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QUASI 2-ABSORBING SECOND MODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. In this paper, we will introduce the notion of quasi 2-absorbing
second modules over a commutative ring and obtain some basic properties of
this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and “⊂"
will denote the strict inclusion. Further, Z will denote the ring of integers.
Let M be an R-module. A proper submodule P of M is said to be prime if

for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M)
[14]. A non-zero submodule S of M is said to be second if for each a ∈ R, the
homomorphism S

a→ S is either surjective or zero [20]. More information about
this class of modules can be found in [3, 4, 5, 6, 11, 12]. A proper submodule N of
M is said to be completely irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of

submodules of M , implies that N = Ni for some i ∈ I [15].
The notion of 2-absorbing ideals as a generalization of prime ideals was intro-

duced and studied in [8]. Also, various generalizations of primary ideals are intro-
duced and studied in [9, 19]. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. The notion of 2-
absorbing ideals was extended to 2-absorbing submodules in [13] and [17]. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever abm ∈ N
for some a, b ∈ R and m ∈M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).
In [7], the authors introduced the dual notion of 2-absorbing submodules (that is,

2-absorbing (resp. strongly 2-absorbing) second submodules) of M and investigated
some properties of these classes of modules. A non-zero submodule N of M is
said to be a 2-absorbing second submodule of M if whenever a, b ∈ R, L is a
completely irreducible submodule of M , and abN ⊆ L, then aN ⊆ L or bN ⊆ L
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or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a strongly 2-
absorbing second submodule of M if whenever a, b ∈ R, K is a submodule of M ,
and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).
The purpose of this paper is to introduce the concepts of quasi 2-absorbing

second modules as a generalization of strongly 2-absorbing second modules and
obtain some related results.

2. Main results

Definition 2.1. We say that a non-zero R-moduleM is a quasi 2-absorbing second
module if AnnR(M) is a 2-absorbing ideal of R.

By a quasi 2-absorbing second submodule of a module we mean a submodule
which is a quasi 2-absorbing second module.

Example 2.2. By [7, 3.5] every strongly 2-absorbing second module is a quasi
2-absorbing second module. But the converse is not true in general. For example,
every submodule of the Z-module Z is a quasi 2-absorbing second module which is
not a strongly 2-absorbing second module.

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [2].

Proposition 2.3. Let M be a comultiplication R-module. Then a submodule N
of M is a strongly 2-absorbing second submodule of M if and only if it is a quasi
2-absorbing second submodule of M .

Proof. This follows from [7, 3.5] and [7, 3.10]. �
Proposition 2.4. Let M be an R-module and N1, N2 be two submodules of M
with AnnR(N1) and AnnR(N2) prime ideals of R. Then N1 + N2 is a quasi 2-
absorbing second submodule of M .

Proof. Since AnnR(N1 + N2) = AnnR(N1) ∩ AnnR(N2), the result follows from
[8]. �
For a submodule N of an R-module M the the second radical (or second socle)

of N is defined as the sum of all second submodules of M contained in N and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0) (see [12] and [3]).
The set of all second submodules of an R-moduleM is called the second spectrum

of M and denoted by Specs(M). The map φ : Specs(M) → Spec(R/AnnR(M))
defined by φ(S) = AnnR(S)/AnnR(M) for every S ∈ Specs(M), is called the
natural map of Specs(M) [5].

Theorem 2.5. Let M be an R-module and N be a quasi 2-absorbing second sub-
module of M . Then we have the following.
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(a) IN is a quasi 2-absorbing second submodules of M for all ideals I of R with
I 6⊆ AnnR(N).

(b) If I is an ideal of R, then AnnR(InN) = AnnR(In+1N), for all n ≥ 2.
(c) If the natural map φ of Specs(N) is surjective, then sec(N) is a quasi

2-absorbing second submodule of M .

Proof. (a) Let I be an ideal of R with I 6⊆ AnnR(N). Then AnnR(IN) is a proper
ideal of R. Now let a, b, c ∈ R and abcIN = 0. Then acN = 0 or cbIN = 0
or abIN = 0. If cbIN = 0 or abIN = 0, then we are done. If acN = 0, then
AnnR(N) ⊆ AnnR(IN) implies that acIN = 0, as needed.
(b) It is enough to show that AnnR(I2N) = AnnR(I3N). It is clear that

AnnR(I2N) ⊆ AnnR(I3N). Since N is quasi 2-absorbing second submodule,
AnnR(I3N)I3N = 0 implies thatAnnR(I3N)I2N = 0 or I2N = 0. IfAnnR(I3N)I2N =
0, then AnnR(I3N) ⊆ AnnR(I2N). If I2N = 0, then AnnR(I2N) = R =
AnnR(I3N).
(c) Let the natural map φ of Specs(N) be surjective. Then AnnR(sec(N)) =√
AnnR(N) by [6, 2.9]. Now the result follows from the fact that

√
AnnR(N) is a

2-absorbing ideal of R by [8, 2.1]. �
An R-module M is said to be a multiplication module if for every submodule N

of M there exists an ideal I of R such that N = IM [10].

