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Abstract

In this note, we discuss, improve and complement some recent results of the conformable derivative introduced
and established by Katugampola [11] and Khalil et al.[12]. Among other things we show that each function
f defined on (a,b), a > 0 has a conformable derivative (CD) if and only if it has a classical first derivative.
At the end of the paper, we prove the Rolle’s; Cauchy, Lagrange’s and Darboux’s theorem in the context of
Conformable Derivatives.
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1. Introduction and preliminaries

The conformable derivatives and their algebraic properties as well as its application on conformable
differential linear systems subject to impulsive effects and establish qualitative behavior of the nontrivial
solutions are studied in [10]. The conformable derivative is used to develop the Swartzendruber model for
description of non-Darcian flow in porous media (J25]). Motivated by a proportional-derivative controller, a
more precise definition of a conformable derivative is introduced and explored in [7]. Results included ba-
sic conformable derivative and integral rules, Taylor’s theorem, reduction of order, variation of parameters,
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complete characterization of solutions for constant coefficient and Cauchy-Euler type conformable equations,
Cauchy functions, variation of constants, a self-adjoint equation, and Sturm-Liouville problems. Authors in
[6] gave the physical interpretation when these derivatives are applied to physics and engineering. Quan-
tum mechanics served as the primary backdrop for this development. Invariant conditions for conformable
fractional problems of the calculus of variations under the presence of external forces in the dynamics are
studied in [I8] and the authors proved the fractional versions of Noether’s symmetry theorem. They showed
that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional
forces that is far simpler than the one obtained with classical fractional derivatives. Also, it is well known
that fractional analysis has wide applications in several fields of science, for instance, engineering, fluid flow,
electrical networks, control theory, dynamical systems, biosciences, and so on. For more interesting details
see [1]-]26].
Khalil et al. [I2] introduced the new definition of conformable derivatives as follows:

Definition 1.1. [I2] Given a function f : [0,00) — R. Then ”conformable derivative” of f of order « is
defined by

7. (1) 1) = tig LU 20

e—0 £

(1.1)

for all t > 0, € (0,1).
If fis a— differentiable in some (0,a),a > 0, and lim,_,o+ f(®) (t) exists, then define f(®) (0) =
limy o+ S (t).

For a € (n,n + 1], we have the following definition of Khalil et al. [12].

Definition 1.2. [12]. Let a € (n,n+1], and f be an n—differentiable at ¢, where ¢t > 0. Then the conformable
derivative of f of order « is defined as

T (F)(6) = lim T2 (et ™) = 0 (8)

e—0 £

(1.2)

where [] is the smallest integer greater than or equal «.

Remark 1.3.

e As a consequence of Definition , one can easily show that T, (f) (t) = tled=a flod (¢) = gntl-a pntl) (1)
where a € (n,n + 1], and f is (n + 1) — differentiable at ¢ > 0.

e Also, it is clear that this definition is generalization of Definition putting n = 0 in (1.2) we obtain the
condition (1.1), where f©) (t) = f(t).
2. Main results

In this paper we consider, discuss, improve and complement some recent results of Khalil et al. [12].
We begin with the following result for the derivative of order o, i.e. T\,.
Proposition 2.1. If f : (0,400) = R, € (0, 1n] and f is a differentiable, then T, (f) () = tl_a#d—g). Also,
if o € (n,n+1),n €N, then Ty (f) (t) = t" 5L (1).

Proof. Indeed, equation (1.1), that is, (1.2) implies that
t+et!™) — f(t
T ) = g IO

e—0 £
t4 et =) — f(t
— hmf( +€ ) f()tl—a
e—0 ctl—a
tl—a df (t)

dt ’
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that is,

To©) = tim L et - f )

e—0 €
(D=1 (¢ 4 gtled=a) _ f([ad=1) (¢
— lim f ( +e ) f ( )t[a}—a
e—0 gt[a}_a
= ),
because [a] = n. O

For o« = 1, that is, &« = n we obtain that the conformable derivative (FD) coincides with the classical
first derivative dj;(tt), that is, with d{TE ) However, the zero order derivative T (f) () = fO (#) of a function
f (t) does not return the function f (t), because T (f) (¢) = tlfo% (t) = tfil—}; (t) # f (t) in general case.

Using Proposition we have the following result:

Proposition 2.2. Suppose that either a € (0,1] or a € (n,n+ 1], n € N and f,g are a—differentiable at a
point t > 0. Then

(1) Ty (arf + a2g) = a1To (f) + a2To (g) in both cases, for all ai,az € R.
(2) To(tP) =ptP~ or Ty (tP) =p(p—1)...(p—n+ 1)tP™™ for all p € R.
(8) Ta(A) =

(4) To(fg) = fTa(g9) + 9T (f) only in the first case, that is, o € (0, 1].
(5) T (g) = w only in the first case.

0 in both cases, for all constant functions f (t) = A.

Proof. Let o € (0, 1].
(1) We have that
Tol(arf +azg) (t) = t'7%(a1f +azg)’ (t)
= 7" (af (1) + a2g' (1))
= ait' ' (t) + ast' "% (1)
= a1Ta (f) (t) + a2l (9) (t)
= (a1To (f) + a2Ta (9)) (1),
or Ty (a1f + a2g) = a1To (f) + a2T (g) , that is, operator T, is a linear.
(2) Again we have
To(th) = ¢ ()
= pth™.
(3) Since f’ (t) = N = 0 the result follows.
(4) In this case, we also obtain by Proposition

Ta(fg)(t) = 7" (f9) ()
£ (f'g+ f9') (1)
= 7 (flg) )+ (f9) (1)
= 1 W)+ (1) g ()
= Ta (g )+ F(t)Talg)(?)
= (Ta(f)g+[Talg) (),
orTo (fg) =Ta (f) g+ fTa (g). Otherwise, it is worth noticing that Leibniz rule (even generalized: see [21],

page 5) does not hold for the conformable derivative.
(5) Similarly as (4).
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Now, assume that a € (n,n + 1].
We prove only (1):

Ty (arf + azg) (t) "7 (ar f + az2g)™ (¢)

= " <a1f(") + agg(")> (t)

= at" " () + ast™ g™ (1)
= a1To (f) (1) +a2Ta (9) (t)

= (a1Ta (f) +a2Ta (9)) (),

or Ty (a1f + azg) = a1To (f) + a2y (g) , that is, operator T, is a linear in the case o € (n,n + 1]. O

Proposition 2.3. The index law, that is, T T (f) = Tayp (f) for any a, 8 does not hold in general.

