Available online: January 4, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 1090–1096 (2019) DOI: 10.31801/cfsuasmas.508101 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

QUASI 2-ABSORBING SECOND MODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

ABSTRACT. In this paper, we will introduce the notion of quasi 2-absorbing second modules over a commutative ring and obtain some basic properties of this class of modules.

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and " \subset " will denote the strict inclusion. Further, \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [14]. A non-zero submodule S of M is said to be second if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [20]. More information about this class of modules can be found in [3, 4, 5, 6, 11, 12]. A proper submodule N of M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$ [15].

The notion of 2-absorbing ideals as a generalization of prime ideals was introduced and studied in [8]. Also, various generalizations of primary ideals are introduced and studied in [9, 19]. A proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. The notion of 2absorbing ideals was extended to 2-absorbing submodules in [13] and [17]. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

In [7], the authors introduced the dual notion of 2-absorbing submodules (that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and investigated some properties of these classes of modules. A non-zero submodule N of M is said to be a 2-absorbing second submodule of M if whenever $a, b \in R, L$ is a completely irreducible submodule of M, and $abN \subseteq L$, then $aN \subseteq L$ or $bN \subseteq L$

©2019 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: May 25, 2018; Accepted: August 05, 2018.

²⁰¹⁰ Mathematics Subject Classification. 13C13, 13C99.

 $Key\ words\ and\ phrases.$ 2-absorbing ideal, strongly 2-absorbing second submodule, quasi 2-absorbing second module.

or $ab \in Ann_R(N)$. A non-zero submodule N of M is said to be a strongly 2absorbing second submodule of M if whenever $a, b \in R$, K is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in Ann_R(N)$.

The purpose of this paper is to introduce the concepts of quasi 2-absorbing second modules as a generalization of strongly 2-absorbing second modules and obtain some related results.

2. Main results

Definition 2.1. We say that a non-zero *R*-module *M* is a quasi 2-absorbing second module if $Ann_R(M)$ is a 2-absorbing ideal of *R*.

By a quasi 2-absorbing second submodule of a module we mean a submodule which is a quasi 2-absorbing second module.

Example 2.2. By [7, 3.5] every strongly 2-absorbing second module is a quasi 2-absorbing second module. But the converse is not true in general. For example, every submodule of the \mathbb{Z} -module \mathbb{Z} is a quasi 2-absorbing second module which is not a strongly 2-absorbing second module.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0:_M Ann_R(N))$ [2].

Proposition 2.3. Let M be a comultiplication R-module. Then a submodule N of M is a strongly 2-absorbing second submodule of M if and only if it is a quasi 2-absorbing second submodule of M.

Proof. This follows from [7, 3.5] and [7, 3.10].

Proposition 2.4. Let M be an R-module and N_1 , N_2 be two submodules of M with $Ann_R(N_1)$ and $Ann_R(N_2)$ prime ideals of R. Then $N_1 + N_2$ is a quasi 2-absorbing second submodule of M.

Proof. Since $Ann_R(N_1 + N_2) = Ann_R(N_1) \cap Ann_R(N_2)$, the result follows from [8].

For a submodule N of an R-module M the the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [12] and [3]).

The set of all second submodules of an *R*-module *M* is called the *second spectrum* of *M* and denoted by $Spec^{s}(M)$. The map $\phi : Spec^{s}(M) \to Spec(R/Ann_{R}(M))$ defined by $\phi(S) = Ann_{R}(S)/Ann_{R}(M)$ for every $S \in Spec^{s}(M)$, is called the *natural map* of $Spec^{s}(M)$ [5].

Theorem 2.5. Let M be an R-module and N be a quasi 2-absorbing second submodule of M. Then we have the following.

- (a) IN is a quasi 2-absorbing second submodules of M for all ideals I of R with $I \not\subseteq Ann_R(N)$.
- (b) If I is an ideal of R, then $Ann_R(I^nN) = Ann_R(I^{n+1}N)$, for all $n \ge 2$.
- (c) If the natural map ϕ of $Spec^{s}(N)$ is surjective, then sec(N) is a quasi 2-absorbing second submodule of M.

Proof. (a) Let I be an ideal of R with $I \not\subseteq Ann_R(N)$. Then $Ann_R(IN)$ is a proper ideal of R. Now let $a, b, c \in R$ and abcIN = 0. Then acN = 0 or cbIN = 0 or abIN = 0. If cbIN = 0 or abIN = 0, then we are done. If acN = 0, then $Ann_R(N) \subseteq Ann_R(IN)$ implies that acIN = 0, as needed.

