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PSEUDO PROJECTIVE CURVATURE TENSOR SATISFYING
SOME PROPERTIES ON A NORMAL PARACONTACT METRIC
MANIFOLD

UMIT YILDIRIM, MEHMET ATCEKEN, AND SULEYMAN DIRIK

ABSTRACT. In the present paper we have studied the curvature tensor of a

normal paracontact metric manifold satisfying the conditions R(¢, X)P = 0,
f’(f, X)R =0, }S(f7 X)ﬁ =0, ﬁ(é,X)S =0, IS(§,X)Z = 0 and pseudo projec-
tive flatness, where R, 13, S and Z denote the Riemannian curvature, pseudo
projective curvature, Ricci and concircular curvature tensors, respectively.

1. INTRODUCTION

The study of paracontact geometry was initiated by Kenayuki and Williams
[10]. Zamkovoy studied paracontact metric manifolds and their subclasses [IT].
Recently, Welyczko studied curvature and torsion of Frenet Legendre curves in 3-
dimensional normal almost paracontact metric manifolds [5]. In the recent years,
(para) contact metric manifolds and their curvature properties have been studied
by many authors. [6] 9]

In [7, B], we studied the curvature tensors satisfying some conditions on a
C(«)-manifold and induced cases were discussed.

In 2002, Prasad [3] defined pseudo projective curvature tensor P on a Riemannian
manifold (M™, g) (n > 2) of type (1, 3) as follows

P(X,Y)Z = aR(X,Y)Z+b[S(Y,2)X - S(X,Z)Y]
D2 ] (Y, 2)X — g(X, 2)Y], (1)

nn—1
where R is the Riemann curvature, S is the Ricci tensor, respectively, and a, b are
constants such that a,b #0. If a =1 and b = —n%l, then takes the form
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= P(X,Y)Z (2)

P(X,Y)Z = R(X,Y)Z-— ﬁ [S(Y, 2)X — S(X,2)Y],

where P is the projective curvature tensor [9]. Hence the projective curvature ten-
sor P can be seen as a particular case of the tensor P.

Narain et. al. studied pseudo projective curvature tensor in Lorentzian para-
Sasakian manifolds[4].

Let M be n-dimensional Riemannian manifold. Then the concircular curvature
tensor field is defined by

- r

AX.Y)Z = RXY)Z = s oV 2)X = g(X, 2)Y], (3)

for any XY, Z € x(M).

2. PRELIMINARIES

An n—dimensional differentiable manifold (M, g) is said to be an almost para-
contact metric manifold if there exist on M a (1,1) tensor field ¢, a contravariant
vector £ and a 1-form 7-such that

P’X =X -n(X)§, =0, neX)=0, n¢=1 (4)
and
9(6X,0Y) = g(X,Y) —n(X)n(Y), n(X) =g(X, ), (5)
for any X,Y € x(M).

If in addition to the above relations, we have
(Vx9)Y = —g(X,Y){ = n(Y)X + 2n(X)n(Y)E, (6)

then M is called a normal paracontact metric manifold, where V is Levi-Civita
connection.
We have also on a normal paracontact metric manifold M

¢X = Vx§, (7)
for any X € x(M).
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Moreover, if such a manifold has constant sectional curvature equal to ¢, then
the Riemannian curvature tensor is given by

c+3

RX,Y)Z = “24g(v,2)X - g(X, 2)Y}

c—

b S XY Y (Z)X + g(X, Zn(¥ )
= gV, Z)n(X)E+ 9(oY, 2)9X — g(6X, Z)9Y —29(¢X,Y)9Z}(8)
for any vector fields X,Y, Z € x(M).

In a normal paracontact metric manifold by direct calculations, we can easily to
see that

sy = (=3 oy (DO, )
and
QX:(C(n_5)+3n+1)X+(w)n(X)§, (10)

4 4
for any X, Y € x(M), where @ is the Ricci operator of M such that g(QX,Y) =
S(X,Y). Thus we have the following statement.

Corollary 2.1. A normal paracontact metric manifold is always an n-FEinstein
manifold.

