

Generalized (k, μ) -Space forms and Ricci solitons

D. L. Kiran Kumar, H. G. Nagaraja and Uppara Manjulamma

Abstract

In this paper, we study Ricci-semisymmetric and Ricci pseudo-symmetric generalized (k,μ) -space forms along with characterization of generalized (k,μ) -space forms satisfying the curvature conditions Q(g,S) = 0 and Q(S,R) = 0. Further, we study Ricci solitons in generalized (k,μ) -space forms and obtained some interesting results.

Keywords and 2010 Mathematics Subject Classification

Keywords: Generalized (k, μ) -Space form, Ricci-semisymmetric, Ricci pseudosymmetric, Ricci solitons, shrinking, expanding, steady.

MSC: 53D10, 53D15

Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bengaluru – 560 056, INDIA D. L. Kiran Kumar, H. G. Nagaraja, Uppara Manjulamma: kirankumar250791@gmail.com, hgnraj@yahoo.com, umanjula1@gmail.com Corresponding author: D. L. Kiran Kumar Article History: Received 19 December 2018; Accepted 30 January 2019

1. Introduction

In [1], the authors generalized the notion of Sasakian space form defined generalized Sasakian space form as a contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor *R* satisifies

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\},$$
(1)

for any vector fields X, Y, Z, where f_1, f_2, f_3 are smooth functions on M. As a generalization of the notion of (k, μ) -space form, Carriazo et al [4] introduced generalized (k, μ) -space form as a contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor R satisifies

$$R(X,Y)Z = f_{1}\{g(Y,Z)X - g(X,Z)Y\} + f_{2}\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_{3}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} + f_{4}\{g(Y,Z)hX - g(X,Z)hY + g(hY,Z)X - g(hX,Z)Y\} + f_{5}\{g(hY,Z)hX - g(hX,Z)hY + g(\phi hX,Z)\phi hY - g(\phi hY,Z)\phi hX\} + f_{6}\{\eta(X)\eta(Z)hY - \eta(Y)\eta(Z)hX + g(hX,Z)\eta(Y)\xi - g(hY,Z)\eta(X)\xi\},$$
(2)

where $f_1, f_2, f_3, f_4, f_5, f_6$ are smooth functions on M and $2h = L_{\xi}\phi$, L is the usual Lie derivative. They proved that the generalized Sasakian space form and the generalized (k, μ) -space form share some properties and identities in common. Further the authors established that the generalized (k, μ) -space forms reduce to generalized (k, μ) spaces for $k = f_1 - f_3$, $\mu = f_4 - f_6$ and to (k, μ) spaces greater than or equal to 5 with $k = -f_6$ and $\mu = 1 - f_6$. (k, μ) -space form have been studied widely by several authors like [3, 13, 7, 19, 18, 21, 23] and various others.

Let (M,g) be a Riemannian manifold with the Riemannian metric ∇ . A tensor field $F : \chi(M) \times \chi(M) \times \chi(M) \longrightarrow \chi(M)$ of type (1,3) is said to be curvature-like if it has the properties of *R*. For example, the tensor *R* given by

$$R(X,Y)Z = (X \wedge_A Y)Z = A(Y,Z)X - A(X,Z)Y,$$
(3)

where $X, Y, Z \in \chi(M), \chi(M)$ is the set of all differentiable vector fields on M, A is the symmetric (0,2)-tensor, R is the Riemannian curvature tensor of type (1,3) and ∇ is the Levi-Civita connection. For a (0,k)-tensor field $T, k \leq 1$, on (M,g), we define the tensor $R \cdot T$ and Q(g,T) by

$$(R(X,Y) \cdot T)(X_1, X_2, \dots, X_k) = -T(R(X,Y)X_1, X_2, X_3, \dots, X_k) - T(X_1, R(X,Y)X_2, X_3, \dots, X_k)$$

$$\dots - T(X_1, X_2, \dots, R(X,Y)X_k)$$
(4)

and

$$Q(g,T)(X_1, X_2, \dots, X_k, Y) = -T((X \land Y)X_1, X_2, X_3, \dots, X_k) - T(X_1, (X \land Y)X_2, X_3, \dots, X_k)$$

