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Generalized (k, u)-Space forms and Ricci solitons
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Abstract

In this paper, we study Ricci-semisymmetric and Ricci pseudo-symmetric generalized (k, 1t)-space forms along
with characterization of generalized (k, u)-space forms satisfying the curvature conditions Q(g,S) = 0 and
O(S,R) = 0. Further, we study Ricci solitons in generalized (k, i)-space forms and obtained some interesting
results.

Keywords and 2010 Mathematics Subject Classification

Keywords: Generalized (k, 1 )-Space form, Ricci-semisymmetric, Ricci pseudosymmetric, Ricci solitons, shrinking,
expanding, steady.

MSC: 53D10, 53D15

Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bengaluru — 560 056, INDIA

D. L. Kiran Kumar, H. G. Nagaraja, Uppara Manjulamma: kirankumar250791@gmail.com, hgnraj@yahoo.com, umanjulal@gmail.com
Corresponding author: D. L. Kiran Kumar

Article History: Received 19 December 2018; Accepted 30 January 2019

1. Introduction
In [1], the authors generalized the notion of Sasakian space form defined generalized Sasakian space form as a contact metric
manifold (M, ¢,&,1m,g) whose curvature tensor R satisifies

+ /2{8(X,92)9Y —g(Y,9Z)$X +2g(X,9Y)9Z} (M

+A{NE)NZ)Y —nY)N(Z2)X +¢(X,Z)n(Y)E —¢(Y,Z)n(X)5},
for any vector fields X,Y,Z, where fi, f>, f3 are smooth functions on M.

As a generalization of the notion of (k, it)-space form, Carriazo et al [4] introduced generalized (k, )-space form as a contact
metric manifold (M, ¢,&,n,g) whose curvature tensor R satisifies
R(X.Y)Z= fi{g(V.2)X —g(X.Z)Y}

+ H{8(X,02)9Y —g(Y,0Z)90X +2g(X, )97}

+A{NX)NZ)Y —nY)N(Z2)X +8X,Z)n(Y)s — (Y, Z)n(X)E}

+ fu{g(Y,Z)hX — g(X,Z)hY + g(hY,Z)X — g(hX,Z)Y }

+ fs{g(hY,Z)hX — g(hX,Z)hY + g(9hX,Z)phY — g(hY,Z)ohX }

+ fe{nX)N(Z)hY —n(Y)N(Z)hX + g(hX,Z)n(Y)E — g(hY,Z)n(X)E },
where f1, f2, f3, f, f5, f6 are smooth functions on M and 2h = Lg¢, L is the usual Lie derivative. They proved that the
generalized Sasakian space form and the generalized (k, i )-space form share some properties and identities in common. Further
the authors established that the generalized (k, 1 )-space forms reduce to generalized (k, i) spaces for k = fi — f3, L = fa— fs
and to (k, i) spaces greater than or equal to 5 with k = —fg and u = 1 — fg. (k, it)-space form have been studied widely by
several authors like [3, 13, 7, 19, 18, 21, 23] and various others.

Let (M, g) be a Riemannian manifold with the Riemannian metric V. A tensor field F : (M) x x(M) x x(M) — x(M) of
type (1,3) is said to be curvature-like if it has the properties of R. For example, the tensor R given by

@

RIX,Y)Z=(XNY)Z=A(Y,Z)X —A(X,Z)Y, 3)
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where X,Y,Z € x(M), x(M) is the set of all differentiable vector fields on M, A is the symmetric (0,2)-tensor, R is the
Riemannian curvature tensor of type (1,3) and V is the Levi-Civita connection. For a (0,k)-tensor field T, k < 1, on (M, g), we
define the tensor R- T and Q(g,T) by

(RX,Y) - T)(X1,X2, ... X)) = —T(R(X,Y)X1,X2, X3, ... X3) — T (X1,R(X,Y) X2, X3, ..., X)