(b) It is enough to show that $Ann_R(I^2N) = Ann_R(I^3N)$. It is clear that $Ann_R(I^2N) \subseteq Ann_R(I^3N)$. Since N is quasi 2-absorbing second submodule, $Ann_R(I^3N)I^3N = 0$ implies that $Ann_R(I^3N)I^2N = 0$ or $I^2N = 0$. If $Ann_R(I^3N)I^2N = 0$, then $Ann_R(I^3N) \subseteq Ann_R(I^2N)$. If $I^2N = 0$, then $Ann_R(I^2N) = R = Ann_R(I^3N)$.

(c) Let the natural map ϕ of $Spec^{s}(N)$ be surjective. Then $Ann_{R}(sec(N)) = \sqrt{Ann_{R}(N)}$ by [6, 2.9]. Now the result follows from the fact that $\sqrt{Ann_{R}(N)}$ is a 2-absorbing ideal of R by [8, 2.1].

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [10].

Corollary 2.6. Let M be a multiplication quasi 2-absorbing second R-module. Then every non-zero submodule of M is a quasi 2-absorbing second module.

Proof. This follows from Theorem 2.5 (a).

Corollary 2.7. If R is a quasi 2-absorbing second R-module, then $Ann_R(I)$ is a 2-absorbing ideal of R for each non-zero ideal I of R.

Proof. This follows from Corollary 2.6.

Proposition 2.8. Let M be an R-module and $\{K_i\}_{i \in I}$ be a chain of quasi 2-absorbing second submodules of M. Then $\bigcup_{i \in I} K_i$ is a quasi 2-absorbing second submodule of M.

Proof. Clearly, $Ann_R(\bigcup_{i\in I}K_i) \neq R$. Let $a, b, c \in R$ and $abc \in Ann_R(\bigcup_{i\in I}K_i) = \bigcap_{i\in I}Ann_R(K_i)$. Assume contrary that $ab \notin \bigcap_{i\in I}Ann_R(K_i)$, $bc \notin \bigcap_{i\in I}Ann_R(K_i)$, and $ac \notin \bigcap_{i\in I}Ann_R(K_i)$. Then there are $m, n, t \in I$ where $ab \notin Ann_R(K_n)$, $bc \notin Ann_R(K_m)$, and $ac \notin Ann_R(K_t)$. Since $\{K_i\}_{i\in I}$ is a chain, we can assume that $K_m \subseteq K_n \subseteq K_t$. Then $Ann_R(K_t) \subseteq Ann_R(K_n) \subseteq Ann_R(K_m)$. As $abc \in Ann_R(K_t)$ and K_t is a quasi 2-absorbing second module, we have $ab \in Ann_R(K_t)$ or $ac \in Ann_R(K_t)$ or $bc \in Ann_R(K_t)$. In any cases, we have a contradiction.

Definition 2.9. We say that a quasi 2-absorbing second submodule N of an R-module M is a maximal quasi 2-absorbing second submodule of a submodule K of M, if $N \subseteq K$ and there does not exist a quasi 2-absorbing second submodule T of M such that $N \subset T \subset K$.

Lemma 2.10. Let M be an R-module. Then every quasi 2-absorbing second submodule of M is contained in a maximal quasi 2-absorbing second submodule of M.

Proof. This is proved easily by using Zorn's Lemma and Proposition 2.8.

Theorem 2.11. Every Artinian R-module M has only a finite number of maximal quasi 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has an infinite number of maximal quasi 2-absorbing second submodules. Let S be a submodule of M chosen minimal such that S has an infinite number of maximal quasi 2-absorbing second submodules. Then S is not a quasi 2-absorbing second submodule. Thus there exist $a, b, c \in R$ such that abcS = 0 but $abS \neq 0$, $acS \neq 0$, and $bcS \neq 0$. Let V be a maximal quasi 2-absorbing second submodule of Mcontained in S. Then abV = 0 or acV = 0 or bcV = 0. Thus $V \subseteq (0 :_M ab)$ or $V \subseteq (0 :_M ac)$ or $V \subseteq (0 :_M bc)$. Therefore, $V \subseteq (0 :_S ab)$ or $V \subseteq (0 :_S ac)$, and $(0 :_S bc)$ have only finitely many maximal quasi 2-absorbing second submodules. Therefore, there is only a finite number of possibilities for the module S, which is a contradiction.

