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ÖZET 
Makalede, kesintili (veya değişken) 
yenilenebilir enerji üretimi, fosil enerji üretimi 
ve enerji depolama teknolojisinin var olduğu 
bir iktisadi modelde enerji depolamanın refahı 
artırdığı koşullar ve iktisadi-enerji 
değişkenlerin uzun dönem eğilimleri 
incelenmektedir. Sonuçlar iki başlık altında 
toplanmaktadır. Birincisi, marjinal fayda 
eğrisinin konveksitesi, marjinal maliyet 
eğrisinin konveksitesi ve yenilenebilir enerji 
üretimindeki dalgalanmaların derecesi enerji 
depolamayı artıran faktörlerdir. İkincisi, 
yenilenebilir enerji üretiminin düşük 
seviyelerde olduğu durumlarda doğrusal bir 
maliyet eğrisinin varlığı enerji depolamayı 
refah artırıcı olmaktan çıkarmaktadır. Enerji 
depolamanın enerji üretim kararları üzerindeki 
etkisini gösterdiğinden, mevcut çalışma, ileriki 
iktisadi-enerji modellerde enerji arzının enerji 
depolamayı da içine alacak şekilde 
modellenmesinin gerekliliğini orataya 
koymaktadır.   
 
 

ABSTRACT 
I consider an economy with fossil fuels, 
intermittent renewable energy, and energy 
storage, identify the conditions under which 
energy storage is optimal, and analyze the 
long-run tendencies of the economy-energy 
variables. The findings are twofold. First, the 
amount of energy stored in the economy is 
highly dependent on the shape of the demand 
and supply schedules. In particular, energy 
storage is fostered by the convexity of the 
marginal utility, convexity of the marginal cost 
function for fossil fuel energy, and the degree 
of volatility in renewable energy. Second, 
considering a low level of renewable energy 
capacity, storing energy is not welfare 
improving when the unit cost of providing 
fossil fuel energy is constant. By showing the 
influence that energy storage can have on 
energy generation decisions, I believe that the 
current work can be influential in a more 
generous treatment of energy supply in future 
energy-economy models. 
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1. INTRODUCTION 

 
The average cost of onshore (land-based) wind energy decreased by 35% between 2008 

and 2015. The figure was even more dramatic for solar photovoltaics. Accordingly, the average 
cost of solar PV decreased by 80% (Mueller et al., 2016). Even though this leads to optimism 
regarding the transformation of the energy industry, the growing concerns over man-made global 
warming show that the penetration of renewable energy to the power grid has been gradual and 
insufficient to cover the increasing global energy demand. As a result, fossil fuels still account for 
more than three-quarters of global energy use, and it is estimated that they will account for 78% by 
2035 (EIA, 2011). 

The real challenge may be found in the intermittent and variable nature of renewable energy 
that cause difficulties in accessing energy when it is needed. If tomorrow’s electric power grid is 
expected to contain a considerable amount of renewable energy, the grid’s stability, reliability, and 
security may be at risk due to intermittent and variable renewable energy generation. In avoiding 
the exposure to such risks, energy storage technology, including battery storage, will play a crucial 
role in the decades to come. Therefore, it's modeling for long-term economic and policy analysis 
becomes an integral issue. 

In the current paper, I consider an economy with a capacity to store electricity and 
investigate the implications of this capacity on economic welfare. In particular, I study the 
electricity generation and storage decisions when the industry demand and supply schedules can 
take different forms, such as a convex demand and supply schedules, and show how such decisions 
are affected by the industry and technological characteristics. Focusing on the convexity of the 
demand and supply schedules allows me to demonstrate the influence of precautionary behavior 
(e.g., prudence) on economic decisions. In view of the analytical results, my second aim is to fully 
solve the problem numerically,  then calculate the long-run tendencies of the economic variables, 
such as the steady-state mean values for fossil fuel energy and energy storage. The present literature 
on the economics of energy storage, which questions the relationship between precautionary 
behavior and industry cost structures, and alternative sources of energy and energy storage is in its 
infancy. Accordingly, the current study contributes to the relevant literature by explicitly 
considering intermittent renewable energy and balancing services coming from energy storage 
activities. 

The remainder of the paper is structured as follows. Section 2 reviews the related literature. 
Section 3 presents the model and evaluates it under different scenarios. Calibration and simulation 
results are presented in Section 4. Section 5 concludes. The description of the numerical method is 
presented in the appendix. 
 

2. Literature Review 
 

Crampes and Moreaux (2001) develop an economic model that focuses on storage in the 
form of reservoirs for hydropower generation, which have a deterministic supply and compete with 
a thermal producer. The authors address the optimal energy mix and examine its compatibility with 
market mechanisms when the two producers compete. They show that optimal energy generated 
from the thermal station is determined by the industry-specific costs and the intertemporal 
specification of utility. 

In a two-period framework, Crampes and Moreaux (2010) consider the optimal use of a 
pumped storage facility that consists of thermal and hydro energy technologies.  In their model, 
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hydro energy is generated from controlled inflows that require energy from the thermal technology. 
After solving for the optimal allocation, they show that there are social gains from storing water in 
an off-peak interval (where more energy from the thermal source is generated than consumed), 
which can then be used in the peak interval (where energy consumption will be more than energy 
generation). 

Considering various cases such as fossil fuel or renewable energy generation with pumped 
hydroelectric storage1, Førsund (2012) examines the economic fundamentals of energy storage in 
a two-period model. Given the growing interest in Norwegian hydroelectric reservoirs on the 
grounds that they will allow for a higher penetration of renewable energy into the European power 
grid, the paper also examines the effect of trade in electricity between regions. It finds that unless 
there are sufficiently large interconnection systems, the price differentials between the regions 
diminish. As a consequence, this reduces the scope for trade. 

When there is a certain number of large conventional plants that have to be online (such as 
combined cycle gas turbines or the equivalent), intermittent wind energy and a planning horizon 
of 36 hours (hence one model period constitutes one hour), Tuohy and O’Malley (2011) show that, 
when modeling energy generation and dispatch of the power system, accounting for the 
intermittency is important in capturing the benefit of the flexibility offered by pumped storage. 
Accordingly, intermittent wind makes energy storage more attractive, and its role becomes more 
significant when wind power is curtailed due to high wind. 

The role of hydro storage in enabling a greater penetration of renewable energy into the 
grid has been investigated in Kanakasabapathy (2013), where the author looks at the impact of 
pumped storage energy trading on the sum of consumer and producer surplus of the individual 
market in a static model. The results show that while energy trading by pumped storage plants 
improve welfare in general, the economic implications for consumers and individual energy 
generators can be different. 

In Korpaas et al. (2003) a method for the scheduling and operation of energy storage for 
wind power is presented. Solving the optimization problem using dynamic programming, they 
show that energy storage enables wind power plant owners to take advantage of variations in the 
spot price. 

In a stylized model of energy investment and generation with two sources of energy, Ambec 
and Crampes (2012) address the optimal energy mix and analyze the optimal capacity investments 
in the absence of a storage technology. Hence, the focus is on the economics of the interplay 
between thermal and intermittent renewable energy and their capacities. After characterizing the 
optimal energy dispatch and capacities, they look at the economic policies that achieve first-best 
and second-best policies in decentralized markets. 