....., $-T(X_1, X_2, \dots, (X \land Y)X_k),$ (5)

respectively [24]. If the tensors $(R \cdot S)$ and Q(g, S) are linearly dependent, then *M* is called Ricci pseudo-symmetric [24]. Which is equivalent to

$$(R \cdot S) = fQ(g, S), \tag{6}$$

holding on the set $U_S = \{x \in M : S \neq 0 \text{ at } x\}$, where *f* is some function on U_S . Also if the tensors $R \cdot R$ and Q(S, R) are linearly dependent, then *M* is said to be Ricci generalized pseudo-symmetric [24]. This is equivalent to

$$R \cdot R = fQ(S,R). \tag{7}$$

In [12], Kowalczyk studied semi-Riemannian manifolds satisfying Q(S,R) = 0 and Q(g,S) = 0, where *S*, *R* are the Ricci tensor and curvature tensor respectively. De et al. [6, 14] studied Ricci pseudo-symmetric and Ricci generalized pseudo-symmetric P-sasakian manifolds and generalized (k, μ) -paracontact metric manifolds.

Ricci soliton, introduced by Hamilton [8] are natural generalizations of the Einstein metrics and is defined on a Riemannian manifold (M,g). A Ricci soliton (g,V,λ) defined on (M,g) as

$$(L_{Vg})(X,Y) + 2S(X,Y) + 2\lambda_g(X,Y) = 0,$$
(8)

where L_V denotes the Lie-derivative of Riemannian metric g along a vector field V, λ be a consant and X, Y are arbitrary vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that λ is negative, zero or positive respectively. Ricci solitons have been considered broadly with regards to contact geometry; we may refer to [22, 5, 20, 9, 16, 17, 15, 11] and references therein.

The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and generalized (k,μ) -space forms. Section 3 deals with the curvature conditions like Ricci-semisymmetric, Ricci pseudo-symmetric, Q(g,S) = 0 and Q(S,R) = 0 on generalized (k,μ) -space forms. Also we study Ricci solitons in generalized (k,μ) -space forms and obtained some interesting results.

2. Preliminaries

In this section, we recall some general definitions and fundamental equations are presented which will be utilized later. A (2n+1)-dimensional smooth manifold M is said to be contact if it has a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ on M. Given a contact 1-form η there always exists a unique vector field ξ such that $(d\eta)(\xi, X) = 0$. Polarization of $d\eta$ on the contact subbundle D (defined by D = 0), yields a Riemannian metric g and a (1,1)-tensor field ϕ such that

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad g(X,\xi) = \eta(X), \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \tag{9}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{10}$$

$$g(X,\phi Y) = d\eta(X,Y), \quad g(X,\phi Y) = -g(Y,\phi X), \tag{11}$$

for all vector fields *X*, *Y* on *M*. In a contact metric manifold, we characterize a (1,1) tensor field *h* by $h = \frac{1}{2}L_{\xi}\phi$, where *L* signifies the Lie differentiation. At this point *h* is symmetric and satisfies $h\phi = -\phi h$. Likewise we have $Tr \cdot h = Tr \cdot \phi h = 0$

and $h\xi = 0$.

Moreover, if ∇ signifies the Riemannian connection of *g*, then the following relation holds:

$$\nabla_X \xi = -\phi X - \phi h X. \tag{12}$$

In a (k, μ) -contact metric manifold the following relations hold [2] [10];

$$h^{2} = (k-1)\phi^{2}, \ k \le 1,$$
(13)

$$(\nabla_{Y}\phi)Y = q(Y+hY,Y)\xi - p(Y)(Y+hY)$$
(14)

$$(\nabla_X \phi) I = g(X + hX, I) \zeta - \eta(I) (X + hX),$$

$$(\nabla_X h) Y = [(1 - k)g(X, \phi Y) - g(X, \phi hY)] \xi$$

$$(11)$$

$$- \eta(Y)[(1-k)\phi X + \phi hX] - \mu \eta(X)\phi hY.$$
(15)

Also in a (2n+1)-dimensional generalized (k, μ) -space form, the following relations hold.

$$R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\} + (f_4 - f_6)\{\eta(Y)hX - \eta(X)hY\},$$
(16)

$$QX = \{2nf_1 + 3f_2 - f_3\}X + \{(2n-1)f_4 - f_6\}hX - \{3f_2 + (2n-1)f_3\}\eta(X)\xi,$$
(17)

$$S(X,Y) = \{2nf_1 + 3f_2 - f_3\}g(X,Y) + \{(2n-1)f_4 - f_6\}g(hX,Y)$$
(10)

$$- \{3f_2 + (2n-1)f_3\}\eta(X)\eta(Y), \tag{18}$$

$$S(X,\xi) = 2n(f_1 - f_3)\eta(X),$$

$$r = 2n\{(2n+1)f_1 + 3f_2 - 2f_3\},$$
(19)
(20)

where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of $M(f_1,...,f_6)$.

