
* Corresponding Author: sefaaras@ktu.edu.tr ORCID: 0000-0002-4043-3754
a ORCID: 0000-0002-7212-5457

 14

Development of Programming Learning Environment with Compiler Techniques

Sefa ARAS*1, Eyüp GEDİKLİ1a

1 Karadeniz Teknik Üniversitesi, Teknoloji Fakültesi, Yazılım Mühendisliği Bölümü, 61830, Trabzon

(Alınış / Received: 14.12.2018, Kabul / Accepted: 31.12.2018, Online Yayınlanma / Published Online: 31.12.2018)

Keywords

Programming Learning
Environment,
Compiler,
Lexical Analysis,
Syntax Analysis,
Finite State Machines.

Abstract: In this study, a task-based programming learning environment with
simple syntax was developed. Existing environments are applications that are
mostly programming with visual components, are difficult to develop and
contribute to the transition to real programming languages. Within the developed
environment, a new programming language has been defined, which is close to the
actual programming languages. The programming learning environment has been
developed as open source using computer science and engineering techniques, and
is a framework for researchers seeking to develop such an environment. The
language in the programming learning environment is verified by lexical and syntax
analysis steps. Finite state machines control the success of the task. Regular
expressions allow users to parse the code written by the user and make the
necessary analysis on the code.

1. Introduction

Programming learning improves cognitive skills as
well as teaching computer science concepts. Providing
this improvement depends on the success of
programming learning. While learning programming
with real programming languages, individuals face
syntax difficulties. Solving these difficulties takes
longer than programming. This problem has revealed
programming learning environments. In
programming learning environments, programming is
usually done using visual components [1]. However,
programming with visual components leads to
difficulties for individuals in transition to real
programming languages. This leads to the need for a
learning environment that resembles real
programming languages.

In the Scratch environment where tasks are
performed with visual components, puzzle
components that can take values are used [2]. By
assigning values to certain fields with the correct
parts, assignments, operations, conditions and loops
can be performed. In Vimap [3] consisting of
multidimensional blocks in which programming
instructions are represented by drag and drop, certain

values are written into blocks. Greenfoot, which is
Java-based and supports object-oriented
programming, has been developed for young people
[4]. RoBlock is a web based visual programming
language consisting of eight modules. The user learns
programming by performing tasks in each mode [5].

In this study, a programming learning environment
which is simple syntax, task-based, motivates users
with intelligent feedback, motivation with
gamification is developed. Within the developed
environment, a new programming language has been
defined, which is close to the actual programming
languages. Lexical and syntax analysis steps verify the
language developed in the programming learning
environment. Finite automats control the success
status of task. Regular expressions allow users to
parse the code written by the user and make the
necessary analysis on the code.

In the second part of the work, the method and the
used tools, in the third part system architecture, in the
last part the results are given.

Journal of Investigations on Engineering & Technology
Volume 1, Issue 2, 14-18, 2018

mailto:sefaaras@ktu.edu.tr

Sefa Aras et. al. / Development of Programming Learning Environment with Compiler Techniques

15

2. Method

It is stated in the literature that programming learning
environments developed with visual components
improve cognitive skills and reduce syntax difficulty
[6-8]. However, it is difficult for individuals who learn
programming using visual components to switch to
real programming languages [9, 10]. Therefore, the
language used in the programming learning
environment developed is very close to the real
programming languages and the better learning
process is aimed with the intelligent feedbacks.

2.1. The Tools Used

The programming learning environment has been
developed on the web because it does not require
installation according to the desktop and mobile
applications. The JavaScript programming language,
which can work without the need for plugins, is
preferred for playing animations. Intellij as editor,
Apache Server for presentation and Mozilla Firefox as
browser. In the developed programming learning
environment, compiler techniques have been realized
by using regular expressions and finite state machines.

2.2. Compiler Techniques

Compilers for each programming language have been
developed to make programs written in different
programming languages workable on different
machines. The compilers convert the source code to
the target program [11]. The compilers perform this
process in several stages. In theory, these stages are
followed in sequence, but in practice this sequence is
not always followed, and sometimes the stages can be
combined [12]. The operation diagram of compiler is
given in Figure 1.