From @, we can easily see

S(X,8) = (n—1)n(X), (11)
Q¢ =(n—1)¢ (12)

and
r:nll[c(n—5)+3n+5]. (13)

Let M be an n-dimensional normal paracontact metric manifold and we denote
the Riemannian curvature tensor of M by R, then we have from , for X =¢

R(EY)Z = gY. 2)§ = n(2)Y. (14)
for Z =¢
R(X,Y)§ =n(Y)X —n(X)Y. (15)
In choosing Y = £, we get
R(X, )¢ = X —n(X)E. (16)

Taking the inner product both of the sides with £ € x(M), we obtain
n(R(X,Y)Z) = g(Y, Z)n(X) — (X, Z)n(Y). (17)
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In the same way we obtain from (1) and (3),

PX,Y)e=[a+bn—1)— %[n - -+ 5] [n(Y)X = n(X)Y], (18)
PeY)Z = [a- [ +][s(V.2)6 ~ n(2)Y]
+ b[S(Y,Z)¢ - (n—1)n(2)Y], (19)
26017 = [1 = 5 oV 2)6 = n(2)Y], (20)
and
26 )6 = 1= o e - v, (21)

for any X,Y,Z € x(M).

3. PSEUDO PROJECTIVE CURVATURE TENSOR OF A NORMAL PARACONTACT
METRIC MANIFOLD

Theorem 3.1. Let M(c) be an n—dimensional normal paracontact metric space
form. Then M(c) is pseudo projective semi-symmetric if and only if either M(c)
reduces an Einstein manifold or pseudo projective curvature tensor P reduces pro-
jective curvature tensor.

Proof: Suppose that n—dimensional normal paracontact metric manifold M (c)
is pseudo projective semi symmetric. Then we have

R(X,Y)P =0, (22)
for any X,Y € x(M). implies that
(R(X,Y)P)(Z,UW) = R(X,Y)P(Z,UW — P(R(X,Y)Z,U)W
— P(Z,R(X,Y)U)W — P(Z,U)R(X,Y)W
= 0, (23)
for any U, Z,W € x(M). Substituting X = ¢ in (23)), we have
0 = R(EY)P(Z,UW — P(R(E,Y)Z,U)W
— P(Z,R(E,Y)U)W — P(Z,U)R(E,Y)W. (24)
Using (14) in , we obtain
0 = g(Y,P(Z, )W) —n(P(Z,U)W)Y
- mxmma>W+mmﬁxww
— g, U)P(Z,OW +n(U)P(Z,Y )W
— g(Y,W)P(Z,0)& +n(W)P(Z,U)Y. (25)
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Using and in (25), choosing Z = ¢ in it follows that

0 = [a— 2[4 8] [g0s Wn()g - g(U, W)Y ]

+ [atbn—1) = = [—== +b]] [g(Y. W)U — (¥, W)n(U)¢]
+ b[SUY)(W)E+ ST, W)n(U)E — (n— 1)g(Y,U)n(W)§ — S(U, W)Y
+ P, UW (26)

By choosing W = £ and taking the inner product on both sides of with £ €
X (M), we find

b[S(U7 Y)—(n—-1)g(Y, U)] = 0. (27)
This proves our assertion.

Theorem 3.2. Let M(c) be an n—dimensional normal paracontact metric space
form. Then P(§,Y)R = 0 if and only if either M (c) reduces an Einstein manifold
or pseudo projective curvature tensor P reduces concircular curvature tensor.

Proof: Suppose that P(¢,Y)R = 0, then we have

~ R(ZPEY))W ~ R(Z,U)P(Y)W, (28)
for any Y,U, Z,W € x(M). Using in , choosing Z = &, we obtain
0 = [a— =[5 +b]] [o(¥, R U)W)E — n(R(&, U)W)Y

= n(Y)R(E U)W + R(Y, U)W +n(U)R(E, Y)W +n(W)R(, V)Y ]
+ B[SV, R(EU)W)E — (n— Dn(R(E, U)W)Y — (n— 1)n(Y)R(§, U)W
+ (=R, U)W + (n = 1)nU)R(E Y)W = S(Y,W)R(E, U)§

£ (n—Dy(W)REV)Y] (29)
In using and , choosing W = &, we find
—bS(Y,U)¢+b(n—1)g(Y,U) =0. (30)
Taking the inner product on both sides of with £ € x(M), we obtain
b[S(Y,U) = (n—1)g(Y,U)] = 0. (31)

The proof is completed.

Theorem 3.3. Let M(c) be an n—dimensional normal paracontact metric space
form. Then, P(£,Y)P is always identically zero, for any Y € x(M).