3. Generalized (k, μ) -Space forms and Ricci solitons

A generalized (k, μ) -space form is said to be Ricci-semisymmetric if its Ricci tensor *S* satisfies the condition $R \cdot S = 0$. Then we have

$$S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.$$
(21)

Taking $X = U = \xi$ in the equation (21), we get

$$S(R(\xi, Y)\xi, V) + S(\xi, R(\xi, Y)V) = 0.$$
 (22)

Using (16) and (19) in (22), we obtain

$$(f_1 - f_3) \{ 2n(f_1 - f_3)g(Y, V) - S(Y, V) \} + (f_4 - f_6) \{ 2n(f_1 - f_3)g(hY, V) - S(hY, V) \} = 0.$$
(23)

Replacing Y by hY in (23) and using (13), we get

$$(f_1 - f_3)\{2n(f_1 - f_3)g(hY, V) - S(hY, V)\} - (k-1)(f_4 - f_6)\{2n(f_1 - f_3)g(Y, V) - S(Y, V)\} = 0.$$
(24)

Eliminating g(hY, V) and S(hY, V) from (23) and (24), we get

$$\{(k-1)(f_4 - f_6)^2 + (f_1 - f_3)^2\}\{2n(f_1 - f_3)g(Y, V) - S(Y, V)\} = 0.$$
(25)

Now for k = 1, either $f_1 = f_3$ or $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$. On the other hand for k < 1, either $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$ or

$$(f_1 - f_3)^2 = (1 - k)(f_4 - f_6)^2.$$
⁽²⁶⁾

Then from (26), we have $f_1 = f_3$ implies $f_4 = f_6$. Thus from the above discussions we state the following:

Vol. 1, No. 1, 9-16, 2019

Theorem 1. If a (2n+1)-dimensional generalized (k,μ) -space form $M(f_1,\ldots,f_6)$ with $f_1 \neq f_3$ is Ricci-semisymmetric, then space form is an Einstein manifold.

Suppose the generalized (k, μ) -space form satisfying the curvature condition Q(S, R) = 0. Then we have

$$(X \wedge_S Y \cdot R)(U, V)W = 0.$$
⁽²⁷⁾

Using (7) in (27), we obtain

$$S(Y, R(U, V)W)X - S(X, R(U, V)W)Y - S(Y, U)R(X, V)W + S(X, U)R(Y, V)W - S(Y, V)R(U, X)W + S(X, V)R(U, Y)W - S(Y, W)R(U, V)X + S(X, W)R(U, V)Y = 0.$$
(28)

Replacing $X = U = \xi$ in (28), we get

$$S(Y, R(\xi, V)W)\xi - S(\xi, R(\xi, V)W)Y - S(Y, \xi)R(\xi, V)W + S(\xi, \xi)R(Y, V)W - S(Y, V)R(\xi, \xi)W + S(\xi, V)R(\xi, Y)W - S(Y, W)R(\xi, V)\xi + S(\xi, W)R(\xi, V)Y = 0.$$
(29)

Using (16) and (19) in (29), we obtain

$$-(f_{1} - f_{3})\eta(W)S(Y,V)\xi - (f_{4} - f_{6})\eta(W)S(Y,hV)\xi$$

$$-2n(f_{1} - f_{3})^{2}g(V,W)Y - 2n(f_{1} - f_{3})(f_{4} - f_{6})g(V,hW)Y$$

$$+2n(f_{1} - f_{3})R(Y,V)W + 2n(f_{1} - f_{3})^{2}g(Y,W)\eta(V)\xi$$

$$+2n(f_{1} - f_{3})(f_{4} - f_{6})g(Y,hW)\eta(V)\xi - (f_{1} - f_{3})S(Y,W)\eta(V)\xi$$

$$-2n(f_{1} - f_{3})(f_{4} - f_{6})\eta(V)\eta(W)hY + (f_{1} - f_{3})S(Y,W)V$$

$$+(f_{4} - f_{6})S(Y,W)hV + 2n(f_{1} - f_{3})^{2}g(V,Y)\eta(W)\xi$$

$$+2n(f_{1} - f_{3})(f_{4} - f_{6})g(V,hY)\eta(W)\xi = 0.$$

(30)

