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Green’s function is sign-changing, we still obtain the existence of monotone positive
solution under some suitable conditions on f by applying iterative method. An example is
also given to illustrate the main results.

1. Introduction

Fourth-order ordinary differential equations have attracted a lot of attention due to their applications in engineering, physics, material
mechanics, fluid mechanics and so on. Many approaches, such as the Leray— Schauder nonlinear alternative, fixed point index theory in
cones, the method of upper and lower solutions, degree theory, Guo-Krasnoselskii’s fixed point theorem, Leggett-Williams fixed-point
theorem, are used to study the existence of single or multiple positive solutions to some fourth-order boundary value problem, see [1]-[13].
However, all the above-mentioned papers are achieved when corresponding Green’s functions are nonnegative, which is a very important
condition.

Recently, the existence of positive solutions of the boundary value problems with sign-changing Green’s function has received increasing
interest.

In 2008, Palamides and Smyrlis [14] studied the existence of at least one positive solution to the singular third-order three-point BVP with an
indefinitely signed Green'’s function

where 1 € (%Z, 1) Their technique was a combination of the Guo-Krasnoselskii’s fixed point theorem [15, 16] and properties of the
corresponding vector field.

In 2018, Zhang et al [17] studied the existence of at least n — 1 decreasing positive solutions of the problem

u® (1) = £ (t,u(r) =0, 1€ [o 1],
u(0)=u(l)=u"(n)=
their main tool is the fixed point index theory.

It is worth mentioning that there are other types of works on sign-changing Green’s functions which prove the existence of sign-changing
solutions, positive in some cases; see [18]-[22].
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Motivated and inspired by the above-mentioned works, in this paper we will study the following nonlinear fourth-order three-point BVP with
sign-changing Green’s function

@ (1) =f(tu(r) reo,1], (1.1
' (0) = (0 u(1) =0, u” (n)+ow (0) =0, '

by applying iterative method. Throughout this paper, we always assume that f € C ([0, 1] x [0, +e0),[0,+)), & € [0,6) and 1 € [%, 1). By
imposing some suitable conditions on f and 7], we obtain the existence of monotone positive solution for the BVP (1.1). Moreover, our
iterative scheme starts off with zero function, which implies that the iterative scheme is feasible.

2. Main results

Let Banach space E = C|0, 1] be equipped with the norm [|u|| = max,¢[o 1 |u(1)].
Lemma 2.1. The BVP

u(@)=0 refo,1],
' (0)=u"(0)=u(l)=0, " (n)+au(0)=0

has only trivial solution.
Proof. It is simple to check. O

Now, for any y € E, we consider the BVP

u® (1) =y(1) 1€0,1],
W (0)=u"(0)=u(1)=0, «" (n)+au(0)=0.

After a direct computation, one may obtain the expression of Green’s function G (¢,s) of the BVP as follows: for s > 1,

(6—ar?)(1-s5)°

G =8 T
’ (t—s) —ar?)(1—s)
&~ eoea) 0Ss=t=1
and for s < 1,
(6—ar?)(1-s) | p
G(t,s) = _W):6337 0<r<s<l
7 (t—=s) —or3)(1—s P
5~ ea tea0sssr<lL

Remark 2.2. G(z,s) has the following properties:
G(t,s) >0 for 0<s<n and G(t,s) <0 for n<s<l.
Moreover, for s > 1,
max{G(z,s): t €[0,1]} =G(1,5) =0,

(=9 (1=n)’
6—«a 6—a

min{G(t,s): 1 €[0,1]} =G(0,s) = —
and for s < n,

§3 35— 352 - n?+3n—-3n2

max {G (t,s): t € [0,1]} = G(0,s) = PR 6—a ;

min{G (z,s): 1 €[0,1]} =G (1,s) =0.
So, if we let M = max {|G(z,s)| : t,s € [0,1]}, then

_n\3 3 _am2
M_max{(l n)® n+ 3n}< 1

6—a 6—a 6—a’
Let
K ={y € E: y(t) isnonnegative and decreasing on [0, 1]} .
Then K is a cone in E. Note that this induces an order relation ”f” in E by defining u <v if and only if v —u € K. In the remainder of this

paper, we always assume that f satisfies the following two conditions:

(H,) for each u € [0,+o0), the mapping t — f (r,u) is decreasing;
(H,) for each t € [0,1], the mapping u — f (t,u) is increasing.
Now, we define an operator 7 as follows:

(Tu) (¢ / G(t,s)f(s,u(s))ds, uek,rel0,1].