In Van de Ven et al. (2011), the focus is on the decisions to satisfy the demand either 
directly from the grid or from the energy stored in batteries when the energy demand and prices 
are variable. Modeling the problem as a Markov decision process, they calculate a threshold to 
which the battery is charged whenever it is below the threshold, and discharged whenever it is 
above. 

                                                        
1 Presently, pumped-storage hydropower (PSH) is considered the most mature method for electricity storage. Of the 
140 gigawatts of large-scale energy storage that are currently installed in the electricity grids worldwide, over 99% 
corresponds to PSH (IEA, 2014). PSH comprises thermal and hydraulic technologies. The system requires two 
reservoirs with differing elevations. The uphill reservoir (i.e., a mountain lake) is used to generate electricity by 
allowing the water to fall and turn the blades of turbines. The lower-level reservoir is used to collect water, which is 
then pumped to the uphill reservoir using thermal systems. 
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This study, while sharing several characteristics of these papers, will depart from them in a 
significant way. First of all, in the presence of intermittency and balancing services, I investigate 
analytically the conditions that will cause welfare improvements when energy is stored, and show 
how the convexity of the demand and supply schedules can stimulate energy storage decisions. 
Secondly, I solve numerically for the optimal energy mix and storage decisions, i.e., the optimal 
decision rule, which I then supplement with Monte Carlo simulations in order to evaluate the long-
run tendencies of the economic variables. 
 

3. Model 

Consider an infinite horizon economy with a representative consumer. There is a single 
commodity, i.e., energy, which can be supplied from fossil fuels, renewables, and energy storage 
systems: 

�� = ��� + ����� − ��, 

where Q� is energy consumption, Q�� is fossil fuel energy,  Q�� is renewable energy, z� ∈ [0,1] is 
current weather condition (normalized to one) that is known prior to taking economic decisions, 
and R� represents the energy storage decision. When R� is positive, energy is stored to be used in 
the following periods. When R� is negative, previously stored energy is used. 

The equation of motion for the stored energy is the following: 

���� = ��� + �� 
 
where �� is the level of stored energy at time. Whenever energy is stored, a certain percentage of 
it will be lost in time. This is captured by the round-trip efficiency parameter, � ∈ (0,1), which 
is the ratio of the energy recovered to the initially stored energy. 

The timing of the model is depicted in Figure 1. At the beginning of period t, the economy 
inherits stored energy; ��. Having observed �� and the weather conditions ��, the fossil fuel and 
renewable energy decisions, ��� and ���, respectively, are made. After taking into account the 
loss in stored energy, (1 − �)��, and ��� and ���, the levels for energy storage, R�, and therefore,  
energy consumption, �� , are decided. I assume that the power grids are smart (Ambec and 
Crampes, 2012; Van de Ven et al., 2011). Therefore, production and consumption almost coincide 
so that no energy is lost in this process. Given the energy storage decision, the level of energy that 
will be stored and transferred into period t+1 is ���� = ��� + �� . 

 

Figure 1: Timing of the model. 
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We assume that energy demand is stationary (Førsund, 2007, Ch. 9). U(Q�), is the per period utility 
function, which is thrice continuously with U� > 0, U�� < 0, and U��� ≥ 0. Preferences over energy 
consumption take the additively separable form given by: 
 

� �� ���(��)

�

���

�           (1) 

where 0 < � < 1 is the discount factor and �[∙] denotes the expectation operator.  
The cost function of fossil fuel energy generation, C�(Q�), is thrice differentiable with 

C�
� > 0, C�

�� ≥ 0, and C�
��� ≥ 0. When the unit cost is constant, one can relate this to a constant-cost 

industry.   On the other hand, when the cost function is convex, this resembles an increasing-cost 
industry.  Moreover, when the third-order derivative of the cost function is strictly positive, that is, 
the marginal cost is convex, there is an increasingly increasing-cost industry. Given that there is a 
unique merit order of using individual generators, so that first the power plants with the lower 
marginal costs of energy generation would be brought online (like a coal-fired power plant), 
followed by costlier ones (such as a natural gas power plant with carbon capture and storage), a 
convex marginal cost function is a plausible assumption. This is also confirmed by studies, which 
recover cost function estimates for electricity generation based on bidding behavior (Bunn et al., 
2000; Wolak, 2003).  Lastly, C�(Q�) is the cost function for the renewable energy generation. As 
the cost structure of renewable energy will be discussed later on, I do not make any assumption 
regarding its functional form at this stage. 

When solving the energy generation problem, my aim is to maximize Eq. (1), the 
intertemporal welfare of the representative agent, through energy generation and storage 
decisions. For S� being the inherited energy, and for z� being the initial weather condition, the 
planner’s problem, formulated in the form of a Bellman equation, is the following: 

      �(��, ��) = max
{��,���,���,��,����}

{�(��) − ��(���) − ��(���) + ��[�(����, ����)]} 

         ������� ��     �� = ��� + ����� − ��, 
                               ���� = ��� + ��, 

                               �� ≥ ��� ≥ 0,                                                                                  (2) 

                             �� ≥ ��� ≥ 0, 

                               � ≥ �� ≥ 0, 
                             �� ≥ 0,  and 1 ≥ �� ≥ 0,  

where �(��, ��) is the value function, which is the maximum attainable sum of the current and 
future rewards given the current (inherited) level of stored energy and current weather conditions. 

Moreover, ��, ��, and � are the capacity constraints for fossil fuel energy, renewable energy, and 

energy storage, respectively. I assume a sufficiently large capacity for fossil fuel energy 
throughout the analysis such that it never binds. Furthermore, in this section, I only focus on cases 
in which dispatchable generators always supply the residual load (Joskow, 2011; Tsitsiklis and 
Xu, 2015). Thus, ��� > 0 . I will relax this assumption when I numerically investigate the 
solution. Future weather conditions, �� ≡ ���� ∈ [0,1] are imperfectly known ex ante, and the 
surrounding uncertainty is removed only at the end of the current period; i.e., after ���, ���, and 
�� are determined.  
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Once the renewable energy system is installed, the unit cost of generating renewable 
energy becomes so low that it can be considered as zero (Ambec and Crampes, 2012; Evans et 
al., 2013; Førsund and Hjalmarsson, 2011). Hence, for ��

�(��) = 0, and it is optimal to operate 

the renewable energy at its capacity at all times: ��� = ���� for � = 0,1,2, … , ∞.2  

Given that F(z), which is the cumulative distribution function of �  over the compact 
support [0,1], and that the model parameters are time invariant, the problem is stationary. Thus, 
the problem faced by the planner at every period is identical: V�(S, z) = V���(S, z) for all y > 0. 