Taking inner product with Z, we obtain

$$-(f_{1} - f_{3})\eta(W)S(Y,V)\eta(Z) - (f_{4} - f_{6})\eta(W)S(Y,hV)\eta(Z) -2n(f_{1} - f_{3})^{2}g(V,W)g(Y,Z) - 2n(f_{1} - f_{3})(f_{4} - f_{6})g(V,hW)g(Y,Z) +2n(f_{1} - f_{3})g(R(Y,V)W,Z) + 2n(f_{1} - f_{3})^{2}g(Y,W)\eta(V)\eta(Z) +2n(f_{1} - f_{3})(f_{4} - f_{6})g(Y,hW)\eta(V)\eta(Z) - (f_{1} - f_{3})S(Y,W)\eta(V)\eta(Z) -2n(f_{1} - f_{3})(f_{4} - f_{6})\eta(V)\eta(W)g(hY,Z) + (f_{1} - f_{3})S(Y,W)g(V,Z) +(f_{4} - f_{6})S(Y,W)g(hV,Z) + 2n(f_{1} - f_{3})^{2}g(V,Y)\eta(W)\eta(Z) +2n(f_{1} - f_{3})(f_{4} - f_{6})g(V,hY)\eta(W)\eta(Z) = 0.$$
(31)

Let $\{e_i\}, i = 1, 2, 3, \dots, (2n + 1)$ be a local orthonormal basis in the tangent space $T_P M$ at each point $p \in M$. Taking $V = W = e_i$ in (31) and summing over $i = 1, 2, 3, \dots, (2n + 1)$, then we have

$$(2n+1)(f_1 - f_3)\{2n(f_1 - f_3)g(Y,Z) - S(Y,Z)\} + (f_4 - f_6)\{2n(f_1 - f_3)g(hY,Z) - S(hY,Z)\} = 0.$$
(32)

Replacing Y by hY in (32) and using (13), we get

$$(2n+1)(f_1 - f_3)\{2n(f_1 - f_3)g(hY, Z) - S(hY, Z)\} - (k-1)(f_4 - f_6)\{2n(f_1 - f_3)g(Y, Z) - S(Y, Z)\} = 0.$$
(33)

Multiplying (32) by $(2n+1)(f_1 - f_3)$ and (33) by $(f_4 - f_6)$ and subtracting from (32) to (33), we get

$$\{(k-1)(f_4 - f_6)^2 + (2n+1)^2(f_1 - f_3)^2\}\{2n(f_1 - f_3)g(Y, Z) - S(Y, Z)\} = 0.$$
(34)

Now for k = 1, either $f_1 = f_3$ or $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$. On the other hand for k < 1, either $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$ or

$$(2n+1)^2(f_1-f_3)^2 = (1-k)(f_4-f_6)^2.$$
(35)

Then from (35), we have $f_1 = f_3$ implies $f_4 = f_6$. Thus we can state the following:

Theorem 2. If a (2n+1)-dimensional generalized (k,μ) -space form $M(f_1,...,f_6)$ with $f_1 \neq f_3$ satisfying the condition Q(S,R) = 0, then the space form is an Einstein manifold.

Suppose, we consider Ricci pseudo-symmetric generalized (k, μ) -space form $M(f_1, \dots, f_6)$, that is, the manifold satisfying the curvature condition $R \cdot S = fQ(g, S)$, then we have from (6)

$$(R(X,Y) \cdot S)(U,V) = fQ(g,S)(X,Y;U,V),$$
(36)

which is equivalent to

$$(R(X,Y) \cdot S)(U,V) = f((X \wedge_g Y \cdot S)(U,V)).$$
(37)

Using (6) in (37), we get

$$-S(R(X,Y)U,V) - S(U,R(X,Y)V) = f\{-g(Y,U)S(X,V) + g(X,U)S(Y,V) - g(Y,V)S(U,X) + g(X,V)S(U,Y)\}.$$
(38)

