner product on both sides of 40 with $\xi \in \chi(M)$, we obtain

$$
\begin{equation*}
r=\frac{n(n-1)[a+b(n-1)]}{a+b(n-1)} \tag{41}
\end{equation*}
$$

This leads to the following statement:
Theorem 3.6. An n-dimensional $(n \geq 3)$ normal paracontact metric manifold is pseudo projective flat if and only if the scalar curvature of $M(c)$ is given by

$$
\begin{equation*}
r=\frac{n(n-1)[a+b(n-1)]}{a+b(n-1)} \tag{42}
\end{equation*}
$$

provided that $(a+b(n-1)) \neq 0$.
Example 3.7. Let us consider a 7-dimensional manifold $M^{7}=\left\{\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z\right) \in\right.$ $\left.R^{7}\right\}$, where $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z\right)$ are standard coordinates in $\in R^{7}$. Taking the vector fields

$$
e_{i}=e^{z} \frac{\partial}{\partial x_{i}}, \quad e_{j}=e^{z} \frac{\partial}{\partial y_{i}}, \quad 1 \leq i, j \leq 3, \quad e_{7}=\frac{\partial}{\partial z}
$$

which are linearly independent at each point of M. Let g be the Riemannian metric \imath-on M defined by

$$
g=e^{-2 z} \sum_{n=1}^{3}\left\{d x_{i} \otimes d y_{i}+d y_{i} \otimes d y_{i}\right\}+d z+d z
$$

We note that $g\left(e_{i}, e_{j}\right)=\delta_{i j}$. Thus the set $e_{i}, 1 \leq i, j \leq 7$, is an orthonormal basis of M. Let

$$
X=\sum_{i=1}^{3}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)+Z \frac{\partial}{\partial z}
$$

be a vector field on M. We define the almost paracontact structure ϕ and 1-form η as

$$
\begin{equation*}
\phi X=\sum_{i=1}^{3}\left(-X_{i} \frac{\partial}{\partial x_{i}}-Y_{i} \frac{\partial}{\partial y_{i}}\right) \text { and } \eta(X)=g\left(X, e_{7}\right) \tag{43}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\phi e_{i}=-e_{i}, \quad \phi e_{7}=0, \quad 1 \leq i \leq 6 . \tag{44}
\end{equation*}
$$

It is easy to see that $\phi^{2} X=X-\eta(X) e_{7}, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$, and $\eta\left(e_{7}\right)=1$, for any $X, Y \in \Gamma(T M)$. Thus $\left(\phi, \xi=e_{7}, \eta, g\right)$ is an almost paracontact metric structure on M. By direct calculations, we have

$$
\left[e_{i}, e_{7}\right]=-e_{i}, \quad 1 \leq i \leq 6, \quad\left[e_{i}, e_{j}\right]=0, \quad 1 \leq j \leq 6
$$

By using Kozsul formula, we can easily to find that

$$
\begin{aligned}
\nabla_{e_{i}} e_{i} & =e_{7}, \quad \nabla_{e_{i}} e_{j}=0, \quad i \neq j, 1 \leq i, j \leq 6 \\
\nabla_{e_{i}} e_{7}=\phi e_{i} & =-e_{i}, \quad \nabla_{e_{7}} e_{7}=0, \quad \nabla_{e_{7}} e_{i}=0, \quad 1 \leq i \leq 6
\end{aligned}
$$

Using the Kozsul's formula, we get

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{45}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$. Thus $M^{n}(\phi, \xi, \eta, g)$ is a normal paracontact metric manifold. By R we denote the Riemannian curvature tensor of M, it can be easily too seen that
$R\left(e_{i}, e_{j}\right) e_{j}=-e_{i}, \quad 1 \leq i \neq j \leq 7, R\left(e_{i}, e_{j}\right) e_{k}=0, \quad 1 \leq i, j, k \leq 6, \quad i \neq j \neq k$.
Let $X=X_{i} e_{i}, Y=Y_{j} e_{j}$ and $Z=Z_{k} e_{k},, 1 \leq i, j, k \leq n$, be vector fields on M. By using the properties of R, we get

$$
\begin{aligned}
R(X, Y) Z & =X_{i} Y_{j} Z_{k} R\left(e_{i}, e_{j}\right) e_{k}=Y_{j} Z_{j} X_{i} R\left(e_{i} e_{j} e_{j}\right)+X_{i} Y_{j} Z_{i} R\left(e_{i}, e_{j}\right) e_{i} \\
& =Y_{j} Z_{j} X_{i} e_{i}+X_{i} Z_{i} Y_{j} e_{j}=-\{g(Y, Z) X-g(X, Z) Y\}
\end{aligned}
$$

that is, M has a constant curvature -1 and

$$
\begin{equation*}
S(X, Y)=-(n-1) g(X, Y)=-6 g(X, Y), \quad \tau=-42 \tag{47}
\end{equation*}
$$

Conclusion 3.1. In this paper, the curvature tensors act to each other cases are discussed and normal paracontact metric space form is characterized with respect to these cases.

References

[1] Acet, B.E., Kılıç E. and Yüksel Perktaş, S., Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection, International Journal of Mathematics and Mathematical Sciences, Volume 2012, (2012) Article ID 395462, 24 pages.
[2] Acet, B.E. and Yüksel Perktaş, S., On para-Sasakian manifolds with a canonical paracontact connection, New Trends in Math. Sci. 4, No. 3, 162-173.
[3] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc., 94, (2002), 163-166.
[4] Narain, D., Prakash, A. and Prasad, B., A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold. Analele Ṣtııntıfıce Ale Unıversıtatıı "AlI.Cuza" Dın Iaṣı (S.N) Mathemmatica, Tomul LV, (2009). f.2.
[5] Welczko, J., On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54, (2009), 377-387.
[6] Welczko, J., Slant curves in 3-dimensional normal paracontact metric manifolds. Mediterr. J. Math. 11, (2014), 965-978.
[7] Atçeken, M. and Yıldırım, Ü., Almost $C(\alpha)$-Manifolds Satisfying Certain Curvature Conditions. Advanced Studies in Contemporary Mathematics, 26 (3), (2016), 567-578.
[8] Atçeken, M. and Yıldırım, Ü., On Almost $C(\alpha)$-Manifolds Satisfying Certain Conditions on Quasi-Conformal Curvature Tensor. Proceedings of the Jangjeon Mathematical Society, 19(1), (2016), 115-124.
[9] Mishra, R. S., Structure on a differentiable manifold and their applications, Chandrama Prakashan, 50 A, Balrampur House, Allahabad, India, 1984.
[10] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds. Nagoya Math. J., Vol. 99, (1985), 173-187.
[11] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann Glob. Anal. Geom., 36, (2009), 37-60.

Current address: Ümit Yıldırım :Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey

E-mail address: umit.yildirim@gop.edu.tr
ORCID Address: http://orcid.org/0000-0002-7178-4223
Current address: Mehmet Atçeken :Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey

E-mail address: mehmet.atceken@gop.edu.tr
ORCID Address: http://orcid.org/0000-0001-8665-5945
Current address: Süleyman Dirik : Department of Statistic, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey

E-mail address: suleyman.dirik@amasya.edu.tr
ORCID Address: http://orcid.org/0000-0001-9093-1607

[^0]: Received by the editors: August 17, 2017; Accepted: June 06, 2018.
 2010 Mathematics Subject Classification. 53C15, 53C44, 53D10.
 Key words and phrases. paracontact metric manifold, Ricci tensor, concircular curvature tensor.