Corollary 2.6. Let M be a multiplication quasi 2-absorbing second R-module.
Then every non-zero submodule of M is a quasi 2-absorbing second module.

Proof. This follows from Theorem 2.5 (a). �
Corollary 2.7. If R is a quasi 2-absorbing second R-module, then AnnR(I) is a
2-absorbing ideal of R for each non-zero ideal I of R.

Proof. This follows from Corollary 2.6. �
Proposition 2.8. Let M be an R-module and {Ki}i∈I be a chain of quasi 2-
absorbing second submodules of M . Then ∪i∈IKi is a quasi 2-absorbing second
submodule of M .

Proof. Clearly, AnnR(∪i∈IKi) 6= R. Let a, b, c ∈ R and abc ∈ AnnR(∪i∈IKi) =
∩i∈IAnnR(Ki). Assume contrary that ab 6∈ ∩i∈IAnnR(Ki), bc 6∈ ∩i∈IAnnR(Ki),
and ac 6∈ ∩i∈IAnnR(Ki). Then there are m,n, t ∈ I where ab 6∈ AnnR(Kn),
bc 6∈ AnnR(Km), and ac 6∈ AnnR(Kt). Since {Ki}i∈I is a chain, we can assume
that Km ⊆ Kn ⊆ Kt. Then AnnR(Kt) ⊆ AnnR(Kn) ⊆ AnnR(Km). As abc ∈
AnnR(Kt) and Kt is a quasi 2-absorbing second module, we have ab ∈ AnnR(Kt)
or ac ∈ AnnR(Kt) or bc ∈ AnnR(Kt). In any cases, we have a contradiction. �
Definition 2.9. We say that a quasi 2-absorbing second submodule N of an R-
module M is a maximal quasi 2-absorbing second submodule of a submodule K of
M , if N ⊆ K and there does not exist a quasi 2-absorbing second submodule T of
M such that N ⊂ T ⊂ K.
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Lemma 2.10. Let M be an R-module. Then every quasi 2-absorbing second sub-
module of M is contained in a maximal quasi 2-absorbing second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.8. �

Theorem 2.11. Every Artinian R-module M has only a finite number of maximal
quasi 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has
an infinite number of maximal quasi 2-absorbing second submodules. Let S be a
submodule of M chosen minimal such that S has an infinite number of maximal
quasi 2-absorbing second submodules. Then S is not a quasi 2-absorbing second
submodule. Thus there exist a, b, c ∈ R such that abcS = 0 but abS 6= 0, acS 6= 0,
and bcS 6= 0. Let V be a maximal quasi 2-absorbing second submodule of M
contained in S. Then abV = 0 or acV = 0 or bcV = 0. Thus V ⊆ (0 :M ab)
or V ⊆ (0 :M ac) or V ⊆ (0 :M bc). Therefore, V ⊆ (0 :S ab) or V ⊆ (0 :S ac)
or V ⊆ (0 :S bc). By the choice of S, the modules (0 :S ab), (0 :S ac), and
(0 :S bc) have only finitely many maximal quasi 2-absorbing second submodules.
Therefore, there is only a finite number of possibilities for the module S, which is
a contradiction. �

Proposition 2.12. Let M be a comultiplication R-module, N ⊂ K be two sub-
modules of M , and K be a quasi 2-absorbing second submodule of M . Then K/N
is a quasi 2-absorbing second submodule of M/N .

Proof. Let a, b, c ∈ R such that abc(K/N) = 0. Then abcK ⊆ N and so that
AnnR(N)abcK = 0. Thus AnnR(N)abK = 0 or AnnR(N)acK = 0 or bcK =
0. If bcK = 0, then bc(K/N) = 0 and we are done. If AnnR(N)abK = 0 or
AnnR(N)acK = 0, then abK ⊆ (0 :M AnnR(N)) or acK ⊆ (0 :M AnnR(N)). Now
as M is a comultiplication module, N = (0 :M AnnR(N)) and the result follows
from this. �

The following example shows that the condition M is a “comultiplication R-
module" in Proposition 2.12 can not be omitted.

Example 2.13. The Z-module Z is a quasi 2-absorbing second module which is not
a comultiplication Z-module and 12Z ⊂ Z. But Z/12Z is not a quasi 2-absorbing
second module.