Replacing $X = U = \xi$ in (38), we obtain

$$S(R(\xi,Y)\xi,V) + S(\xi,R(\xi,Y)V) = f\{g(Y,\xi)S(\xi,V) - g(\xi,\xi)S(Y,V) + g(Y,V)S(\xi,\xi) - g(\xi,V)S(\xi,Y)\}.$$
(39)

Using (9), (16) and (19) in (39), we get

$$(f_1 - f_3 - f) \{ 2n(f_1 - f_3)g(Y, V) - S(Y, V) \} + (f_4 - f_6) \{ 2n(f_1 - f_3)g(hY, V) - S(hY, V) \} = 0.$$
(40)

Replacing Y by hY in (40) and using (13), we get

$$(f_1 - f_3 - f) \{ 2n(f_1 - f_3)g(hY, V) - S(hY, V) \} - (k - 1)(f_4 - f_6) \{ 2n(f_1 - f_3)g(Y, V) - S(Y, V) \} = 0.$$
(41)

Multiplying (40) by $(f_1 - f_3 - f)$ and (41) by $(f_4 - f_6)$ and subtracting from (40) to (41), we obtain

$$\{(k-1)(f_4 - f_6)^2 + (f_1 - f_3 - f)^2\}\{2n(f_1 - f_3)g(Y, V) - S(Y, V)\} = 0.$$
(42)

Now for k = 1, either $f = f_1 - f_3$ or $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$. On the other hand for k < 1, either $S(Y,V) = 2n(f_1 - f_3)g(Y,V)$ or

$$(f_1 - f_3 - f)^2 = (1 - k)(f_4 - f_6)^2.$$
(43)

Then from (35), we have $f = f_1 - f_3$ implies $f_4 = f_6$. Thus we can state the following:

Theorem 3. A generalized (k,μ) -space form $M(f_1,\ldots,f_6)$ with $f_1 \neq f_3$ is Ricci pseudo-symmetric, then the space form is an *Einstein manifold*.

Suppose the generalized (k, μ) -space form satisfying the curvature condition Q(g, S) = 0. Then we have

$$(X \wedge_g Y \cdot S)(U, V) = 0. \tag{44}$$

Using (3) and (6) in (44), we get

$$-g(Y,U)S(X,V) + g(X,U)S(Y,V) - g(Y,V)S(U,X) + g(X,V)S(U,Y) = 0.$$
(45)

Taking $X = U = \xi$ in (45) and using (19) and (9), we obtain

$$S(Y,V) = 2n(f_1 - f_3)g(Y,V).$$
(46)

Thus we can state the following:

(47)

Theorem 4. If a (2n+1)-dimensional generalized (k,μ) -space form $M(f_1,\ldots,f_6)$ satisfying the condition Q(g,S) = 0, then the space form is either Ricci flat or an Einstein manifold.

Definition 5. A vector field V is said to be confirmal Killing vector field if it satisfies $L_V g = \rho g$, for some function ρ .

If the manifold admitting a Ricci solitons (g, V, λ) is an Einstein manifold then the vector field V is confirmal Killing. Now by substituting (46) in (8), we get

$$(L_{\mathbf{V}}g)(X,Y) = \rho g(X,Y).$$

Where $\rho = -2\{2n(f_1 - f_3) + \lambda\}$. i.e. *V* is confirmal Killing. This leads to the following:

Theorem 6. Let (g,V,λ) be a Ricci soliton in generalized (k,μ) -space form $M(f_1,\ldots,f_6)$. The potential vector field V is confirmal Killing if and only if Q(g,S) = 0, holds in M.

Proposition 7. Let (g, V, λ) be a Ricci soliton in generalized (k, μ) -space form $M(f_1, \dots, f_6)$ with $f_1 \neq f_3$ and $f_4 \neq f_6$. The potential vector field V is confirmal Killing if and only if the space form is Ricci-semisymmetric.

Proposition 8. Let (g, V, λ) be a Ricci soliton in generalized (k, μ) -space form $M(f_1, \dots, f_6)$ with $f \neq f_1 - f_3$ and $f_4 \neq f_6$. The potential vector field V is confirmal Killing if and only if the space form is Ricci pseudo-semisymmetric.