...... —T(X1,Xp,....R(X,Y)Xp) @

and

Q(&T)(X],XQ, ..... 7X]C,Y) = —T((X/\Y)Xl,X27X37 ..... ,Xk)—T(Xl,(X/\Y)XQ,X37 ..... ,Xk) )
...... —T(X1, X2, ..., (X AY)Xi),
respectively [24]. If the tensors (R-S) and Q(g, S) are linearly dependent, then M is called Ricci pseudo-symmetric [24]. Which
is equivalent to

holding on the set Us = {x € M : S # 0 at x}, where f is some function on Us. Also if the tensors R - R and Q(S, R) are linearly
dependent, then M is said to be Ricci generalized pseudo-symmetric [24]. This is equivalent to

R-R=fQ(S.R). ©

In [12], Kowalczyk studied semi-Riemannian manifolds satisfying Q(S,R) = 0 and Q(g,S) = 0, where S, R are the Ricci tensor
and curvature tensor respectively. De et al. [6, 14] studied Ricci pseudo-symmetric and Ricci generalized pseudo-symmetric
P-sasakian manifolds and generalized (k, it )-paracontact metric manifolds.

Ricci soliton, introduced by Hamilton [8] are natural generalizations of the Einstein metrics and is defined on a Riemannian
manifold (M, g). A Ricci soliton (g,V, 1) defined on (M, g) as

where Ly denotes the Lie-derivative of Riemannian metric g along a vector field V, A be a consant and X,Y are arbitrary
vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that A is negative, zero or
positive respectively. Ricci solitons have been considered broadly with regards to contact geometry; we may refer to
[22, 5, 20,9, 16, 17, 15, 11] and references therein.

The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and generalized
(k, )-space forms. Section 3 deals with the curvature conditions like Ricci-semisymmetric, Ricci pseudo-symmetric, Q(g, S) =
0 and Q(S,R) = 0 on generalized (k, it)-space forms. Also we study Ricci solitons in generalized (k, 1t)-space forms and
obtained some interesting results.

2. Preliminaries

In this section, we recall some general definitions and fundamental equations are presented which will be utilized later. A
(2n+ 1)-dimensional smooth manifold M is said to be contact if it has a global 1-form 7 such that n A (d1)"” # 0 on M. Given
a contact 1-form 7 there always exists a unique vector field & such that (dn)(&,X) = 0. Polarization of dn on the contact
subbundle D (defined by D = 0), yields a Riemannian metric g and a (1, 1)-tensor field ¢ such that

8(9X,9Y) =g(X,Y) —n(X)n(Y), (10)
g(Xv(PY):dn(XvY)v g(X,(PY)ng(Y,(])X), (1)

for all vector fields X,Y on M. In a contact metric manifold, we characterize a (1, 1) tensor field 4 by h = %qu), where L
signifies the Lie differentiation. At this point £ is symmetric and satisfies h¢) = —¢h. Likewise we have Tr-h=Tr-¢h =0
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and hé = 0.
Moreover, if V signifies the Riemannian connection of g, then the following relation holds:

Vx& = —0X — ¢hX. (12)

In a (k, u)-contact metric manifold the following relations hold [2] [10];

o= (k—1)¢% k<1, (13)
(Vx9)Y = gX+hX,Y)E—n(Y)(X+hX), (14)
(Vxh)Y = [(1-k)g(X,9Y)—g(X,9hY)]&

= nM)[(1=k)oX + ohX]| — un(X)Phy. (15)

Also in a (2n+ 1)-dimensional generalized (k, it )-space form, the following relations hold.

RX.Y)E = (fi—-H){n)X-nX)}
+ (fa=fe){n(V)hX —n(X)hY}, (16)
0X = {2nfi+3fa—f}X+{2n—1)fa— fo}hX
{32+ @2n-1)f3in(X)E, (17)
SX,Y) = {2nfi+3f2—f3}8(X.Y) +{(2n—1)fs — fe}g(hX.Y)
- 3+Qn-1)fnX)n(Y), (18)
S(X,8) = 2n(fi—fi)nX), (19)
ro= 2n{(2n+1)fi +3f —2f}, (20)
where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M(fj....., fo).