Unless it causes confusion, I shall drop the time subscripts and use primes to denote next-period 
values (not to confuse with partial derivatives). Then the dynamic stochastic decision problem 
has the following structure. At every period, the planner observes the state of the economy, 
(S, z), i.e. ,how much energy storage has been inherited, and the state of the weather conditions, 
how strong the wind blows or the sun shines. The benevolent planner then decides on the optimal 
actions Q, Q�, R,  and ��.  Therefore, the planner searches for an optimal decision rule 
{Q∗(S, z), Q�

∗ (S, z), R∗(S, z), S′∗(S, z)} that solves V(S, z). 
The problem is not fully tractable analytically. Therefore, I leave the problem of finding 

the optimal decision rule to the numerical analysis section. Nevertheless, I can simplify the 
problem to identify the conditions under which storing energy is optimal and gain intuition that I 
can benefit from when interpreting the numerical results. To do this, I consider a scenario in which 
� = �′ = 0, and ask whether a marginal increase in �′, and therefore, �, is welfare improving. 

Using a second-order Taylor approximation, and owing to the fact that �� > 0  and, 
therefore, ��(�) = ��

� (��), the welfare effect of increasing energy storage, �′, marginally from 
zero when � = 0 is as follows (see Appendix A for the calculations): 

 
�{∙}

���
�

����

≅ −���Q�(0, �) + �Q�� 

                 +�� �C�
� (Q�(0, �)) +

�

�
Q�

�
�

���
���

�

���
�������

� ���� +
������

�

���
�������

� ��
���� ���      (3)   

where z and σ� are the expected value and variance of the random variable z�, respectively. From 
Eq. (3), I can establish the following proposition: 

Proposition 1.  If the cost of engaging in energy storage is sufficiently low and the benefit expected 
from storing energy is sufficiently high, energy storage is welfare improving. Convexity in the 
marginal utility, and convexity in the marginal cost function of fossil fuel energy generation, and 
the degree of intermittency are factors that foster energy storage decisions. 

 
Notice from the expression given by (3) that the value on the RHS diminishes when ���� =

0. Therefore, the convexity of marginal utility is a crucial factor that increases the willingness of 
the economy to engage in energy storage. One other thing that can be noticed from expression (3) 
is that a convex marginal cost of fossil fuel energy does play a significant role in determining the 
impact of uncertainty on the optimal energy storage strategy. It can be seen that even when ���� =
0, a non-negative C�

��� is necessary for “precautionary " saving of energy. Notice also that a higher 

                                                        
2 The only cost in generating renewable energy is actually the opportunity cost of not generating more energy than the 
renewable energy capacity. 
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volatility in renewable energy increases the expected (social) benefit from energy storage. Lastly, 
risk aversion and convexity in the cost function play crucial roles for the results. The main reason 
for this is that uncertainty is welfare deteriorating for the society when the utility function is 
concave, ��� < 0, and the cost function is convex, ��

��>0.  
The decision to engage in energy storage given the uncertainty in renewable energy relates 

to the literature on precautionary saving, where a positive third-order derivative of the utility 
function governs the precautionary behavior. The analysis regarding the precautionary saving 
under uncertainty was first introduced by Leland (1968) and Sandmo (1970). A modern treatment 
of precautionary saving can be found in Kimball (1990), where he coins the term ‘prudence’ when 
the marginal utility of consumption is convex and shows that prudence is sufficient for a demand 
in precautionary savings in standard intertemporal models of consumption. 

The convexity of the marginal cost function is an important property of the electricity industry. 
This property owes to the fact that there is a unique merit order of using individual generators. 
Accordingly, the power plants with the lower marginal costs of energy generation are the first to 
be brought online (like a coal-fired power plant). These power plants are followed by others with 
higher unit cost of producing energy, such as a condensing plant and gas turbine, and a natural 
gas power plant with carbon capture and storage. As a result, an increasing and a convex curve 
can successfully characterize the industry supply. Such property can also be identified 
empirically. For instance, using auction data, Wolak (2003) recovers a convex marginal cost 
function estimate in the Australian electricity market. 

Note that as there are no externalities or other distortions in the model, the competitive 
equilibrium quantities correspond to the social planner’s allocation. Therefore, the results from 
the analysis of the social planner’s problem can be carried to a decentralized equilibrium. 
Assuming that the consumers have identical preferences, and modeling their behavior by a 
representative consumer, the marginal utility function can be denoted by � = ��(�) where � ≡
�(�)  is the aggregate demand function of electricity given the electricity  tariff,  � . 3   
Additionally, the marginal cost function C�

� (��) is the aggregate supply function of electricity 
generated by fossil fuels. 

To have better a understanding of the results and their implications, let us focus on a 

special case, and consider that energy is only supplied by fossil fuels; i.e., �� = 0.  In this case, 

when �′ is increased marginally from zero, the following welfare effect occurs: 

                                            
�{∙}

���
�

����
= −(1 − ��)�C�

� (Q�(0,0))� < 0                       (4) 

From (4), I can establish the following corollary: 

Corollary 1. When the economy does not have access to renewable energy, storing energy is welfare 
deteriorating. 

The intuition is as follows. Without renewable energy, the electricity needed the storage 
systems will be obtained from the fossil fuel energy industry.  Then the unit cost of storing energy 
becomes C�

� (Q�(0,0)). When energy is stored, its present value adjusted for the discount factor 

                                                        
3 I consider a quasi-linear utility function over electricity consumption, and a numéraire commodity. Accordingly, �(�), is 
the monetary value of utility derived from Q kilowatt-hour of electricity consumption. Such preferences are standard in 
economic theory when discussing issues related to a single market in a general equilibrium framework. 
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and the loss in energy becomes ��C�
� (Q�(0,0)). Comparing the cost of storing energy to its  value  

adjusted  for  the discount factor and the round-trip efficiency, it is seen that energy storage is 
suboptimal. As a result, energy consumption, Q, equals fossil fuel energy generation, Q�, at every 
period. 

Suppose now that there is renewable energy capacity in the economy. As another special case, 
assume away the intermittency problem. Thus, ��  is constant at every period; i.e., � = �� =
�[�] = �[�′]. Therefore, �� = 0. From (3) one arrives at the following outcome: 

                                      
�{∙}

���
�

����
= −(1 − ��) �C�

� �Q�(0, �)�� < 0,                            (5) 

which allows us to establish the following corollary: 

Corollary 2. In an economy with fossil fuel and renewable energy, storing energy is welfare 
deteriorating in the absence of an intermittency problem. 

Accordingly, intermittency in renewable energy, and hence, uncertainty in the levels of energy 
generated by the renewable energy capacity, is the cause that assigns a positive value to energy 
storage in this model. Without the uncertain generation of energy from the renewable sources, it 
will only be welfare deteriorating to engage in energy storage. 

Considering again that renewable energy is intermittent and variable, let us assume a constant-
cost fossil fuel energy industry. Thus, the cost function is linear, and the fossil fuel energy industry 
supply curve can be characterized by a horizontal supply curve. In this case, Eq. (3) becomes 

 

                                              
�{∙}

���
�

����
= −(1 − ��)�� < 0,                                        (6) 

 

where �� = C�
� �Q�(0, �)� > 0, which is a constant, is the marginal cost of generating fossil fuel 

energy when the fossil fuel energy industry supply function is linear. This result leads us to the 
following corollary: 

Corollary 3. When the fossil fuel energy cost function is linear, i.e., there is a constant-cost fossil fuel 
energy industry, storing energy is welfare deteriorating, and therefore, never optimal. The positive 
third-order derivative of the utility function loses its impact on storage decisions. 