Recall that Z(R) denotes the set of zero divisors of R.

Proposition 2.14. LetM be a finitely generated R-module and S be a multiplica-
tively closed subset ofR. IfM is a quasi 2-absorbing second module andAnnR(M)∩
S = ∅, then S−1M is a quasi 2-absorbing second S−1R-module. Furthermore, if
S−1M is a quasi 2-absorbing second S−1R-module and S ∩ Z(R/AnnR(M)) = ∅,
then M is a quasi 2-absorbing second module.
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Proof. AsM is a finitely generated R-module, AnnS−1R(S−1M) = S−1(AnnR(M))
by [18, 9.12]. Now the result follows from [16, 1.3]. �

Proposition 2.15. Let f : M → Ḿ be a monomorphism of R-modules. Then
N is a quasi 2-absorbing second module if and only if f(N) is a quasi 2-absorbing
second module.

Proof. This follows from the fact that AnnR(N) = AnnR(f(N)). �

Theorem 2.16. Let E be an injective cogenerator of R and let N be a submodule
of an R-module M . Then AnnR(M/N) is a 2-absorbing ideal of R if and only if
HomR(M/N,E) is a quasi 2-absorbing second module.

Proof. Since E is an injective cogenerator of R, AnnR(M/N) 6= R if and only if
AnnR(HomR(M/N,E)) 6= R. Now let AnnR(M/N) be a 2-absorbing ideal of R
and a, b, c ∈ R such that abc ∈ AnnR(HomR(M/N,E)). Then by using [1, 3.13
(a)], we have HomR(M/(N :M abc), E) = abcHomR(M/N,E) = 0. Thus as E
is an injective cogenerator of R, M/(N :M abc) = 0. Hence abc ∈ AnnR(M/N).
By assumption, we can assume that ab ∈ AnnR(M/N). This in turn implies that
ab ∈ AnnR(HomR(M/N,E)) as needed. The proof of suffi ciency is similar. �

Lemma 2.17. [2, 3.3] Let S be a submodule of a comultiplication R-module M .
Then S is a second submodule if and only if AnnR(S) is a prime ideal of R.

Let Ri be a commutative ring with identity andMi be an Ri-module for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M
is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Theorem 2.18. Let R = R1 × R2 be a decomposable ring and let M = M1 ×M2

be an R-module, where M1 is a comultiplication R1-module and M2 is a comulti-
plication R2-module. Suppose that N = N1 × N2 is a non-zero submodule of M .
Then the following conditions are equivalent:

(a) N is a quasi 2-absorbing second submodule of M ;
(b) Either N1 = 0 and N2 is a quasi 2-absorbing second submodule of M2 or

N2 = 0 and N1 is a quasi 2-absorbing second submodule of M1 or N1, N2
are second submodules of M1, M2, respectively.

Proof. Since AnnR(N) = AnnR1(N1) × AnnR2(N2), the result follows from [16,
1.2] and Lemma 2.17. �

Theorem 2.19. Let R = R1 ×R2 × · · · ×Rn (2 ≤ n <∞) be a decomposable ring
and M = M1 ×M2 · · · ×Mn be an R-module, where for every 1 ≤ i ≤ n, Mi is a
comultiplication Ri-module, respectively. Then for a non-zero submodule N of M
the following conditions are equivalent:

(a) N is a quasi 2-absorbing second submodule of M ;
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(b) Either N = ×ni=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a quasi 2-
absorbing second submodule of Mk, and Ni = 0 for every i ∈ {1, 2, ..., n} \
{k} or N = ×ni=1Ni such that for some k,m ∈ {1, 2, ..., n}, Nk is a second
submodule of Mk, Nm is a second submodule of Mm, and Ni = 0 for every
i ∈ {1, 2, ..., n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 2.18. Now
let 3 ≤ n < ∞ and suppose that the result is valid when K = M1 × · · · ×Mn−1.
We show that the result holds when M = K × Mn. By Theorem 2.18, N is a
quasi 2-absorbing second submodule of M if and only if either N = L × 0 for
some quasi 2-absorbing second submodule L of K or N = 0 × Ln for some quasi
2-absorbing second submodule Ln ofMn or N = L×Ln for some second submodule
L of K and some second submodule Ln of Mn. Note that a non-zero submodule
L of K is a second submodule of K if and only if L = ×n−1i=1 Ni such that for
some k ∈ {1, 2, ..., n − 1}, Nk is a second submodule of Mk, and Ni = 0 for every
i ∈ {1, 2, ..., n− 1} \ {k}. Consequently we reach the claim. �
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