3. Generalized (k,u)-Space forms and Ricci solitons

A generalized (k, it)-space form is said to be Ricci-semisymmetric if its Ricci tensor S satisfies the condition R- S = 0. Then
we have

S(R(X,Y)U,V)+S(U,R(X,Y)V) =0. 1)
Taking X = U = & in the equation (21), we get

S(R(E,Y)E,V)+S(E,R(E,Y)V)=0. (22)
Using (16) and (19) in (22), we obtain

(fi—f){2n(fi—f3)g(Y,V)=S(¥,V)}

23

(= fe) 2nfy — f)8(RY.V) ~ S(AY.V)} = . =
Replacing Y by hY in (23) and using (13), we get

(fi = ){2n(f1 — f3)g(hY,V) —S(hY,V)} (24)

—(k=1)(fa— fo){2n(f1 — f3)g(Y,V)=S(Y,V)} = 0.
Eliminating g(hY,V) and S(hY,V) from (23) and (24), we get
{(k=1)(fa—f6)>+ (fi = /)" H2n(fi — f3)g(Y,V) = S(¥,V)} = 0. (25)

Now for k = 1, either fi = f3 or S(Y,V) =2n(f1 — f3)g(Y,V).
On the other hand for k < 1, either S(Y,V) = 2n(f1 — f3)g(Y,V) or

(i—f) ==k (fa—fo) (26)

Then from (26), we have f| = f3 implies f1 = fs.
Thus from the above discussions we state the following:
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Theorem 1. Ifa (2n+ 1)-dimensional generalized (k,)-space form M(fi....., fo) with fi # f3 is Ricci-semisymmetric, then
space form is an Einstein manifold.

Suppose the generalized (k, it )-space form satisfying the curvature condition Q(S,R) = 0. Then we have
(XAsY-R)(U,V)W =0. (27)
Using (7) in (27), we obtain

S(Y,R(U,V)W)X —S(X,R(U,V)W)Y —S(Y,U)R(X,V)W
+S(X,U)R(Y,V)W = S(Y,V)R(U,X)W + S(X,V)R(U,Y)W (28)
—S(Y,W)R(U,V)X +S(X,W)R(U,V)Y =0.

—~

Replacing X = U = & in (28), we get

S(Y,R(E,VIW)E —S(E,R(E,VIW)Y —S(Y,5)R(E, V)W
+5(5,8)RY, V)W = S(Y,V)R (575)W+S(€ VIR(E, Y)W (29)
—S(Y,W)R(E, V)G +S(5,W)R(E, V)Y

Using (16) and (19) in (29), we obtain

—(A=ABINW)SY.V)E —(fa— fo)n(W)S(Y,hV)E

—2n(fi — f3)(V, W)Y = 2n(f1 — f3)(fa — f5)g(V, AW )Y

+2n(fi = HIRY,VIW +2n(fi — f3)°8(Y,W)n(V)E

+2n(fi — f5)(fa — fo)g(Y,hW)n (V)& — (fi — f3)S(Y, W)n(V)E (30)
=2n(fi — f5)(fa— fo)n(V)n(W)RY + (f1 — f5)S(Y, W)V
+(fa— fo)S(Y,W)RV +2n(fi — f3)*8(V.Y)n(W)&
+2n(fi = f3)(fa — fo)g(V,hY )n(W)& = 0.

Taking inner product with Z, we obtain

—(Ai=BINW)SY,VIN(Z) — (fa— fo)n(W)S(Y,hV)n(Z)

—2n(fi — f3)78(V,W)g(Y,Z) = 2n(fi — f3)(fa— f5)8(V, W )g(Y, Z)

+2n(fi — f3)g(R(Y, V)W, Z) +2n(fi — f3)*(Y,W)n(V)n(Z)

+2n(fi — f3)(fa — fo)g (Y, bW)n(V)n(Z) — (fi — f)SE,W)n(V)n(Z) G
=2n(fi = f3)(fa = fo)n(V)n(W)g(hY,Z) + (fi — f3)S(Y,W)g(V,Z)

+ (fa— fo)S(Y,W)g(hV,Z) +2n(fi — f3)*(V.Y)n(W)n(2)
+2n(fi — f3)(fa — f6)g(V.hY )n(W)n(Z) = 0.

Let {e;},i =1,2,3,........ ,(2n+ 1) be a local orthonormal basis in the tangent space TpM at each point p € M. Taking
V =W =¢; in (31) and summing over i = 1,23, ......... ,(2n+ 1), then we have

2n+ 1) (i = f5){2n(f1 = f3)8(Y,Z) = S(Y,Z)}

32
+ (fa — fo){2n(fi — f3)g(hY,Z) — S(hY,Z)} = (32)
Replacing Y by hY in (32) and using (13), we get

2n+1)(fi — ){2n(fi1 — f3)g(hY,Z) = S(hY,Z)}
— (k=1)(fa— fo){2n(fi — f3)e(Y,Z) = S(Y,Z)} = 0.