The intuition is that in an economy in which the fossil fuel energy is the source for energy 
storage, the present value adjusted for the discount factor and the loss in energy becomes ����, 
which is smaller than the marginal cost of storing energy, ��. It can then be seen from (6) that 
energy storage turns out suboptimal. Hence, although the renewable energy is stochastic, there is 
indeed no real risk in the economy as long as the dirty carrier has no barriers to produce energy 
in the following period. Therefore, storage technology will not be employed even if it is perfectly 
efficient; i.e., even if � = 1. 

Notice, however, that this result is valid only for cases where fossil fuel energy is always 
generated, i.e., Q� > 0. Consider a case in which renewable energy capacity is sufficiently high 
such that fossil fuel power plants would be taken offline from time to time. When such a setup is 
present, the unit cost of storing energy can become sufficiently low when the renewable energy 
generation is sufficiently high, making energy storage beneficial for the society. We will consider 
such cases in the next section, where we solve the problem numerically.  
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Now assume that there is only renewable energy capacity. Thus, Q� = 0. Here, I assume that 
z ∈ (0,1] (Helm and Meier, 2016). Therefore, no matter how small it is, there is always some 
renewable energy generation. The welfare effect of a marginal increase in S� yields 

                             
�{∙}

���
�

����
≅ −������� +  ��������� +

�

�
����

�
����(���)��                   (7)  

To fix ideas, suppose that the current realization of � coincides with its expected future 
realization, i.e., � =  �. Then, 

                                 
�{∙}

���
�

����
≅ (1 − ��)������� +

�

�
����

�
����(���)��                    (8)         

One sees that ���� ≥ 0 is a necessary condition for storage to be optimal in this case. 

3.1. Discussion 

Regarding the relationship between the volatility of renewable and energy storage, one comes 
across similar results in the operations research and economics literature. Tuohy and O’Malley 
(2011) argue that intermittency increases the benefit driven from the flexibility offered by pumped 
hydroelectric storage and makes energy storage more attractive. The numerical results in Evans 
et al. (2013) also confirm the positive relationship between variance of renewable energy and 
storage (stored water, in particular); that is, storage becomes more welfare enhancing with higher 
uncertainty. The fact that the demand schedule is linear in Evans et al. (2013), that is, �′′ = ��′′, 
however, suggests that the quantitative results can change once a convex demand schedule is 
considered. Bobtcheff (2011) numerically demonstrates that a benevolent planner keeps more 
water in a reservoir when faced with higher uncertainty and explains that this action is due to 
prudence. Nevertheless, the author does not present a formal analysis. In Bobtcheff (2011), the 
marginal cost of fossil fuel energy generation is constant, ��

� (��) = ��, and not subject to any 
capacity constraints. As can be understood from my analysis, it is the convexity in the demand 
schedule that leads to higher levels of energy storage when the economy is confronted with a 
higher volatility in renewable energy.  

3.1.1. Numerical Analysis 
 

My purpose with the numerical analyses and simulations in this section is not to provide a 
comprehensive quantitative evaluation. Rather than that, I want to highlight the roles different 
industry cost and market demand structures, can play in an economy with fossil fuel and 
renewable energy, and energy storage capacities. In solving the dynamic stochastic decision 
problem given by (2), I employ dynamic programming based on Bellman’s principle of 
optimality: regardless of the decisions taken to enter a particular state in a particular stage, any 
optimal policy has the property that the remaining decisions given the stage resulting from the 
current decision must constitute an optimal policy. Hence, I look for an optimal decision rule 
{�∗(�, �), ��

∗ (�, �), ��
∗(�, �), �∗(�, �), �′∗(�, �)} , which solves �(�, �) . To make sure that the 

numerical problem has a solution and this solution is unique, I establish the contraction property of the 
dynamic program in Appendix B.1. 

Suppose that there exists an economy in which the level of energy consumption is Q =
450MWh (megawatts per hour). To begin with, suppose that the demand is met by a fossil fuel 
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d

power plant.4 Thus, the fossil fuel energy generation, Q�, equals energy consumption, Q: Q =
Q� = 450MWh. 

In the economy, the energy demand is assumed to be stable. I, therefore, focus on weekly 
data: Q = Q� = 450MWh = 450 × 24 × 7MWw = 75.6GWw , where w  and GW  stand for 
week and gigawatt, respectively. Note that 1GW =  1000 MW. For ease of notation, I drop ‘per 
time period’ notation and focus only on the thermal units. I take an annual discount rate of 5%. 
This corresponds to a weekly discount factor, δ =  0.9991.  

For the fossil fuel power plant, I assume that the ramp-up level equals Q� = 8.4GW, which 

corresponds to 50MW per hour. The capacity constraint for fossil fuel power generation is given 

by �� = 100.8G�,corresponding to 600MW, which, in the simulations, will not be binding as 

Q =  75.6GW. 
In the simulations, I will make use of a constant relative risk aversion (CRRA) utility 

function, Q���/(1 − γ) , where γ  and γ + 1  are the coefficients of relative risk aversion and 
relative prudence, respectively. I take γ = 2 .5  From the necessary first-order condition with 
respect to Q� , given by (13a) in the appendix, I get Q�� = ��

� (��). Assuming a linear cost 
function for fossil fuel energy, ��

� (��) = ����, where �� is a constant, one gets, �� = Q��. For 
Q = 75.6GW , �� = 0.000175UoN  (units of the numéraire). If, however, the cost function is 

quadratic, I have ��
� (��) = ����

� , where �� is another constant. Finally, for a cubic cost function 

��
� (��) = ����

�, where �� is also a constant. 
In order to be consistent in the analysis, I assume that when the fossil fuel energy 

generation is at the ramp-up level, Q� = Q�, the marginal costs are equal among the different cost 

functions. This gives  

�� = 2��Q� = 3��Q�
� . 

Accordingly, �� = 0.000175UoN , �� = 1.0417 × 10��UoN  and �� = 8.2672 × 10�� . 

For �� > Q�, it can be seen that �� < 2���� < 3����
�.  

Suppose that a wind farm with a maximum capacity of �� = 100.8G� , which 

corresponds to 600MW per hour is then introduced to the economy.6 Moreover, the economy has 

access to an energy storage capacity of 100MW, corresponding to � = 16.8�� per week.7 I first 
assume that 1% of stored energy would be lost every week, hence � =  0.99. I address the effects 
of different round-trip efficiency parameters by making a sensitivity analysis in Appendix D. 