Proposition 2.12. Let M be a comultiplication R-module, $N \subset K$ be two submodules of M, and K be a quasi 2-absorbing second submodule of M. Then K/Nis a quasi 2-absorbing second submodule of M/N.

Proof. Let $a, b, c \in R$ such that abc(K/N) = 0. Then $abcK \subseteq N$ and so that $Ann_R(N)abcK = 0$. Thus $Ann_R(N)abK = 0$ or $Ann_R(N)acK = 0$ or bcK = 0. If bcK = 0, then bc(K/N) = 0 and we are done. If $Ann_R(N)abK = 0$ or $Ann_R(N)acK = 0$, then $abK \subseteq (0 :_M Ann_R(N))$ or $acK \subseteq (0 :_M Ann_R(N))$. Now as M is a comultiplication module, $N = (0 :_M Ann_R(N))$ and the result follows from this. □

The following example shows that the condition M is a "comultiplication R-module" in Proposition 2.12 can not be omitted.

Example 2.13. The \mathbb{Z} -module \mathbb{Z} is a quasi 2-absorbing second module which is not a comultiplication \mathbb{Z} -module and $12\mathbb{Z} \subset \mathbb{Z}$. But $\mathbb{Z}/\mathbb{H} \not\models \mathbb{Z}$ is not a quasi 2-absorbing second module.

Recall that Z(R) denotes the set of zero divisors of R.

Proposition 2.14. Let M be a finitely generated R-module and S be a multiplicatively closed subset of R. If M is a quasi 2-absorbing second module and $Ann_R(M) \cap S = \emptyset$, then $S^{-1}M$ is a quasi 2-absorbing second $S^{-1}R$ -module. Furthermore, if $S^{-1}M$ is a quasi 2-absorbing second $S^{-1}R$ -module and $S \cap Z(R/Ann_R(M)) = \emptyset$, then M is a quasi 2-absorbing second module.

Proof. As M is a finitely generated R-module, $Ann_{S^{-1}R}(S^{-1}M) = S^{-1}(Ann_R(M))$ by [18, 9.12]. Now the result follows from [16, 1.3].

Proposition 2.15. Let $f: M \to M$ be a monomorphism of R-modules. Then N is a quasi 2-absorbing second module if and only if f(N) is a quasi 2-absorbing second module.

Proof. This follows from the fact that $Ann_R(N) = Ann_R(f(N))$.

Theorem 2.16. Let E be an injective cogenerator of R and let N be a submodule of an R-module M. Then $Ann_R(M/N)$ is a 2-absorbing ideal of R if and only if $Hom_R(M/N, E)$ is a quasi 2-absorbing second module.

Proof. Since E is an injective cogenerator of R, $Ann_R(M/N) \neq R$ if and only if $Ann_R(Hom_R(M/N, E)) \neq R$. Now let $Ann_R(M/N)$ be a 2-absorbing ideal of R and $a, b, c \in R$ such that $abc \in Ann_R(Hom_R(M/N, E))$. Then by using [1, 3.13 (a)], we have $Hom_R(M/(N :_M abc), E) = abcHom_R(M/N, E) = 0$. Thus as E is an injective cogenerator of R, $M/(N :_M abc) = 0$. Hence $abc \in Ann_R(M/N)$. By assumption, we can assume that $ab \in Ann_R(M/N)$. This in turn implies that $ab \in Ann_R(Hom_R(M/N, E))$ as needed. The proof of sufficiency is similar. \Box

Lemma 2.17. [2, 3.3] Let S be a submodule of a comultiplication R-module M. Then S is a second submodule if and only if $Ann_R(S)$ is a prime ideal of R.

Let R_i be a commutative ring with identity and M_i be an R_i -module for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.18. Let $R = R_1 \times R_2$ be a decomposable ring and let $M = M_1 \times M_2$ be an *R*-module, where M_1 is a comultiplication R_1 -module and M_2 is a comultiplication R_2 -module. Suppose that $N = N_1 \times N_2$ is a non-zero submodule of M. Then the following conditions are equivalent:

- (a) N is a quasi 2-absorbing second submodule of M;
- (b) Either N₁ = 0 and N₂ is a quasi 2-absorbing second submodule of M₂ or N₂ = 0 and N₁ is a quasi 2-absorbing second submodule of M₁ or N₁, N₂ are second submodules of M₁, M₂, respectively.

Proof. Since $Ann_R(N) = Ann_{R_1}(N_1) \times Ann_{R_2}(N_2)$, the result follows from [16, 1.2] and Lemma 2.17.