Multiplying (32) by (2n+ 1)(f1 — f3) and (33) by (f4 — fs) and subtracting from (32) to (33), we get

{(k=1)(fa—fo)? + @n+12(fi = f5)* H2n(fi — £3)8(Y.2) = S(¥,2)} = 0. (34)

(33)
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Now for k = 1, either f; = f3 or S(Y,V) =2n(f1 — f3)g(Y,V).
On the other hand for k < 1, either S(Y,V) = 2n(f; — f3)g(Y,V) or
@+ 12 (fi—f3)" = (1=k)(fa— fo)*. (35)

Then from (35), we have f| = f3 implies f1 = fs.
Thus we can state the following:

Theorem 2. If a (2n+ 1)-dimensional generalized (k,l)-space form M(fi....., f¢) with fi # f3 satisfying the condition
O(S,R) = 0, then the space form is an Einstein manifold.

Suppose, we consider Ricci pseudo-symmetric generalized (k, 1t)-space form M(fj....., fs), that is, the manifold satisfying
the curvature condition R-S = fQ(g,S), then we have from (6)

(R(X,Y)-S)(U,V) = f0O(g,5)(X,Y;U,V), (36)
which is equivalent to
(R(X,Y)-S)(U,V) = f((XNY-S)(U,V)). (37)
Using (6) in (37), we get
—S(R(X,Y)U,V) = S(U,R(X,Y)V) a8)
= f{—g(Y,U)S(X,V) +g(X,U)S(Y,V) —g(Y,V)S(U,X) +g(X,V)S(U,Y)}.
Replacing X = U = £ in (38), we obtain
S(R(E,Y)E.V)+S(E,R(E,Y)V)
= f{g(Y,8)S(E,V) —g(&,8)S(Y, V) +g(Y,V)S(E,8) —g(E,V)S(E,Y)}.
Using (9), (16) and (19) in (39), we get
(fi—=f=H{2n(fi - f)8(Y,V) = S(Y,V)}
+ (fa — fo){2n(fi — f3)g(hY,V) = S(hY,V)} = 0.
Replacing Y by AY in (40) and using (13), we get
(fi = 5= ){2n(fi — f3)8(hY,V) = S(hY,V)}
— (k=1)(fa— fo){2n(fi — f3)e(¥,V) = S(¥,V)} =0.
Multiplying (40) by (fi — f3 — f) and (41) by (f14 — fs) and subtracting from (40) to (41), we obtain
{(k=1)(fa = fo)* + (fi = 5= ) H2n(fi — f2)8(Y,V) = S(Y,V)} =0. (42)

Now for k = 1, either f = fi — f3 or S(Y,V) =2n(f1 — f3)g(¥,V).
On the other hand for k < 1, either S(Y,V) = 2n(f1 — f3)g(Y,V) or

(A=f=f)=0=k)(fa—fo) 43)

Then from (35), we have f = f; — f3 implies f1 = f5.
Thus we can state the following:

(39)

(40)

(41)

Theorem 3. A generalized (k,)-space form M(fi....., f¢) with fi # f3 is Ricci pseudo-symmetric, then the space form is an
Einstein manifold.

Suppose the generalized (k, it )-space form satisfying the curvature condition Q(g,S) = 0. Then we have

(X AgY-S)(U,V)=0. (44)
Using (3) and (6) in (44), we get

—g(Y, U)S(X,V)+¢g(X,U)S(Y,V)—g(Y,V)S(U,X)+g(X,V)S(U,Y) =0. (45)
Taking X = U = & in (45) and using (19) and (9), we obtain

S(Y,V)=2n(fi — f3)8(Y.V). (46)

Thus we can state the following:
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Theorem 4. If a (2n+ 1)-dimensional generalized (k,1)-space form M(fi....., f¢) satisfying the condition Q(g,S) = 0, then
the space form is either Ricci flat or an Einstein manifold.

