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Generalized (k,µ)-Space forms and Ricci solitons
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Abstract
In this paper, we study Ricci-semisymmetric and Ricci pseudo-symmetric generalized (k,µ)-space forms along
with characterization of generalized (k,µ)-space forms satisfying the curvature conditions Q(g,S) = 0 and
Q(S,R) = 0. Further, we study Ricci solitons in generalized (k,µ)-space forms and obtained some interesting
results.
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1. Introduction
In [1], the authors generalized the notion of Sasakian space form defined generalized Sasakian space form as a contact metric
manifold (M,φ ,ξ ,η ,g) whose curvature tensor R satisifies

R(X ,Y )Z = f1{g(Y,Z)X−g(X ,Z)Y}
+ f2{g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ}
+ f3{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ},

(1)

for any vector fields X ,Y,Z, where f1, f2, f3 are smooth functions on M.
As a generalization of the notion of (k,µ)-space form, Carriazo et al [4] introduced generalized (k,µ)-space form as a contact
metric manifold (M,φ ,ξ ,η ,g) whose curvature tensor R satisifies

R(X ,Y )Z = f1{g(Y,Z)X−g(X ,Z)Y}
+ f2{g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ}
+ f3{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ}
+ f4{g(Y,Z)hX−g(X ,Z)hY +g(hY,Z)X−g(hX ,Z)Y}
+ f5{g(hY,Z)hX−g(hX ,Z)hY +g(φhX ,Z)φhY −g(φhY,Z)φhX}
+ f6{η(X)η(Z)hY −η(Y )η(Z)hX +g(hX ,Z)η(Y )ξ −g(hY,Z)η(X)ξ},

(2)

where f1, f2, f3, f4, f5, f6 are smooth functions on M and 2h = Lξ φ , L is the usual Lie derivative. They proved that the
generalized Sasakian space form and the generalized (k,µ)-space form share some properties and identities in common. Further
the authors established that the generalized (k,µ)-space forms reduce to generalized (k,µ) spaces for k = f1− f3, µ = f4− f6
and to (k,µ) spaces greater than or equal to 5 with k =− f6 and µ = 1− f6. (k,µ)-space form have been studied widely by
several authors like [3, 13, 7, 19, 18, 21, 23] and various others.
Let (M,g) be a Riemannian manifold with the Riemannian metric ∇. A tensor field F : χ(M)×χ(M)×χ(M)−→ χ(M) of
type (1,3) is said to be curvature-like if it has the properties of R. For example, the tensor R given by

R(X ,Y )Z = (X ∧A Y )Z = A(Y,Z)X−A(X ,Z)Y, (3)



where X ,Y,Z ∈ χ(M),χ(M) is the set of all differentiable vector fields on M, A is the symmetric (0,2)-tensor, R is the
Riemannian curvature tensor of type (1,3) and ∇ is the Levi-Civita connection. For a (0,k)-tensor field T , k ≤ 1, on (M,g), we
define the tensor R ·T and Q(g,T ) by

(R(X ,Y ) ·T )(X1,X2, .....,Xk) =−T (R(X ,Y )X1,X2,X3, .....,Xk)−T (X1,R(X ,Y )X2,X3, .....,Xk)

......−T (X1,X2, .....,R(X ,Y )Xk)
(4)

and

Q(g,T )(X1,X2, .....,Xk,Y ) =−T ((X ∧Y )X1,X2,X3, .....,Xk)−T (X1,(X ∧Y )X2,X3, .....,Xk)

......−T (X1,X2, .....,(X ∧Y )Xk),
(5)

respectively [24]. If the tensors (R ·S) and Q(g,S) are linearly dependent, then M is called Ricci pseudo-symmetric [24]. Which
is equivalent to

(R ·S) = f Q(g,S), (6)

holding on the set US = {x ∈M : S 6= 0 at x}, where f is some function on US. Also if the tensors R ·R and Q(S,R) are linearly
dependent, then M is said to be Ricci generalized pseudo-symmetric [24]. This is equivalent to

R ·R = f Q(S,R). (7)

In [12], Kowalczyk studied semi-Riemannian manifolds satisfying Q(S,R) = 0 and Q(g,S) = 0, where S,R are the Ricci tensor
and curvature tensor respectively. De et al. [6, 14] studied Ricci pseudo-symmetric and Ricci generalized pseudo-symmetric
P-sasakian manifolds and generalized (k,µ)-paracontact metric manifolds.
Ricci soliton, introduced by Hamilton [8] are natural generalizations of the Einstein metrics and is defined on a Riemannian
manifold (M,g). A Ricci soliton (g,V,λ ) defined on (M,g) as

(LVg)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0, (8)

where LV denotes the Lie-derivative of Riemannian metric g along a vector field V , λ be a consant and X ,Y are arbitrary
vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that λ is negative, zero or
positive respectively. Ricci solitons have been considered broadly with regards to contact geometry; we may refer to
[22, 5, 20, 9, 16, 17, 15, 11] and references therein.