Obviously, if u is a fixed point of 7 in K, then u is a nonnegative and decreasing solution of the BVP (1.1).
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Lemma 2.3. T : K — K is completely continuous.

Proof. Letu € K. Then, for ¢t € [0,1], we have

” 7s3 .3 PK) _53
(Tu)(z):/o {(I Q,1=r (6-ar)a )]f(s,u(s))ds

6  6-«a 6(6—a)
oL [ S e [
which together with (H;) and (H») implies that
= 157 - e rowora [
N /,,1 wz(él _o:)) 3] £ (s,u(s))ds
_/'[rz 2 s t2a+a£2(élas } wrans [
*,/,,] {atz(él _Of)) 3] f(s,u(s))ds

7/71 Ott2 3s+3s fs)

6oct

5)°
} [ (s,u(s))ds,

at2 1—ys)

26-a) :|f(s,u(s))ds

oct2 1—s)

26-a) :|f(s,u(s))ds

s2—2ts

2 m t
s ds =5 [ fats)ds+ [
152 —2ts
Sk f(s7u(5))dS+/0 2 u)ds

< mam) e [ (e )as O [ave [T B )

2

2
o 2 (5-n)-n+ 5]

1 ar>(1—4n) 27
Ef(n u(n)) [W - ?}
0.

f(s,uls))ds

IN

IN

Fort € [n, 1], we have

o3 3 3) (1 5)?
() (1) = /"[(’6) T R L )}f(s,u(s))
+],

3
(t— (6—at —
) )( } s,u(s))+ /
which together with (H;) and (H,) implies that

o2 2 21 _gP Tir—s)? 21 _gP
(Tu)/(t):‘/on [(I 2) —6371064-02(2170[)) :|f(s,u(s))ds+/n [(t 2) +O¢;(élia)) :|f(s,u(s))ds

(6— (xt3

3
:| fs,u(s)),

11 aéz(él:;)) ")
“rie (97 o d”/n (sz;zs)ﬂs,u(s))ds
+/nl (l‘—zs)2 - ds+/ at2 s

gz(:itja)f(n,u(n))[/on< 354352 —s° ds+/ (S 7ts>ds+/ 2ds+/1.]1 aj(él;))Sds]

P ar*(1—4n) 1-37
s ar*(1—4n) 1-31
_Ef(nvu(n))[ (6—(1) 3 ]
<0.

So, (Tu) (t) is decreasing on [0, 1]. At the same time, since (Tu) (1) = 0, we know that (Tu) (¢) is nonnegative on [0, 1]. This indicates that

TucK.
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Now, we assume that D C K is a bounded set. Then there exists a constant C; > 0 such that ||u|| < C| for any u € D. In what follows, we
will prove that T (D) is relatively compact.
Let

Cy =sup{f(t,u): (t,u) €[0,1] x [0,Cy]}.

Then for any y € T (D), there exists u € D such that y = Tu, and so,

1
b O1= 110 01 =| [ 609 (o)

3/01|G<r,s>\f<s<,u<s>>>ds

§M/Olf(s,u(s))dngCz7 te0,1],

which implies that 7 (D) is uniformly bounded. On the other hand, when € > 0, if we choose 0 < 7 < min {1 -1, m }, then, for any
ueD,

n+t £
‘/n_r _f(s,u(s))ds S ZCZT < m (21)

Since G (t,s) is uniformly continuous on [0, 1] x [0, — 7] and [0, 1] X [ + 7, 1], there exists & > O such that for any 1,7, € [0, 1] with
1 — 12| <8,

€

G (1:8) =G e29)| < 35Ty =

»$ € [0777 - T] (2.2)

and
€
3(G+1)(1—-n—1)

In view of (2.1), (2.2) and (2.3), for any y € T (D) and t1,#; € [0, 1] with
lt —12] <6,

G (t1,5) =G (2,5)| <

. sem+11). (2.3)

() —y(®) =T ()T (&)
1

) (G(11,5) =G (12,9)) f (s,u(s))ds

1
< [ 1G9 =Gl (su(e)ds
z +1
— [" 16019 =G )l s+ [ G 0115) ~ Glozia))| S (s.u()ds

n-t
1

+ [ [(G(t1,5) =G (12,5))| f (s,u(s)) ds

n+t

€ €
=3Ganm-o " st

(Gt n Me n Cre —
S 3(C+1)  3(MA+1) 3(G+1) T

E
G- 1Y

which implies that 7' (D) is equicontinuous. By Arzela-Ascoli theorem, we know that 7 (D) is relatively compact. Thus, we have shown that
T is a compact operator.