Proposition 9. Let (g, V, λ) be a Ricci soliton in generalized (k, μ) -space form $M(f_1, \dots, f_6)$ with $f_1 \neq f_3$ and $f_4 \neq f_6$. The potential vector field V is confirmal Killing if and only if Q(S, R) = 0, holds in M.

Suppose that a generalized (k, μ) -space form $M(f_1, \dots, f_6)$, admits a Ricci soliton (g, V, λ) , then from (8), we have

$$g(\nabla_X V, Y) + g(X, \nabla_Y V) + 2S(X, Y) + 2\lambda g(X, Y) = 0.$$
(48)

Replacing $X = Y = \xi$ in (48), we get

$$2g(\nabla_{\xi}V,\xi) + 2S(\xi,\xi) + 2\lambda = 0. \tag{49}$$

If $V \perp \xi$, it provides $\eta(\nabla_X V) = g(\phi X + \phi h X, V)$. Hence $\eta(\nabla_\xi V) = 0$. Therefore on using (19) in (49), we obtain

$$\lambda = -2n(f_1 - f_3). \tag{50}$$

Hence we can state the following:

Theorem 10. A generalized (k, μ) -space form $M(f_1, \dots, f_6)$ admitting a Ricci soliton (g, V, λ) , where the potential vector field V is orthogonal to ξ is shrinking if $f_1 > f_3$, expanding if $f_1 < f_3$ or steady if $f_1 = f_3$.

Definition 11. A vector field V is called torse forming vector field if it satisfies $\nabla_X V = fX + \gamma(X)V$, where f is a smooth function and γ is a 1-form.

From (48) and using (18), we can write

$$\nabla_X V = -\{2nf_1 + 3f_2 - f_3 + \lambda\} X - \{(2n-1)f_4 - f_6\} h X + \{3f_2 + (2n-1)f_3\} \eta(X) \xi.$$
(51)

If $(2n-1)f_4 = f_6$, then the vector field $V(=b\xi)$ is torse forming, where $f = -\{2nf_1+3f_2-f_3+\lambda\}, \gamma(X)$ is 1-form and $b = 3f_2 + (2n-1)f_3$. Thus not state the following:

Thus we state the following:

Theorem 12. A generalized (k,μ) -space form $M(f_1,\ldots,f_6)$ admitting a Ricci soliton (g,V,λ) , where the vector field V is collinear with ξ . Then the the vector field V is torse forming.

If the vector field V is torse forming vector field, then equation (48) becomes

$$2fg(X,Y) + \gamma(X)g(V,Y) + \gamma(Y)g(V,X) + 2S(X,Y) + 2\lambda g(X,Y) = 0.$$
(52)

Taking $Y = \xi$ in (52), we get

$$\{2f + 4n(f_1 - f_3) + 2\lambda\}\eta(X) + \gamma(\xi)g(V,X) + \gamma(X)\eta(V) = 0.$$
(53)

Replacing *X* by ξ in (53), we obtain

$$\lambda = -\{\eta(V)\gamma(\xi) + f + 2n(f_1 - f_3)\}.$$
(54)

If $f = -\eta(V)\gamma(\xi)$, then from (54), we get

$$\lambda = 2n(f_3 - f_1). \tag{55}$$

Thus we can state the following:

Theorem 13. If (g,V,λ) is a Ricci soliton in a generalized (k,μ) -space form $M(f_1,\ldots,f_6)$ and V is torse forming with $f = -\eta(V)\gamma(\xi)$, then the Ricci soliton is shrinking if $f_1 > f_3$, expanding if $f_1 < f_3$ or steady if $f_1 = f_3$.

4. Conclusions

Generalized (k,μ) -Space forms generalize the notion of (k,μ) -Space forms and generalized Sasakian space forms. Some semi-symmetry, Ricci pseudo symmetry on generalized (k,μ) -Space form leads to the Einstein condition. Further the potential vector field of a Ricci soliton in a generalized (k,μ) -Space form reduces to torse forming or conformal Killing under certain conditions.