The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and generalized
(k,µ)-space forms. Section 3 deals with the curvature conditions like Ricci-semisymmetric, Ricci pseudo-symmetric, Q(g,S) =
0 and Q(S,R) = 0 on generalized (k,µ)-space forms. Also we study Ricci solitons in generalized (k,µ)-space forms and
obtained some interesting results.

2. Preliminaries
In this section, we recall some general definitions and fundamental equations are presented which will be utilized later. A
(2n+1)-dimensional smooth manifold M is said to be contact if it has a global 1-form η such that η ∧ (dη)n 6= 0 on M. Given
a contact 1-form η there always exists a unique vector field ξ such that (dη)(ξ ,X) = 0. Polarization of dη on the contact
subbundle D (defined by D = 0), yields a Riemannian metric g and a (1,1)-tensor field φ such that

φ
2X =−X +η(X)ξ , φξ = 0, g(X ,ξ ) = η(X), η(ξ ) = 1, η ◦φ = 0, (9)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (10)

g(X ,φY ) = dη(X ,Y ), g(X ,φY ) =−g(Y,φX), (11)

for all vector fields X ,Y on M. In a contact metric manifold, we characterize a (1,1) tensor field h by h = 1
2 Lξ φ , where L

signifies the Lie differentiation. At this point h is symmetric and satisfies hφ =−φh. Likewise we have Tr ·h = Tr ·φh = 0
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and hξ = 0.
Moreover, if ∇ signifies the Riemannian connection of g, then the following relation holds:

∇X ξ =−φX−φhX . (12)

In a (k,µ)-contact metric manifold the following relations hold [2] [10];

h2 = (k−1)φ 2, k ≤ 1, (13)
(∇X φ)Y = g(X +hX ,Y )ξ −η(Y )(X +hX), (14)
(∇X h)Y = [(1− k)g(X ,φY )−g(X ,φhY )]ξ

− η(Y )[(1− k)φX +φhX ]−µη(X)φhY. (15)

Also in a (2n+1)-dimensional generalized (k,µ)-space form, the following relations hold.

R(X ,Y )ξ = ( f1− f3){η(Y )X−η(X)Y}
+ ( f4− f6){η(Y )hX−η(X)hY}, (16)

QX = {2n f1 +3 f2− f3}X +{(2n−1) f4− f6}hX

− {3 f2 +(2n−1) f3}η(X)ξ , (17)
S(X ,Y ) = {2n f1 +3 f2− f3}g(X ,Y )+{(2n−1) f4− f6}g(hX ,Y )

− {3 f2 +(2n−1) f3}η(X)η(Y ), (18)
S(X ,ξ ) = 2n( f1− f3)η(X), (19)

r = 2n{(2n+1) f1 +3 f2−2 f3}, (20)

where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M( f1....., f6).

3. Generalized (k,µ)-Space forms and Ricci solitons

A generalized (k,µ)-space form is said to be Ricci-semisymmetric if its Ricci tensor S satisfies the condition R ·S = 0. Then
we have

S(R(X ,Y )U,V )+S(U,R(X ,Y )V ) = 0. (21)

Taking X =U = ξ in the equation (21), we get

S(R(ξ ,Y )ξ ,V )+S(ξ ,R(ξ ,Y )V ) = 0. (22)

Using (16) and (19) in (22), we obtain

( f1− f3){2n( f1− f3)g(Y,V )−S(Y,V )}
+( f4− f6){2n( f1− f3)g(hY,V )−S(hY,V )}= 0.

(23)

Replacing Y by hY in (23) and using (13), we get

( f1− f3){2n( f1− f3)g(hY,V )−S(hY,V )}
− (k−1)( f4− f6){2n( f1− f3)g(Y,V )−S(Y,V )}= 0.