As is discussed in the Appendix for method description (Appendix C.1), I approximate 

                                                        
4 Although I do not aim for a comprehensive quantitative evaluation, it is possible to find a range of examples to associate 
with 450MWh of energy consumption. As an example, see Kaldellis et al. (2012). 
5 Heal (2009) argues that [2,6] is a reasonable range for the relative risk aversion parameter. 
6 The Fantanele-Cogealac Wind Farm, which opened in 2012 in Romania, and the Whitelee Wind Farm, which 

opened in 2012 in the United Kingdom, have capacities of 108GW  and 90.5GW, respectively. 
7 Considering battery storage, even though such a capacity is not present as of today, it is achievable given the current 

battery technology. The biggest battery storage capacity exists in west Texas located at 153MW Notrees wind farm 
where 36MW battery storage system became operational in December 2012. The 36MW battery storage is a scalable 
assembly of thousands of 12 volt, 1 kWh, dry cell batteries based on a proprietary formula of alloys including copper, 
lead and tellurium. 
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the expected value for the intermittent renewable energy production using Gaussian quadrature 
nodes and weights. In determining the weights and nodes (normalized wind speed), I make use of 
a beta distribution defined on the interval [0, 1] and parametrized by two positive shape 
parameters, � and �. As an example, for � = 2 and � = 2, the probability density function, �(�), 
for the beta distribution looks like the one in Figure 2. 

 

Figure 2: Beta probability density function for the (normalized) wind speed (a=2, b=2). 
 

Finally, in evaluating the long-run steady-state behavior of the controlled economic 
process, I make use of Monte Carlo Simulations (see Appendix C.1). 

 
4.2. Discussion 

 
Figure (3) presents the optimal decision rules for three different (linear, quadratic and cubic) 

cost functions. To be consistent with my earlier analysis, I present only the decision rules 
regarding the fossil fuel energy generation, ��

∗ (�, �), and energy storage that will be transferred 
to the next period, �′∗(�, �). 

Considering the case with the linear cost function in generating the fossil fuel energy one 

can see that when the wind strength is highest, i.e., � = 1, and ��� = 100.8G�, then it is optimal 

to generate the fossil fuel energy at its ramp-up level (see Figure (3a)-i). It is also optimal to store 
energy up to its capacity, 16.8��, which is an outcome independent of the level of stored energy 
in this case (see Figure (3a)-ii). Furthermore, when the wind strength is less than 0.5, all stored 
energy will then be consumed, which is a result independent of how much energy was transferred 
into the current period. 

The optimal decision rules for the two remaining cases are quite distinct. In line with 
Proposition 1, one can see that the costlier it gets to generate the fossil fuel energy, the lower the 
corresponding generation levels and the higher the level of energy transferred into the next 
period. 8  For example, if � =  0.5  and there is no stored energy, �� = 0, 5.2, 6.9GW for a 
constant − , increasing −  and increasingly increasing − cost fossil fuel energy industry, 

                                                        
8 For all variations of � and �, while the fossil fuel energy generation takes its lowest values, the energy levels transferred 
to the next period are the highest for a cubic cost function, i.e., ��

′′′  >  0. 
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respectively. 

 
Figure 3: Optimal decision rules for fossil fuel energy generation, �� , and energy storage, �′, for 
different cost functions. 
 

A lower level of stored energy for each pair of z and S when the cost function is linear can be 
attributed to the lower opportunity cost of not storing energy in the current period: if the wind 
power is low, and energy is not stored, then, in case it is required, the cost of generating the 
required energy from fossil fuels will not be too costly. However, this is not necessarily the case 
when the cost function is nonlinear: if there is no stored energy and suddenly the wind ceases to 
blow, then the economy would have to incur greater costs to get the desired level of energy from 
fossil fuels. 

Having solved for the optimal decision rules, I can examine the long-run tendencies of the 
model variables. Here, I aim at computing the steady-state mean values for the model variables 
and analyze how they respond to different specifications of the cost function and model 
parameters. 

In doing this, I simulate the representative paths for the model variables using Monte Carlo 
simulations. Given that I work with a stationary distribution, i.e., that the transition probabilities 
are time-invariant, I can argue that the problem possesses a steady-state distribution so that I can 
calculate the steady-state mean values for the economic variables. 

Assuming three different cost functions in generating fossil fuel energy, the results of the 
simulations are summarized by Figure (4a). As expected from the previous discussion regarding 
the optimal decision rule, the fossil fuel steady-state (SS) mean levels are the smallest, 
approximately 10GW, for the case with the cubic-cost function. On the contrary, the SS mean 
value for the stored energy is the highest, 10.2GW for the same case. Moreover, when one 
considers the long-run tendencies given that the cost structure of the fossil fuel energy industry is 
constant, i.e., a linear cost function, I see that the fossil fuel energy SS mean takes its highest 
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value, 27�� , while the stored energy gets much lower, approximately 2�� . In line with 
Proposition 1, the simulation results show the impact a positive third-order derivative of the cost 
function can have on energy storage decisions. 

Another fundamental result I got previously was the effect of prudence on precautionary 
energy storage decisions. In looking at the effect of a more prudent economy, I take � =  3. The 
results indicate that a higher level of prudence can alter the results significantly. Compared to the 
previous cases with different cost structures, a higher level of prudence can indeed result in a 
much higher level of SS energy savings, even if the cost function is linear (see Figure 4b). 

 
Figure 4: Steady-state analysis - mean values 

 
5. Conclusion 
 
In line with the global efforts to reduce CO2 emissions, renewables have an extensive potential 
to substitute for the fossil fuels. However, they also have their shortcomings. One of them, maybe 
the most crucial one, is the intermittency problem that can jeopardize immediate access to energy. 
One technology considered to alleviate, or even cause the intermittency problem to be negligible, 
is energy storage. Yet the economics of energy generation lacks the treatment of intertemporal 
welfare decisions in the presence of intermittent renewable energy and energy storage technology. 
This may become a serious drawback, as without taking this into account, long-term analysis and 
the policy decisions in this respect can be biased and even misleading.9 

By approaching the problem both analytically and numerically, I attempted to fill this gap. The 

                                                        
9 It is also important to note that the long-term policy suggestions of assessment models need be taken with a grain of 

salt not only because they are big abstractions of complex dynamics, but also the intermittency problem (thus, shorter 
time periods) and, with it, the energy storage decisions are excluded. This can have cogent influence on the ongoing 
research in assessment modeling and climate change, as their calculations and conclusions extend to the near and distant 
futures. 



28 
 

analytical results show the conditions where a convex demand schedule can have considerable 
effect on industry-wide energy storage. I also show how the cost structures, including the third-
order derivative of the cost function in generating the fossil fuel energy, can influence energy 
storage decisions. Utilizing numerical simulations, I then calculated the optimal decision rules, 
i.e., optimal policy functions, which are vital in navigating decisions regarding how much energy 
to generate from fossil fuels and how much to use from stored energy (or how much to store). I 
benefited from these policy functions when analyzing long-term tendencies, or alternatively, the 
steady-state mean levels, of the economic variables. 

The results not only reveal that prudence and a third-order derivative of the cost function are 
important for energy storage decisions, but also show that a prior knowledge of the prudence level 
and the cost-structure of the fossil fuel industry can be quite fundamental in the optimal 
management of energy sources. Such knowledge will also be crucial when evaluating energy 
investment decisions. 