Figure 1. Compiler operation diagram

A basic compiler usually consists of four stages [13]:

Table 1. Token Table
Source Code Token

text ID
“text” STR

number INT
; END
, BR
+ ADD
- SUB
* MUL
/ DIV
(LBT

) RBT
{ LCB
} RCB
[LBB
] RBB

text = expression ID EQU EXP
text = expression + expression ID EQU EXP ADD EXP
text = expression - expression ID EQU INT SUB INT
text = expression * expression ID EQU INT MUL INT
text = expression / expression ID EQU INT DIV INT
expression (logical operators)

expression
EXP LOG EXP

eger (logical expression) {
code }

IF LBT LEXP RBT LCB
CODE RCB

degilse eger (logical
expression) { code }

ELIF LBT LEXP RBT LCB
CODE RCB

degilse { code } ELSE LCB CODE RCB

tekraret (number) { code }
FOR LBT INT RBT LCB

CODE RCB
oldugu surece(logical
expression) { code }

WHL LBT LEXP RBT
LCB CODE RCB

[] text = number LBB RBB ID EQU INT

text[number] = expression
ID LBB INT RBB EQU

EXP
program { code } MAIN LCB CODE RCB

text(expression) { code }
FUNC LBT EXP RBT LCB

CODE RCB

1. Lexical Analysis: In the lexical analysis phase, first
white characters (space character, tab, new line, etc.)
are filtered out. Then the characters in the source code
are separated by symbols called tokens. Lexical
analysis is also called the stage of preparation for the
phase of syntactic analysis [11-13].

The tokens and their equivalents for the programming
language developed within the programming learning
environment are given in Table 1. The programming
language is fully covered by creating tokens for each
command and symbol. The expression in the source
code; variable (ID), text (STR), or number (INT).
Logical operators only generate conditional
expressions. Logical expressions are formed by
comparing two expressions with each other. The end
of logical statements can be true or false.

𝑎 = 10 ∗ (5 + 10) (1)

An example calculation is given in (1). With the
developed programming language, this calculation is
performed as follows:

• sayi = 10 * (5 + 20);

In the calculation process of equation 1 is given in the
state of Figure 2 was parsed into tokens by the
compiler.

Figure 2. Token of equation 1

The main purpose of the lexical analysis phase is to
facilitate work in the next phase of syntax analysis.
Simple systems perform lexical analysis and syntax

Sefa Aras et. al. / Development of Programming Learning Environment with Compiler Techniques

16

analysis together. However, the separation of these
stages has advantages such as efficiency and
modularity [12].

2. Syntax Analysis: The syntax analysis phase parse the
token list created during the lexical analysis phase into
a tree structure called a syntax tree. For this reason,
this stage is also called parsing. If the code is not
accepted at this stage, it is indicated as a syntax error
together with the corresponding error message. [11-
13].

The finite automata in Figure 3 control the tokens
given in Figure 2 during the syntax analysis phase. The
finite automata changes state according to the token
list. The expected tokens(s) for each case vary. An
unexpected token in the current situation causes a
syntax error. The finite automata is that the encoder
accepts the appropriately coded computation.
Examining Figure 3, the finite state machine accepts
infinite number of left parentheses in case number 2,
infinite right parentheses in number 3 case. However,
for each left bracket, a right bracket must appear.
Parentheses are checked with regular expressions
before the computation is verified by the finite
automata. Controlling the parentheses first provides
ease of operation. If there is an error in the
parentheses, a parenthesis error is given without
checking at the codes.

Figure 3. Proposed finite automata for the operations

3. Type Checking: An expression in the code block can
be variable, text, or number. When assigning and
operator operations are performed, the data type
must be decided. Variables (ID) always begin with a
character, followed by a number or character. Texts
(STR) only accept characters, numbers (INT) only
accept numbers [12].

Figure 4. Variable name definition

The finite automata in Fig. 4 is used to verify the
variable name. Lowercase letters are represented [a-
z], uppercase letters are represented [A-Z] and
numbers are represented by [0-9].

4. Code Generation: The ultimate goal of a compiler is
to translate code written in a high-level programming
language into programs that can run on a computer.
The codes written in this context should be
transformed into a programming language that can
understand the environment in which the work
should be performed [13]. This language can be
scripting languages for the browser while being
machine codes for the computer.

The developed programming learning environment is
working on browsers. The code written in the
environment needs to be converted into JavaScript,
which is a scripting language. The code written in the
learning environment is prepared to work in the
browser because of the successful passage of the
analysis steps. The written code is converted into
JavaScript programming language using regular
expressions and executed in the browser.

The insertion sorting algorithm function written in the
developed programming language is given in Figure 5.
This function is tokenize by parsing the lexical and
syntax analysis steps into the final tokens. These
tokens are converted into JavaScript programming
language using regular expressions. The sorting
algorithm in the JavaScript programming language is
given in Figure 6.