References

- [1] Alegre P., Blair D. E. and Carriazo A., Generalized Sasakian-space-forms, Israel J. Math., 141: 157-183, 2004.
- [2] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer Verlag, New York, 509: 1-16, 1973.
- ^[3] Carriazo A. and Martin-Molina V., Generalized (k, μ) -space forms and D_a -homothetic deformations, Balkan Journal of Geometry and its Applications, 16(1): 37-47, 2011.
- [4] Carriazo A., Martin-Molina V. and Tripathi M.M., Generalized (k,μ)-space forms, Mediterr. J. Math., 10(2): 475-496, 2013.
- ^[5] De U. C. and Mandal K., Certain results on generalized (κ, μ)-contact metric manifolds, Journal of Geometry, 108: 611-621, 2017.
- [6] De U. C., Han Y. and Mandal K., On para-sasakian manifolds satisfying certain curvature conditions, Filomat, 31: 1941-1947, 2017.
- ^[7] Faghfouri M. and Ghaffarzadeh N., On doubly warped product submanifolds of generalized (κ, μ)-space forms, Afrika Matematika, 26(8): 1443-1455, 2015.
- ^[8] Hamilton R. S., The Ricci flow on surfaces, Contemporary Mathematics, 71: 237-261, 1988.
- ^[9] Hui S. K. and Chakraborty D., Ricci almost solitons on Concircular Ricci pseudosymmetric β -Kenmotsu manifolds, Hacettepe Journal of Mathematics and Statistics, 47: 579-587, 2018.
- ^[10] Jun J. B., Yildiz A. and De U. C., On ϕ -recurrent (k, μ) -contact metric manifolds, Bulletin of the Korean Mathematical Society, 45: 689-700, 2008.
- [11] Kiran Kumar D. L., Nagaraja H. G. and Venu K., D-homothetically deformed Kenmotsu metric as a Ricci soliton, Annales Mathematicae Silesianae, DOI: 10.2478/amsil-2018-0010, 2018.
- ^[12] Kowalczyk D., On some subclass of semi-symmetric manifolds, Soochow J. Math., 27: 445-461, 2001.
- ^[13] Laha B., *D*-Conformal curvature tensor in Generalized (k, μ) -space forms, Mathematical Combinatorics, 2: 43-51, 2017.
- ^[14] Makhal S. and De U. C., On pseudo-symmetry curvature conditions of generalized (k, μ) -paracontact metric manifolds, Konuralp Journal of Mathematics, 5: 239-247, 2017.
- [15] Nagaraja H. G. and Kiran Kumar D. L., *Ricci solitons in Kenmotsu manifolds under generalized D-conformal deformation*, Lobachevskii Journal of Mathematics, 40: 195-200, 2019.
- [16] Nagaraja H. G., Kiran Kumar D. L. and Prasad V. S., Ricci solitons on Kenmotsu manifolds under D-homothetic deformation, Khayyam J. Math., 4: 102-109, 2018.
- ^[17] Nagaraja H. G., Kiran Kumar D. L. and Prakasha D. G., D_a -homothetic deformation and Ricci solitons in (k, μ) -contact metric manifolds, Konuralp journal of mathematics, 6 pages, 2019.

- ^[18] Prakasha D.G., Hui S.K. and Mirji K., On 3-Dimensional Contact Metric Generalized (κ, μ)-Space Forms, International Journal of Mathematics and Mathematical Sciences, 6 pages, 2014.
- ^[19] Premalatha C.R. and Nagaraja H.G., Recurrent generalized (κ, μ)-space forms, Acta Universitatis Apulensis, 38: 95-108, 2014.
- ^[20] Shaikh A.A. and Mondal C.K., Some results in η -Ricci Soliton and gradient ρ -Einstein soliton in a complete Riemannian manifold, arXiv preprint arXiv:1808.04789, 2018.
- ^[21] Shanmukha B., Venkatesha and Vishnuvardhana S.V., Some results on generalized (κ, μ)-space forms, New Trends in Mathematical Sciences, 6: 48-56, 2018.
- ^[22] Sharma R., Certain results on K-contact and (k, μ) -contact manifolds, Journal of Geometry, 89(1): 138-147, 2008.
- ^[23] Shivaprasanna G.S., Some results on generalized (κ, μ)-space forms, International Journal of Scientific Engineering and Applied Science, 2: 184-191, 2016.
- [24] Verstraelen L., Comments on pseudo-symmetry in the sense of Ryszard Deszcz. Geometry and Topology of submanifolds, World Sci. Publication., 6: 199-209, 1994.