The present study can be extended in several directions. First, one can extend the current model 
by taking into account investment decisions in capacities. It is also interesting to incorporate a 
climate module and investigate the effects of climate change, and hence, the climate policies on 
the use of fossil fuels, intermittent renewable energy, and energy storage. One can also consider 
R&D investments and technological change, and analyze how the use of different energy sources 
and their technologies evolve over time depending on both climate and R&D policies. Last but 
not least, a further investigation of the effects of prudence and the cost structures on the economic 
decisions can be quite important not only in the literature in energy economics but also in the 
literature on prudence in general. The decentralization of the optimal allocation decisions by 
market mechanisms and the investigation of how allocations are modified when risk attitudes and 
time preferences change is another interesting avenue. 
 
 
Acknowledgments: I would like to thank François Salanie, Fred Schroyen and Gunnar Eskeland 
for many constructive discussions and suggestions on the topic. I have also benefited from the 
comments and suggestions of Burak Ünveren, Danilo Lopomo Beteto, Tiago Pinheiro and the 
participants of NHH ENE Brownbag Seminar and the Bergen Economics of Energy and 
Environment Research (BEEER) Conference. Lastly, I would like to thank the Center for 
Sustainable Energy Studies for research support. A previous version of this article is present as a 
working paper which can be accessed from https://papers.ssrn. 
com/sol3/papers.cfm?abstract_id=2460676.



YILDIZ SOCIAL SCIENCE REVIEW vol. 4 no. 1 

References 

AMBEC, S. AND C. CRAMPES (2012). Electricity provision with intermittent sources of energy. 
Resource and Energy Economics 34 (3), 319–336. 

BOBTCHEFF, C. (2011). Optimal dynamic management of a renewable energy source under 
uncertainty. Annals of Economics and Statistics/Annales d’Économie et de Statistique (103- 104), 
143–172. 

BUNN, D. W., C. DAY, AND K. VLAHOS (2000). Understanding latent market power in the 
electricity pool of england and wales. In Pricing in Competitive Electricity Markets, pp. 103–125. 
Springer. 

CRAMPES, C. AND M. MOREAUX (2001). Water resource and power generation. International 
Journal of Industrial Organization 19 (6), 975–997. 

CRAMPES, C. AND M. MOREAUX (2010). Pumped storage and cost saving. Energy Economics 32 
(2), 325–333. 

EIA (2011). International Energy Outlook 2011. Technical report, U.S. Energy Information 
Administration. 

EVANS, L., G. GUTHRIE, AND A. LU (2013). The role of storage in a competitive electricity market 
and the effects of climate change. Energy Economics 36, 405–418. 

FØRSUND, F. R. (2007). Hydropower Economics. Springer, New York, USA. 

FØRSUND, F. R. (2012). Pumped-storage hydroelectricity. CREE Working paper (14). 

FØRSUND, F. R. AND L. HJALMARSSON (2011). Renewable energy expansion and the value of 
balance regulation power. Modern Cost-benefit Analysis of Hydropower Conflicts. Edward Elgar 
Publishing , 97–126. 

HEAL, G. (2009). Climate economics: a meta-review and some suggestions for future research. 
Review of Environmental Economics and Policy 3 (1), 4–21. 

HELM, C. AND M. MIER (2016). Efficient diffusion of renewable energies: A roller-coaster ride. 
Oldenburg Discussion Papers in Economics 289 (16), 4–21. 

IEA (2014). Technology Roadmap: Energy Storage. Technical report, International Energy 
Agency.  

IPCC (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. 
Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Technical report, IPCC, Cambridge, United 
Kingdom and New York, NY, USA. 

JOSKOW, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating 
technologies. American Economic Review 101 (3), 238–241. 

JUDD, K. L. (1992). Projection methods for solving aggregate growth models. Journal of Economic 
Theory, 58, 410–452. 

JUDD, K. L. (1998). Numerical Methods in Economics. The MIT Press, Massachusetts, London, 
England. 



ENERGY STORAGE AND RENEWABLE ENERGY: AN ECONOMIC APPROACH 

30 
 

KALDELLIS, J., A. GKIKAKI, E. KALDELLI, AND M. KAPSALI (2012). Investigating the energy 
autonomy of very small non-interconnected islands: A case study: Agathonisi, Greece. Energy for 
Sustainable Development 16 (4), 476–485. 

KANAKASABAPATHY, P. (2013). Economic impact of pumped storage power plant on social 
welfare of electricity market. Electrical Power and Energy Systems 45, 187–193. 

KIMBALL, M. S. (1990). Precautionary saving in the small and in the large. Econometrica, 53–
73.  

KOOPMANS, T. C. (1958). Water storage policy in a simplified hydroelectric system. Cowles 
Foundation for Research in Economics at Yale University. 

KORPAAS, M., A. T. HOLENA, AND R. HILDRUMB (2003). Operation and sizing of energy 
storage for wind power plants in a market system. Electrical Power and Energy Systems 25, 559–606. 

LELAND, H. E. (1968). Saving and uncertainty: The precautionary demand for saving. The 
Quarterly Journal of Economics 82 (3), 465–473. 

MIRANDA, M. J. AND P. L. FACKLER (2002). Applied Computational Economics and Finance. 
MIT Press. 

MUELLER, S., P. FRANKL, AND K. SADAMORI (2016). Next generation wind and solar power 
from cost to value. International Energy Agency: Paris, France. 

SANDMO, A. (1970). The effect of uncertainty on saving decisions. The Review of Economic Studies 
, 353–360. 

STOKEY, N. L. (1989). Recursive Methods in Economic Dynamics. Harvard University Press. 

TSITSIKLIS, J. N. AND Y. XU (2015). Pricing of fluctuations in electricity markets. European 
Journal of Operational Research 246 (1), 199–208. 

TUOHY, A. AND M. O’MALLEY (2011). Pumped storage in systems with very high wind 
penetration. Energy Policy 39 (4), 1965–1974. 

VAN DE VEN, P., N. HEGDE, L. MASSOULIE, AND T. SALONIDIS (2011). Optimal control of 
residential energy storage under price fluctuations. In ENERGY 2011, The First International 
Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, pp. 159–
162. 

WOLAK, F. A. (2003). Identification and estimation of cost functions using observed bid data. In 
Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, 
Volume 2, pp. 133. Cambridge University Press. 