Definition 5. A vector field V is said to be confirmal Killing vector field if it satisfies Lyvg = pg, for some function p.

If the manifold admitting a Ricci solitons (g,V, 1) is an Einstein manifold then the vector field V is confirmal Killing.
Now by substituting (46) in (8), we get

(ng)(X,Y):pg(X,Y). 47

Where p = —2{2n(f; — f3) + A}. i.e. V is confirmal Killing.
This leads to the following:

Theorem 6. Let (g,V,A) be a Ricci soliton in generalized (k,)-space form M(fi....., f¢). The potential vector field V is
confirmal Killing if and only if Q(g,S) = 0, holds in M.

Proposition 7. Let (g,V, ) be a Ricci soliton in generalized (k, lL)-space form M(fi....., fo) with fi # f3 and fa # fo. The
potential vector field V is confirmal Killing if and only if the space form is Ricci-semisymmetric.

Proposition 8. Let (g,V,A) be a Ricci soliton in generalized (k,)-space form M(fi....., f¢) with f # fi — f3 and f4 # fe.
The potential vector field V is confirmal Killing if and only if the space form is Ricci pseudo-semisymmetric.

Proposition 9. Let (g,V, 1) be a Ricci soliton in generalized (k,w)-space form M(fi....., fo) with fi # f3 and fa # fo. The
potential vector field V is confirmal Killing if and only if Q(S,R) = 0, holds in M.

Suppose that a generalized (k, t)-space form M(fi....., f), admits a Ricci soliton (g,V, 1), then from (8), we have
g(VxV,Y)+g(X,VyV)+25(X,Y) +2Ag(X,Y) = 0. (48)
Replacing X =Y = € in (48), we get
2g(VeV,E) +25(E,&) +24 =0. (49)
IfV L&, itprovides n(VxV) = g(¢X + @hX,V). Hence n(VeV) = 0. Therefore on using (19) in (49), we obtain

A ==2n(fi—f3). (50)
Hence we can state the following:

Theorem 10. A generalized (k, L)-space form M(fi....., f¢) admitting a Ricci soliton (g,V, L), where the potential vector field
V is orthogonal to & is shrinking if fi > f3, expanding if f| < f3 or steady if fi = f3.

Definition 11. A vector field V is called torse forming vector field if it satisfies VxV = fX + y(X)V, where f is a smooth
function and y is a 1—form.

From (48) and using (18), we can write

VxV =—{2nfi+3fa— 3+ A}X —{2n—1)fa— fo}hX + {32+ (2n—1)f3}n(X)&. (51)

If (2n— 1) f4 = f¢, then the vector field V (= b&) is torse forming, where f = —{2nf; +3f, — f3+A},y(X) is 1 —form and b =

3f2 + (2}’1 — l)f3.
Thus we state the following:

Theorem 12. A generalized (k,)-space form M(f....., f¢) admitting a Ricci soliton (g,V, 1), where the vector field V is
collinear with &. Then the the vector field V is torse forming.

If the vector field V is torse forming vector field, then equation (48) becomes
2f8(X,Y) +v(X)g(V,Y) +7(Y)g(V,X) +28(X,Y) +24g(X,Y) = 0. (52)
Taking Y = & in (52), we get

{2f +4n(fi— f3)+ 22 n(X) +¥(§)g(V.X) + y(X)n(V) = 0. (53)
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Replacing X by & in (53), we obtain

A=—{n(V)y&)+f+2n(fi—f3)} (54)
If f =—n(V)y(€), then from (54), we get
A =2n(f3— f1). (55

Thus we can state the following:

Theorem 13. If (g,V,A) is a Ricci soliton in a generalized (k,L)-space form M(fi.....,f¢) and V is torse forming with
f=-n(V)y(&), then the Ricci soliton is shrinking if f1 > f3, expanding if fi < f3 or steady if f| = f3.

4. Conclusions

Generalized (k, it)-Space forms generalize the notion of (k, i)-Space forms and generalized Sasakian space forms. Some
semi-symmetry, Ricci pseudo symmetry on generalized (k, it)-Space form leads to the Einstein condition. Further the potential
vector field of a Ricci soliton in a generalized (k, it)-Space form reduces to torse forming or conformal Killing under certain
conditions.
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