1002 UMIT YILDIRIM, MEHMET ATCEKEN, AND SULEYMAN DIRIK

Proof: Let M(c) be n— dimensional a normal paracontact metric space form.
Then, we have

(PEY)P)UW,Z) = P(EY)P(UW)Z ~ P(PEY)U,W)Z
— P(UPEY)W)Z—PUW)PEY)Z  (32)
for any Y,U, W, Z € x(M). Using in , we obtain

(P(&,Y)P)(U,W, Z) 11[9(Y, P(U,W)Z)é — n(P(UW)Z)Y

o=l
— (v, )(va+MUﬁame 9(Y.W)P(EU)Z
n(W)P(U,Y)Z = g(Y, Z)P(U,W)¢ +n(Z)P(U, W)Y
b[S(YP UW)Z) — (n— 1)77(P(U7 WHYZ)Y
- SY,U)P (§ WHZ 4+ (n — 1)77(U)P(Y, whZ
- Sy,w)p (U &Z+ (n— 1)77(W)P(U7Y)Z

- S(Y, ) (U W)HE + (n - 1n(2)P (U, W)Y] (33)
Substituting U = £ and using ) and (| . in , we obtain

(P(¢,Y)P) U W, Z) =

+ o+

—

[a }]meW—mWZW]
[a—
[

a —

1
+ﬂHﬂWZﬂ“%n—UﬂWZW
ﬂK@W+m—DﬂK@W]
+ V*(n—-1)[S(Y,2)W — S(W,Z)Y]. (34)
In, choosing Z = £, we obtain

P(£,Y)P =0.

\ﬁz\?ﬁ\ﬁ

[
[ © LB P(Y,W)Z + b(n — 1)P(Y,W)Z
[

+ + o+

This proves our assertion.

Theorem 3.4. Let M(c) be an n—dimensional normal paracontact metric space
form. Then P(§,Y)S =0 if and only if M(c) either reduces an Einstein manifold
or the scalar curvature

an(n —1)
T atbn—1)
provided that (a + b(n — 1)) # 0.
Proof: Assume that P(¢,Y)S = 0. This implies that

S(P(E,Y)Z, W)+ 8(Z,P(&,Y)W) =0, (35)
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for any Y, Z,W € x(M). In using (19)), we obtain
reoa
0 = [a_ﬁ[n +0]][9(Y, 2)S(&, W) = n(Z)S(Y, W)

—1
+ g(Y,W)S(6.2) —n(W)S(Y. Z)]
+ O[S, 2)S(&.W) — (n — )n(Z)S(€.W)
+ S(Y,W)S(E,Z) — (n— n(W)S(Y, Z)]. (36)
Substituting Z = £ and using in , we can infer

r. a
o=~ [ + B[SV, W) = (n = Dg(v, W)] =
So either M(c¢) reduces an Einstein manifold or the scalar curvature
_ onln=1)
T a+bn—1)

On the other hand, if a + b(n — 1) = 0 then, one can easily to see that the pseudo
projective curvature tensor reduces projective curvature tensor.

Theorem 3.5. Let M(c) be an n—dimensional normal paracontact metric space
form. Then P(§,Y)Z = 0 if and only if M(c) satisfies one of the least following
conditions

i) M(c) is an Finstein Manifold,

ii) P pseudo projective curvature tensor reduces the concircular curvature tensor,
i11) The scalar curvature v of M(c) is r = n(n — 1).

Proof: Suppose that ]5(5, Y)Z = 0, then we have

(PEY)Z)UW, Z) = PEY)Z(UW)Z — Z(P(&Y)U,W)Z
— Z(U,PEYYW)Z — Z({UW)P(E,Y)Z
= 0, (37)
for any Y, U, W, Z € x(M). Using in , we obtain
0 = [a— % [% +0]] [o(Y, Z(U, W) 2)¢ — n(Z(U, W) Z)Y
— g, U)Z(EW)Z +n(U)Z(Y,W)Z — g(Y,W)Z(£,U)Z

(Y,

n(W)Z(U,Y)Z = g(Y, 2)Z(U,W)é + 1(

b[S(YZUW) e — (n—V)n(Z(U,W)

— S(MU)Z(EW)Z + (n— Dn(U)Z(Y, W

— S(Y.W)Z(U,&)Z + (n - 1)n(W)Z(U,Y
(

— S, 2)Z(U,W)E + (n— V)n(2)Z(U,W)Y]. (38)

+ o+

w)Z
)Z
)

2)Z(U,W)Y]
Y

N
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In (38), using and and substituting U = Z = ¢, we have

b[1 — %1)] [S(Y, W) = (n —1)g(Y,W)] = 0.

n(n

This proves our assertion.