 

 

 

 

 



Tunç Durmaz 

31  

 

Appendices 

A. Derivation of Eq. (3) 

The Bellman equation is the following:  

 

 �(�, �) = max
���

 ����� + ��� − �� + ��� − ��(��) + ��[�(��, �′)]��
����

  (12) 

 
for which the first order condition (FOC) with respect to (w.r.t) Q� yields  
 
                                                   ��(�) − ��(��) ≤ 0,                                                        (13) 

with equality whenever Q�>0. Let the optimal decision (the optimal response function) be Q�(S, z). 
The welfare effect of �� when it is increased marginally from zero can be shown as 

                          
��(�,�)

���
�

����
= −�����(�, �) + ��� + ���  + � � �

�����,���

���
��

����
.       (14) 

From the Envelope Theorem, only the direct effect of a marginal change in the state variable matters 
on the value function. Given that I evaluate the problem when �′ =  0, the derivative of the 
associated value function w.r.t S shows: 

��(�, �) = ����� + ��� − �� + ���, 

where V�(�, �)  is the derivative of the value function w.r.t  its first argument S . This is the 
Benveniste-Scheinkman (Envelope Theorem) condition. Iterating this one period forward, and 
plugging the result in (14) yields: 

          
��(�,�)

���
�

����
=  −�����(0, �) + ��� + ���  + �����′(��(0, ��) + �′��)�.           (15) 

As I restrict the analysis to � = 0, and hence, assume no inherited energy, then from (15) I arrive 
at the following expression:   

               
��(�,�)

���
�

����
=  −�����(0, �) + ����  + �����′(��(0, ��) + �′��)�.               (16) 

Let �(��) ≝ ��
� ���(0, ��)�.   Taking the expectation of a second-order Taylor approximation 

around � gives 

                                         �[�(��)] ≃ �(z) +
�

�
�′′(z)�� .                                          (17) 

In the following, I will calculate �′′(z). First, �′(��) = ��
�����(0, ��)�

�����,���

���
, where  

                                          
�����,���

���
=

���(�(�,��))��

��
�����(�,��)�����(�(�,��))

< 0.                                   (18) 

Following (18) one gets  

                                       

���(z�) = ��
��� �

���(0, ��)

��′
�

�

+ ��
��

����(0, ��)

��′�
, 

and  
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· 

                                        
������,���

���� =
��

�

���
�������

� ���
���

�′′′ − �′′���
����,                                

where ���� is the third-order derivative of the utility function.  

These outcomes allow me to write  

                                   

 ���(z�) = ��

�
�

(��
��)�

(��
�� − ���)�

���� +
(−���)�

(��
�� − ���)�

��
����. 

Using the results from the second-order Taylor approximation, and owing to the fact that �� > 0, 

and therefore, �′(�)  =  ��
� (��), the welfare effect of increasing �′ marginally from zero when 

� = 0 will yield the desired expression given by Eq. (3). 

 
B. Applying Blackwell’s sufficient conditions for a contraction to the model 
 
Blackwell’s sufficient conditions for a contraction 

The right-hand side of a Bellman equation is a mapping of the value function �(∙) and � =  �� is 
a fixed point of the mapping, where � is a function mapping � into itself. For there to be a unique 
solution to the dynamic programming problem, one needs show that the mapping for the Bellman 
equation is a contraction mapping. In showing this, one makes use of Blackwell’s sufficient 
conditions for a contraction. 

Theorem (Blackwell’s sufficient conditions for a contraction) Let � ⊆ �� , and let �(�)  be a space of 
bounded functions �: � → �, with supremum norm ‖∙‖�. Let �: �(�) → �(�) be an operator satisfying  

1. (Monotonicity) for �, � ∈ �(�) and � (�) ≤ �(�), ∀� ∈ �, implies (�� )(�) ≤ (��)(�),

∀ � ∈ �; 

2. (Discounting) there exists some � ∈ (0, 1) such that 

                      [�(� + �)](�) ≤ (��)(�) + ��, ��� � ∈ �(�), � ≥ 0, � ∈ �. 

Then T is a contraction with modulus δ.10  
 
In the following, I prove that the energy generation and storage model I work with satisfies Blackwell’s 
sufficient conditions for a contraction. 

 
Proposition The energy generation and storage model, satisfies Blackwell’s sufficient conditions for a 
contraction. 

 
Proof. Looking at the equation of motion for stored energy, S, one can see that it takes its maximum 
value when energy consumption is null and z =  1;  i. e. , ����  =  (Q�  + Q�)/(1 − ϕ) . This 

defines the state space � ⊆  [0, �� + ��]  ⊆  �  and �(�)  the function space of the bounded 

functions � ∶  � →  � with supremum norm. 

In the energy storage problem, I defined an operator � by: 
 

                                                        
10 (� + �)(�) is the function defined by (� + �)(�) = � (�) + �. For the proof I refer the reader to Stokey (1989). 
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(��)(�, �) = max
{�,��,��,�,��}

{�(�) − ��(��) − ��(��) + ��[�(��, �′)]} 

If V(S�, z′) ≤ V�(S�, z′) for  all  values  of S�,  then  the  objective  function  for  which  TV� is  the 
maximized value is uniformly higher than the function for which �� is the maximized value, which 
makes the monotonicity requirement obvious.  

The discounting requirement is satisfied from the following: 
 

��(� + �)�(�, �) = max
{�,��,��,�,��}

{�(�) − ��(��) − ��(��) + ��[�(��, ��) + �]} 

                                 = max
{�,��,��,�,��}

{�(�) − ��(��) − ��(��) + ��[�(��, ��)]} + �� 

                                 = (��)(�, �) + ��.  
 

 
Accordingly, there exists a unique fixed point for the mapping of the value function, i.e., a unique 
solution to the dynamic programming problem. 
 
C. Numerical implementation of the model 
 
Method description 
 
I solve the dynamic stochastic decision problem by collocation method. In doing this, I approximate 

the value function by an approximant V�(S) that is parameterized by and solved for a vector of 
parameters, �. 
 
Abstracting from intermittency, a function can be approximated by a combination of n linearly 
independent basis functions, {ψ�}���

� , and basis coefficients, {β}���
� , where � represents the number 

of collocation points: 

F(x) ≈ F�(x) = � ��ψ�(�)

�

���

. 

 

The interpolation problem in one dimension is then to find {β}���
� , satisfying F at n interpolation 

points. In vector notation this can be written as the following: 
 

�(�) = Ψ(�)� 
 
where �(�) = [ψ�(�) ψ�(�) ψ�(�) … ψ���(�)] is the Chebyshev Vandermonde matrix, � =
[�� �� �� … ����]′ and � = [�� �� �� … ����]′, 
 

�(�) = �
��(��) ⋯ ����(��)

⋮ ⋱ ⋮
��(����) ⋯ ����(����)

� 

 
Similarly, in approximating a value function, I search for a coefficient vector, β, that ensures that 
the approximant satisfies the Bellman equation and the equilibrium conditions at the n collocation 
nodes (one can think of collocation nodes as discrete states of the economy). 
In the current energy consumption and storage problem, I approximate a bivariate function, V(S, z), 
as the planner considers the amount of stored energy and weather conditions before taking decisions. 
Therefore, I apply the collocation method solution strategy in a multidimensional setting (i.e., 
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multidimensional interpolation). 
 

I numerically solve Eq. (2) which is simplified to give: 

      �(�, �) = max
{��,��}

�
��������������

���

���
− ��(��) + ��[�(�′, �′)]� 

         ������� ��    �� ≥ �� ≥ 0,  

                               � ≥ � ≥ 0. 
 
I approximate the value function using Chebyshev polynomials. Chebychev basis polynomials in 
combination with Chebychev interpolation nodes can yield extremely well- conditioned 
interpolation collocation equations that one can accurately and efficiently solve. For a discussion 
regarding Chebychev basis functions and nodes, I refer the reader to Judd (1992), Judd (1998) and 
Miranda and Fackler (2002). When approximating the value function using the Chebyshev 
polynomials, I discretize z  and S  into K  ( z�  for k =  (1, 2, . . . K) ) into n  collocation nodes. I 
determine the basis function coefficients for each z and S. For n basis functions, there are going to 
be n basis coefficients, and given K different weather states, the computational problem is to solve 
for K × n coefficients. Let us denote these coefficients by β = [β� β� β� … β�]�,where, for example,  
β� = [β�,� β�,� … β�,�]′.  