Indeed, if f(t) = >,a = 1,8 = & then TuT1 (f) = 045, while Th,1 (f) = T (f) = 2t6. Hence,
2 3 23 6
T1Ti (f) # T11 (f). See explanation in ([21], page 6).
2 3 2 '3
The following result follows from Proposition [2.1

Theorem 2.4. Let f: (0,+00) = R be a given function. Then the following assertions are equivalent:
(a) [ is a differentiable;
(b) [ is a a—differentiable for some o € (0,1).

Proof. (a) implies (b) because according to Proposition we have

a —adf (1)
7o () () = £ () = 1= L.

Conversely, if (b) holds, then dfd—(tt) = ¢t 1 f(@) (¢), that is, (a) holds. Hence the proof of Theorem is

finished. s

The following result is an immediate consequence of Proposition and Theorem [2.4]

Theorem 2.5. (Rolle’s Theorem for Conformable Differentiable Functions). Let a > 0 and f : [a,b] — R be
a given function that satisfies

(i) f is continuous on |a,b].

(ii) f is a—differentiable on (a,b) for some o € (0,1),

fiii) f (@) =  (b)

Then, there exists ¢ € (a,b), such that f(*) (¢) = 0.

Proof. As f is continuous [a,b] and f is a—differentiable for some v € (0,1), so f is differentiable on (a,b).
Then by classical Rolle’s theorem there exists ¢ € (a, b) such that % (¢) = f'(¢) = 0. Now, using Proposition
(To () (t) = £ (t) = t1=>%)) e obtain that

Hence the proof of Rolle’s Theorem for Conformable Differentiable functions is complete. O
The subsequent two results are immediate consequences of Proposition 2.1] and Theorem [2.4

Theorem 2.6. (Cauchy Theorem for Conformable Differentiable Functions). Let a > 0 and f,g : [a,b] = R
be given functions that satisfy

(i) f,g are continuous on [a,b],

(ii) f,g are a—differentiable for some a € (0,1) and g (z) # 0 for all x € (a,b),

Then, there ezists ¢ € (a,b), such that ﬁ:;ég = ];Elg;:g((sg
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Proof. Consider the function

It is clear that the function F' (x) satisfies the conditions of Rolle’s theorem for Conformable Differentiable
functions equivalent to classical differentiable functions on (a,b). Hence, according to Theorem there
exists ¢ € (a,b), such that F' (¢) = 0, that is,

Since £10 _ 7@ _ £l

g0 — e lg@(e) g(a)(g' Hence the result is obtained. 0

Theorem 2.7. (Mean Value Theorem for Conformable Differentiable Functions) Let a > 0 and f : [a,b] = R
be a given function that satisfies

(i) f is continuous on [a,b],

(ii) f is a—differentiable on (a,b) for some a € (0,1).

Then, there exists ¢ € (a,b) , such that f(®) (c) = = w.

Proof. Putting g () = x in Theorem the result follows. O
Finally, we have the following result:

Theorem 2.8. (Darbouz’s Theorem for Conformable Differentiable Functions) Let b > a > 0 and f :
(0, +00) — R be a given function that satisfies

(i) f is a—differentiable for some o € (0,1).

(i) [ (a)- [ (b) < 0.

Then, there exists ¢ € (a,b) , such that f(®) (c) = 0.

Proof. According to Theorem the function f is differentiable on (0, +00). Further, from (ii) as well as
by Proposition 2.1} we have that
a' b f (a) £ (b) < O,

that is, ' (a) f’ (b) < 0. Now, using classical Darboux’s theorem for differentiable functions, we obtain that
there exists ¢ € (a, b) such that f’(¢) = 0, that is, f(*) (¢) = 0. Hence the proof is complete. O

3. Applications

Khalil et al. [12] consider the following examples of differential equations with the conformable derivatives.
But our approach for the same is different and we have used the Proposition 2.1}

y3) 1y = #4207 y(0)=0; Yy +y=00<a<l

3
2z 4+ 3y

However, using Proposition [2.1| our approach is the following:

1
xlféy’ +y = 2> + 223if and only if y/ + —y = 22 + 2,2 > 0,
X

NZ3

17 4y =0if and only if y/ + 2%ty = 0,2 > 0,
ml_%y’ ++Vay =xe ¥ if and only if y +y = Vee ", 2 >0
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and

24y +
1

w2y = LETIVE it and only if 3/ = Y
2z + 3y 2z + 3y

Hence, for z > 0 all equations with conformable derivatives are equivalent to usual (very well known types)
differential equations. Difficulties are possible in the point x = 0. With these remarks we improve complete
all results from the paper [12].

Remark 3.1. For other similar results see recent paper [11]. It is not hard to check that Definition 2.1 of [11]
is equivalent to the Definition 2.1 of [12].

Further, it is clear that (6) of Theorem 2.3 in [11] is wrong. Also, for the new approach of some things
from the conformable calculus see recent paper [4].
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