Finally, we prove that T is continuous. Suppose that u, (n = 1,2,...), ug € K and ||u, — up|| — 0 (n — 0). Then there exists C3 > 0 such that
for any n, ||u,|| < Cs.

Let

Cy =sup{f(t,u): (t,u) €[0,1] x [0,C3]}.
Then for any n and ¢ € [0, 1], we have
G(t,s) f(s,un (s)) <MCq, se€]0,1].

By applying Lebesgue Dominated Convergence theorem, we obtain

lim (Tuy) (t) = lim ] G(t,s) f (s,un(s))ds

n—soo n—eo J(

r1
:/0 G(t,s)gggof(s,un(s))ds
= [ 6.9 (06 ds =T () 0, 1€ 0,1],

which indicates that 7 is continuous.Therefore, T : K — K is completely continuous. O
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Theorem 2.4. Assume that f(t,0) # 0 fort € [0,1] and there exist two positive constants a and b such that the following conditions are
satisfied:

(H3) £(0,0) < (6 a)a;

(Hy) b(up —wr) < f(t,un) = f(t,ur) <26 (up —uy), 0<1 < 1,

0 < uy <up < a. If we construct an iterative sequence vy = Tv,, n=0,1,2,..., where v (t) =0 fot t € [0,1], then {v,},_, converges to
v* in E and v* is a decreasing and positive solution of the BVP (1.1)

Proof. LetK, = {u € K : |Jul]| <a}. Then it follows from Lemma 2.3 that Tu € K. In view of (Hz) and 0 < u(s) <1 for s € [0, 1], we have
1
0= [ Gt.5)fsu(s)ds
0
1
< [ (G| f©.a)ds
0

<(6—a)aM <a, te]0,1],

which shows that ||Tu|| < a. So, T : K, — K,. Now, we prove that {v, }._, converges to v*in E and v* is a decreasing and positive solution
of the BVP (1.1). Indeed, in view of vy € K, and T : K, — K,, we have v, € K;, n =0, 1,2, ... Since the set {v,},._ is bounded and T
is completely continuous, we know that the set {v, }._, is relatively compact. In what follows, we prove that {v,},_ is monotone by
induction. First, it is obvious that vi — vy = v; € K, which shows that vy < v{. Next, we assume that v;_; < v. Then it follows from (Hj)

that for 0 <t < n, we obtain
Vi () = vy (1)
= (Tw) (1) = (Tve1) (1)
9G(t,5)

0 2% 11 (s () = f (5,71 ()] ds
= %ﬁ? (357 =35 —57) [ (5.0 () = f (5, i1 (5))] ds
05 (52 ) U vk 99) = f (sovit (D] ds =3 [ F (v (9) = £ (5.t ()] ds
3 (1= [F (5,96 (9)) = £ (5,761 ()] ds
= 2(bea_t;) Jo! (3s* =35 =) vk () = i1 ()] ds + b fg (@) [vie (5) = vy ()] ds
B T IF (s () = F (sovie ()] ds 225 iy (1= ) [ () = vy (9)] ds
< bl () = vt ()] (575 ! (35 = 35— %) dst Jj (552 ) ds— 5 )1 ds+ 2255 Jy (1)’ as]

: 4—4n’+6n2—8n+2
:%b[vk(n)*kal(n)][a(n o )*n+§]

A

< Gblve(m) = v ()] [ SR - 2

< 5bvi(m) —vi—1 (0)] [% - 2‘311] <0

= 0 ot [f(S, Vk (S)) _f(S,Vk,l (s))}ds
zeay Jo (35 =35 =) [f (5,3(9)) = £ (5w (s))]ds+fo" (52 U (59 9) = f (5w () s

13 S (5 (5)) = £ (5ot ()]s + i St [F 5w 9) = (5, () s

< S J3T (352 = 3= 5%) [ (5) —vi <s>]ds+bfo" (£52) () —vicr (5)) s

A

26 13 S [ () — i1 (9] ds-+ 26 3 DU [ () — vy ()]