For each state of the weather, z�, and for each level of stored energy, ��, the approximant is formed 
as follows: 

�(��, �) ≈ ��(��, �) = � ��,�ψ�(��)

�

���

. 

Given �(��, �), I form the approximant to �(��
�, ��

� ) as well.  In doing this for �� and ��, I need to 
compute the level for the stored energy in the period ahead, �′, and energy generation today �� given 

the intervals � ≥ � ≥ 0 and �� ≥ �� ≥ 0.  Using these boundaries, I construct a grid for fossil fuel 

energy, ����,��,��
���

�
, and energy storage, ���,��,�

� �
���

�
.  

 
Given the approximants of the value function, I have (� ×  �) equations in (� ×  �) unknowns: 

∑ ��,�ψ�(��)
�
��� = max

{��,��}
 �

����,��,������������
���

���
− ��(��) +

                                                        � ∑ ∑ �� ��,�ψ�(��,��,�
� )�

���
�
��� �

���

�

 

 
where, in approximating the integral operation, I replaced the continuous random variable z�  with 
its discrete counterpart ω�, the weight functions, using Gaussian quadrature scheme. The weight 
functions are defined over the interval K. (For a weight function defined on an interval K , 

∫ ω(z)zdz
�

≈ ∑ ω�
�
��� z� .) The expected value of the renewable energy generation can be 

numerically computed as follows: 
 

������ = � ���ω(�)d�

�

≈ � ω�

�

���

z��� 

 
For � =  1, 2, … �, quadrature nodes �� and the corresponding weights ω� are selected such that 2K 
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moments are satisfied.  
 

Above, I showed the approximant for V(S�
�, z�

� ) in its explicit form: 
 

�(��
�, ��

� ) ≈ ��(��
�, ��

� ) = � ��,��
ψ����,��,�

� �

�

���

 

                                        = � ��,��
T��� �2 �

��,��,�
� − �

� − �
� − 1� 

�

���

 

for � = {1,2, … , �}, where  ψ����,��,�
� � = T��� �2 �

��,��,�
� ��

���
� − 1� are the Chebyshev polynomial basis 

functions. � and �(= 0) denote the upper and lower bounds for energy storage, respectively.  

 
Having explained how the polynomial interpolation can work, I now explain the procedure of how 
to calculate the basis function coefficients, β =  [β� β� . . .  β�]. First, I need to make a guess for the 

initial values of the basis functions’ coefficients: β�  =  [β�
� β�

� . . .  β�
� ]. We then need to construct a 

grid of Chebyshev nodes, u�×�, and convert them into grid of stored energy, S. The mapping looks 
like the following:  

� → � ∈ ��, ��, � =
� + �

2
� +

� + �

2
� 

where � is a vector of ones: ��×�. 
 
For � =  {1, 2, . . . , � } and � = {1,2, . . . , �}, I construct a feasible grid of energy generation �� and 
��

� using Chebyshev nodes:  

� → �� ∈ ���, ��� , ���,��
=

�� − ��

2
� +

�� − ��

2
� 

� → �′ ∈ ��, ��, ��,��

� =
�

2
� +

�

2
� 

where � = 0.  

 

For �′, I have the Chebyshev Vandermonde matrix: �(�). Then 
 

�� (�, �) =
���,� + ��

�
− �� + ���

���

1 − �
− �����,�� + � � ���(�′)��

�.

�

���

 

Taking the maximal entries in V�(S, z), I can construct V�(β�), and update the coefficients according 
to Newton-Raphson method (see Judd,1998): 
 

β� = � − [� − �� �(�)]��[�� − ��(�)] 

where V��(β) is the Jacobian of the approximant. One can then use the iterative update rule until the 
following difference gets smaller than a predetermined tolerance level, �: 

�� − (� − �� − �� �(�)�
��

[�� − ��(�)]) < � 

Long-run analysis 
 
After solving for the collocation coefficients, β, one can estimate the evolution of the variables in 
the model. Using the grid, I constructed for the stored energy S, the solution to the model gives us 
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an implicit policy rule: S′ = g(S, z). (Given S� and z�, I know what S�,�
�  is.) 

 
By satisfying the convergence criteria, I also solve for S′. I can use these values to estimate the policy 
(transition) rule, hence solve for the Chebyshev function coefficients, φ:  

S� = ψφ → φ = (ψ�ψ)��ψ′S′ 
 
Using these coefficients, one can pick a random sequence for weather conditions z�  for t =
 1, 2, . . . , T. One can then generate another sequence for S���:  
 

S��� =  ψ(S�)φ 
 
Suppose that I do this N  times (for N  large) by generating N  pseudorandom sequences for z . 
(Pseudorandom sequences are sequences that display some properties satisfied by random variables, 
such as zero serial correlation and correct frequency of runs, although none satisfy all properties of 
an i.i.d random sequence (Judd, 1992).) Given the policy functions I calculated, S′(S, z)  and 
Q�(S, z), and the initial states S� and z�, I can then generate a representative path from the N paths. 
Calculating the average value from the various pseudorandom sequences, one would get 
representative paths for the model variables in the long run. This procedure is called a Monte Carlo 
Simulation. 

Numerical implementation 
 
I solve dynamic programming equation (2) by using collocation method and update the collocation 
coefficients according to the Newton’s method (see the subsection entitle Method description). The 
predetermined tolerance level for the convergence criterion is 1 × 10�� . I construct a 40 
Chebychev polynomial basis functions by forming 40 collocation nodes (4 nodes along � and 10 
nodes along �  dimension) and 40 basis function coefficients. The Beta distribution for the 
intermittent wind is approximated by Gauss-Legendre quadrature with 20 nodes.  
 
The code is written in Matlab. In generating and evaluating the Chebychev polynomials, and doing 
the Monte Carlo simulations, I use CompEcon toolbox described in Miranda and Fackler  (2002).  
 

D. Sensitivity analysis: Round-trip efficiency parameter 

 

The analysis in this section are based on an economy, in which Q� = 100.8GW, Q� = 100.8GW, 

Q� = 8.4GW, S = 16.8GW, S = 0, γ = 2, ρ = 0.05, ϕ = 0.99, quadratic cost function, C�(Q�) =

c�Q�
� , where c� = 1.0417 x 10�� UoN (see p.11). 
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From Figure 5 one can see that all scenarios discern the same pattern and display similar qualitative 
features; i.e., during the first few periods energy is accumulated and stays roughly on its long-run 
expected level. However, the lower the round-trip efficiency parameter is, the smaller is energy 
storage, i.e., lower levels of � imply less enthusiastic storage policies. Accordingly, when � ≤ 0.4 
energy storage becomes suboptimal. 

Figure 2: Sensitivity analysis for the round-trip efficiency parameter, � 
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