Theorem 2.19. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \cdots \times M_n$ be an *R*-module, where for every $1 \le i \le n$, M_i is a comultiplication R_i -module, respectively. Then for a non-zero submodule *N* of *M* the following conditions are equivalent:

(a) N is a quasi 2-absorbing second submodule of M;

(b) Either N = ×ⁿ_{i=1}N_i such that for some k ∈ {1,2,...,n}, N_k is a quasi 2-absorbing second submodule of M_k, and N_i = 0 for every i ∈ {1,2,...,n} \ {k} or N = ×ⁿ_{i=1}N_i such that for some k, m ∈ {1,2,...,n}, N_k is a second submodule of M_k, N_m is a second submodule of M_m, and N_i = 0 for every i ∈ {1,2,...,n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 2.18. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 2.18, N is a quasi 2-absorbing second submodule of M if and only if either $N = L \times 0$ for some quasi 2-absorbing second submodule L of K or $N = 0 \times L_n$ for some quasi 2-absorbing second submodule L_n of M_n or $N = L \times L_n$ for some second submodule L of K and some second submodule L_n of M_n . Note that a non-zero submodule L of K is a second submodule of K if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, ..., n - 1\}$, N_k is a second submodule of M_k , and $N_i = 0$ for every $i \in \{1, 2, ..., n - 1\} \setminus \{k\}$. Consequently we reach the claim.

Acknowledgments. The authors would like to thank the referees for their valuable comments and suggestions.

References

- Ansari-Toroghy, H. and Farshadifar, F., The dual notion of some generalizations of prime submodules, *Comm. Algebra*, 39 (2011), 2396-2416.
- [2] Ansari-Toroghy, H. and Farshadifar, F., The dual notion of multiplication modules, *Taiwanese J. Math.* 11 (4) (2007), 1189–1201.
- [3] Ansari-Toroghy, H. and Farshadifar, F. On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109-1116.
- [4] Ansari-Toroghy, H. and Farshadifar, F., On the dual notion of prime submodules (II), Mediterr. J. Math. 9 (2) (2012), 329-338.
- [5] Ansari-Toroghy, H. and Farshadifar, F., The Zariski topology on the second spectrum of a module, *Algebra Colloq.* 21 (04) (2014), 671-688.
- [6] Ansari-Toroghy, H. and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math. 6 (2) (2013), 1350024 (11 pages).
- [7] Ansari-Toroghy, H. and Farshadifar, F., Some generalizations of second submodules, *Palestine Journal of Mathematics*, to appear.
- [8] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
- Badawi, A., Tekir, U. and Yetkin, E., On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (4) (2014), 1163?1173.
- [10] Barnard, A., Multiplication modules, J. Algebra 71 (1981), 174-178.
- [11] Ceken, S., Alkan, M. and Smith, P.F., Second modules over noncommutative rings, Comm. Algebra, 41(1) (2013), 83-98.
- [12] Ceken, S., Alkan, M. and Smith, P.F., The dual notion of the prime radical of a module, J. Algebra 392 (2013), 265-275.
- [13] Darani, A. Y. and Soheilnia, F., 2-absorbing and weakly 2-absorbing submoduels, *Thai J. Math.* 9(3) (2011), 577–584.
- [14] Dauns, J., Prime submodules, J. Reine Angew. Math. 298 (1978), 156-181.

- [15] Fuchs, L., Heinzer, W. and Olberding, B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, *Lect. Notes Pure Appl. Math.* 249 (2006), 121–145.
- [16] Payrovi, Sh. and Babaei, S., On the 2-absorbing ideals, Int. Math. Forum 7 (2012), 265-271.
- [17] Payrovi, Sh. and Babaei, S., On 2-absorbing submodules, Algebra Collq., 19 (2012), 913-920.
- [18] Sharp, R. Y., Step in Commutative Algebra, Cambridge University Press, 1990.
- [19] Tekir, U., Koc, S. Oral, K.H. and Shum, K.P., On 2-absorbing quasi-primary ideals in commutative rings, *Communications in Mathematics and Statistics*, 4 (1) (2016), 55-62.
- [20] Yassemi, S., The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273–278. Current address: H. Ansari-Toroghy: Department of pure Mathematics, Faculty of mathemat-

ical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran. E-mail address: ansari@guilan.ac.ir

ORCID Address: http://orcid.org/0000-0001-7310-0924

Current address: F. Farshadifar (Corresponding Author): Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.

E-mail address: f.farshadifar@cfu.ac.ir

ORCID Address: http://orcid.org/0000-0001-7600-994X