Figure 5. Insertion sort algorithm

Figure 6. Insertion sort algorithm in Javascript

Sefa Aras et. al. / Development of Programming Learning Environment with Compiler Techniques

17

3. System Architecture

The general code notations of the developed
environment are given in Table 1. The environment
needs to verify these codes in the analysis phase. In the
analysis phase, the code written before is parsed into
symbols called tokens. The finite automata given in
Figures 7-9 in terms of the writing rules verify obtain
tokens.

Figure 7. Proposed finite automata for the functions

Function and program (main) blocks are being
verified by shown the automata in Figure 7. Functions
can take variable(s) as parameters, the program block
does not accept parameters. The automata given in
Figure 3 verify once the function and program blocks
are appropriately generated, the code blocks.

Figure 8. Proposed finite automata for the loops

The automata given in Fig. 8 confirms the loops. Loops;
It consists of “tekraret” (for) and “oldugu surece”
(while) codes. The for command executes the code in
the blocks specified number times, the while
command executes the code in the block as long as the
given condition is correct.

Figure 9. Proposed finite automata for the conditions

The automata given in Fig. 9 checks the conditions.
Conditions; “eger” (if), “degilse eger” (else if) and
“degilse” (else). Else if and else commands are not
accepted by the automata without if command. The
else command can come only once, and only at the end,

while an unlimited number of else if command can
come after if command arrives.

3.1. Task System

In the developed learning environment, the user is
progressing successfully by fulfilling the tasks given in
the predefined scenarios. In Figure 10, an example
task is given.

Figure 10. Example task code

The automata given in Figs. 11 and 12 control the
example given in Fig. 10.

Figure 11. Task Controller

The automata given in Figure 11 control the general
structure. The status does not change except for the
codes given in the figure. Loop is being verified by
shown the automata in Figure 12.

Figure 12. Loop Controller for Task

4. Conclusions

In this study, it was tried to develop an open source
programming learning environment using compiler
techniques. The developed environment provides a
framework for future environments and expected to
allow the user to proceed faster to use real
programming languages. Through the developed
framework, subsequent learning can determine the
user's learning ability and deficiencies. Algorithms can
provide information on how to develop logic skills. A
comprehensive new language can be created with the
existing infrastructure.

References

[1] Özyurt, Ö., Özyurt, H., Aras, S. (2016, May).
Çocukların Kodlama Öğrenebilecekleri
Ortamların İncelenmesi. In International
Computer and Instructional Technologies
Symposium (ICITS) on (pp. 399-400).

[2] Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Kafai, Y.
(2009). Scratch: programming for all.
Communications of the ACM, 52(11), 60-67.

Sefa Aras et. al. / Development of Programming Learning Environment with Compiler Techniques

18

[3] Sengupta, P., Farris, A. V., Wright, M. (2012). From
agents to continuous change via aesthetics:
learning mechanics with visual agent-based
computational modeling. Technology,
Knowledge and Learning, 17(1-2), 23-42.

[4] Kölling, M. (2010). The greenfoot programming
environment. ACM Transactions on Computing
Education (TOCE), 10(4), 14.

[5] García, P. G., De la Rosa, F. (2016). RoBlock-Web
App for Programming Learning. International
Journal of Emerging Technologies in Learning,
11(12).

[6] Bers, M. U., Flannery, L., Kazakoff, E. R., Sullivan,
A. (2014). Computational thinking and tinkering:
Exploration of an early childhood robotics
curriculum. Computers and Education, 72, 145-
157.

[7] Papadakis, S., Kalogiannakis, M., Zaranis, N.
(2016). Developing fundamental programming
concepts and computational thinking with
ScratchJr in preschool education: a case study.
International Journal of Mobile Learning and
Organisation, 10(3), 187-202.

[8] Fessakis, G., Gouli, E., Mavroudi, E. (2013).
Problem solving by 5–6 years old kindergarten
children in a computer programming
environment: A case study. Computers and
Education, 63, 87-97.

[9] Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.
(2015). From scratch to “real” programming.
ACM Transactions on Computing Education
(TOCE), 14(4), 25.

[10] Koorsse, M., Cilliers, C., Calitz, A. (2015).
Programming assistance tools to support the
learning of IT programming in South African
secondary schools. Computers and Education, 82,
162-178.

[11] Aho, A. V., Sethi, R., Ullman, J. D. (2007).
Compilers: principles, techniques, and tools (Vol.
2). Reading: Addison-wesley.

[12] Mogensen, T. Æ. (2009). Basics of Compiler
Design. Torben Ægidius Mogensen.

[13] De Graaf, D. (2017). Practical use of Automata
and Formal Languages in the compiler field.