3
<bx[ve(n)—v—1(n )]><[26 @ fo (35 —3s—s )ds+fn(vfztv)ds+2fn lm )) a5
2(n*—4n3+6n*—8n+2 3 2
= e o) =iy ()] < (U g
2( 14 _am3 1612 —81 42
< o v (m) = vy ()] x [T L %y

2 —_ —
X Vi (1) = vt ()] %[22 4 290 <,

IN
(S
S
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hence
V;H-l (l) 7V;( (t) < Oa re [Oa 1] ’ (24)

that is vgi 1 (f) — v (¢) is decreasing on [0, 1]. At the same time, it is easy to see that

1
vt (D =we (1) = [ G0 (5.9 (5) v (5)))ds =0,
the last equation implies that
Vi1 (l)—Vk(t) >0,t€ [0,1]. 2.5)

It follows from (2.4) and (2.5) that v — v € K, which indicates that vi1 | < v;. Thus, we have shown that vy < v, n=0,1,2,... Since

{vn}n_ is relatively compact and monotone, there exists a v* € K, such that lim,, .. v, = v*, which together with the continuity of T’ and
the fact that v, | = Tv,, implies that v* = Tv*. This indicates that v* is a decreasing nonnegative solution of (1.1). Moreover, in view of
f(1,0) # 0 fort € [0,1], we know that zero function is not a solution of (1.1), which shows that is v* a positive solution of (1.1). O

3. An example
Consider the boundary value problem

)

I =

(1) refo.],
0, " () + e (0) =0, GD
If weletn = %, oo=4and f(t,u) = %uz (t) +1, (t,u) €]0,1] x [0,4c0), then all the hypotheses of Theorem 2.4 are fulfilled with a = 3 and

b= % Therefore, it follows from Theorem 2.4 that the BVP (3.1) has a decreasing and positive solution. Moreover, the iterative scheme is
vo (1) =0 forr € [0,1] and

5 |2 4152 = CPE o [ o 9+
+jt% IEtS - f} X [% (vn (s))z—i-s] ds
e R IR

if t€0,3],n=0,1,2...
3 —263)(1—s)?
MP?&Q%_nggﬁXmefﬂps

3 )3
I - T } X [4 (o (5))% +5] ds

Vgt (1) =

3-23)(1-s)°
j;l 7% % [%(vn(s))2+s}ds
if tel3.1],n=0,1,2..

The first, second, third, and fourth terms of this scheme are as follows:

vo () =0,
v (f) = 7 19’ 37
W7 720 7 480 T 160

7r14 833712 74271 184253¢10 37¢°

t) = — — _
v2 (1) 49420800 342144000 20275200 165888000+4147200

_49069t7 N i N 136974 B 147553086840691879¢3 N 143787255710603
102400 ' 60 ' 614400  298491637137408000 ' 1554643943424000

49732 833430 742720

va(r) = 2107902249507225600000  794386238570496000000  40798108054978560000

268461101728 N 26846981727 N 26815806199726
427325011093094400000000 ' 6330740905082880000000 = 68926409854156800000000

4001715505692 371462295299:24 114032891993:23
179208665620807680000000 ' 77197579036655616000000 ' 10453838827880448000000

34537618757031%2 N 784979896700465472907 12! B 272903089720
1727155980258508800000 ' 1059466770855994482229248000000  1527724965888000000
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B 185100073942034389519371° N 361876888294795340312089¢18
4750136730870832403841024000000 ' 115558881873816741520343040000

27188083251903828979787¢17 3472337 1605213907361¢13
1414182120833421661962240000000  516309342522414465024000000

977587338666778516044941¢14 N 8406307672322955338512400961796543¢13
49565696882151788642304000000 ' 267291772322910140198018875392000000

B 29501725604687291+12 B 1665986509523789947523¢!1
21276483895154442240000  145247463390920992358400000

21771913436216758949940023416550641¢'0
449050177502489035532671710658560000000

1437872557106037° N 1968447530678155078
141037298547425280000 ' 802345520625352704000000

_ 21216253428451373750458316293037¢7 +£
194900250652121977227722096640000000 = 60

20674774904786335034486623609:*
58006026979798207508250624000000

_2299942479146572767164971497308907042602358150691 13
92131073987503901166490340551548382425907200000000

310661312414757109061653185761538923825439093587
1335232956340636248789715080457222933708800000000
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