Definition 3.1. An n—dimensional normal paracontact metric manifold M is
called pseudo projective flat if the condition

P(X,Y)Z =0
holds on M(c).

Let us consider the space form M(c) under consideration is pseudo projective
flat, then we have from Definition 3.1. and relation

aR(X,Y)Z = [S(X,2)Y = S(Y, 2)X] + ~[——= +b] [o(V. 2)X — (X, 2)Y]. (39)

In , substituting Z = ¢ and using and , we have
re o a
a[n()X —n(X)Y] =b(n—1)[n(X)Y —n(Y)X] + - [m +b] [n(Y)X — n(X)Y]. (40)
Taking the inner product on both sides of with £ € x(M), we obtain
n(n—1)[a+b(n—1)]
= ) 41
" a+bn—1) (41)

This leads to the following statement:

Theorem 3.6. An n—dimensional (n > 3) normal paracontact metric manifold is
pseudo projective flat if and only if the scalar curvature of M (c) is given by
n(n—1)[a+b(n—1)]

"= a+b(n—1) (42)

provided that (a + b(n — 1)) # 0.

Example 3.7. Let us consider a 7-dimensional manifold M" = {(z1, 22,3, Y1, Y2, Y3, 2) €
R"}, where (x1,%2,23,Y1,Y2,Y3,2) are standard coordinates in € R”. Taking the
vector fields

= 0 -0 .y o
=e ox;’ €j:eayi, 1<4,5 <3, 67:%’

which are linearly independent at each point of M. Let g be the Riemannian metric

1-on M defined by

€i

3
g=e % Z{d% ® dy; + dy; ® dy; } + dz + dz.
n=1
We note that g(e;,e;) = 6;5. Thus the set e;, 1 <i,5 <7, is an orthonormal basis
of M. Let
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0 0

72
8yi) + 0z

3
)
X = Z(Xi B +Y;
=1

be a vector field on M. We define the almost paracontact structure ¢ and 1-form n
as

3
0 0
X = —X;— -Y,— X)=g9(X . 4
¢ ;( i3z, ~ Yig,) and n(X) =g(X,er) (43)
Thus we have
dei = —e;, der =0, 1<i<6. (44)

It is easy to see that ¢*°X = X —n(X)er, g(¢X, oY) = g(X,Y) — n(X)n(Y),
and n(er) = 1, for any X, Y € T(TM). Thus (¢,£ = ez,n,g) is an almost
paracontact metric structure on M. By direct calculations, we have

[ei,e7]:—ei7 1§Z§6, [(:‘Z‘,ej]:O, 1§j§6

By using Kozsul formula, we can easily to find that

veiei = €7, veiej = 0, 17&‘7,1 < Za] < 6.

Ve¢e7 = (bei = —€;, ve7€7 = 0, ve78i = 0, 1 S ) S 6.
Using the Kozsul’s formula, we get
(Vx@)Y = —g(X,Y)§ = n(Y)X + 2n(X)n(Y)¢ (45)

for any X, Y € T(TM). Thus M™($,£,m,9) is a normal paracontact metric man-
ifold. By R we denote the Riemannian curvature tensor of M, it can be easily too
seen that

R(eiaej)ej = —€4, 1 S 1 7&‘7 S 77R(ei,ej)ek :07 1 S iajvk S 6; 7’7&.7 7é k. (46)

Let X = Xje;,Y =Yje; and Z = Zpey,, 1 < 4,5,k < n, be vector fields on M. By
using the properties of R, we get

R(X, Y)Z = XZ-YJ-Z;CR(ei,ej)ek = YijXiR(eiejej) +Xi§/}ZiR(ei;ej)ei
= YjZ;Xiei + XiZiYje; = {g(Y, 2)X — g(X, 2)Y'}

that is, M has a constant curvature —1 and

S(X,Y)=—-(n—1)g(X,Y)=—-69(X,Y), 7=—-42. (47)
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Conclusion 3.1. In this paper, the curvature tensors act to each other cases are
discussed and normal paracontact metric space form is characterized with respect
to these cases.
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