(24)

Eliminating g(hY,V ) and S(hY,V ) from (23) and (24), we get

{(k−1)( f4− f6)
2 +( f1− f3)

2}{2n( f1− f3)g(Y,V )−S(Y,V )}= 0. (25)

Now for k = 1, either f1 = f3 or S(Y,V ) = 2n( f1− f3)g(Y,V ).
On the other hand for k < 1, either S(Y,V ) = 2n( f1− f3)g(Y,V ) or

( f1− f3)
2 = (1− k)( f4− f6)

2. (26)

Then from (26), we have f1 = f3 implies f4 = f6.
Thus from the above discussions we state the following:
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Theorem 1. If a (2n+1)-dimensional generalized (k,µ)-space form M( f1....., f6) with f1 6= f3 is Ricci-semisymmetric, then
space form is an Einstein manifold.

Suppose the generalized (k,µ)-space form satisfying the curvature condition Q(S,R) = 0. Then we have

(X ∧S Y ·R)(U,V )W = 0. (27)

Using (7) in (27), we obtain

S(Y,R(U,V )W )X−S(X ,R(U,V )W )Y −S(Y,U)R(X ,V )W

+S(X ,U)R(Y,V )W −S(Y,V )R(U,X)W +S(X ,V )R(U,Y )W

−S(Y,W )R(U,V )X +S(X ,W )R(U,V )Y = 0.
(28)

Replacing X =U = ξ in (28), we get

S(Y,R(ξ ,V )W )ξ −S(ξ ,R(ξ ,V )W )Y −S(Y,ξ )R(ξ ,V )W

+S(ξ ,ξ )R(Y,V )W −S(Y,V )R(ξ ,ξ )W +S(ξ ,V )R(ξ ,Y )W

−S(Y,W )R(ξ ,V )ξ +S(ξ ,W )R(ξ ,V )Y = 0.
(29)

Using (16) and (19) in (29), we obtain

− ( f1− f3)η(W )S(Y,V )ξ − ( f4− f6)η(W )S(Y,hV )ξ

−2n( f1− f3)
2g(V,W )Y −2n( f1− f3)( f4− f6)g(V,hW )Y

+2n( f1− f3)R(Y,V )W +2n( f1− f3)
2g(Y,W )η(V )ξ

+2n( f1− f3)( f4− f6)g(Y,hW )η(V )ξ − ( f1− f3)S(Y,W )η(V )ξ

−2n( f1− f3)( f4− f6)η(V )η(W )hY +( f1− f3)S(Y,W )V

+( f4− f6)S(Y,W )hV +2n( f1− f3)
2g(V,Y )η(W )ξ

+2n( f1− f3)( f4− f6)g(V,hY )η(W )ξ = 0.

(30)

Taking inner product with Z, we obtain

− ( f1− f3)η(W )S(Y,V )η(Z)− ( f4− f6)η(W )S(Y,hV )η(Z)

−2n( f1− f3)
2g(V,W )g(Y,Z)−2n( f1− f3)( f4− f6)g(V,hW )g(Y,Z)

+2n( f1− f3)g(R(Y,V )W,Z)+2n( f1− f3)
2g(Y,W )η(V )η(Z)

+2n( f1− f3)( f4− f6)g(Y,hW )η(V )η(Z)− ( f1− f3)S(Y,W )η(V )η(Z)

−2n( f1− f3)( f4− f6)η(V )η(W )g(hY,Z)+( f1− f3)S(Y,W )g(V,Z)

+( f4− f6)S(Y,W )g(hV,Z)+2n( f1− f3)
2g(V,Y )η(W )η(Z)

+2n( f1− f3)( f4− f6)g(V,hY )η(W )η(Z) = 0.

(31)

Let {ei}, i = 1,2,3, .........,(2n+ 1) be a local orthonormal basis in the tangent space TPM at each point p ∈ M. Taking
V =W = ei in (31) and summing over i = 1,2,3, .........,(2n+1), then we have

(2n+1)( f1− f3){2n( f1− f3)g(Y,Z)−S(Y,Z)}
+( f4− f6){2n( f1− f3)g(hY,Z)−S(hY,Z)}= 0.

(32)

Replacing Y by hY in (32) and using (13), we get

(2n+1)( f1− f3){2n( f1− f3)g(hY,Z)−S(hY,Z)}
− (k−1)( f4− f6){2n( f1− f3)g(Y,Z)−S(Y,Z)}= 0.

(33)

Multiplying (32) by (2n+1)( f1− f3) and (33) by ( f4− f6) and subtracting from (32) to (33), we get

{(k−1)( f4− f6)
2 +(2n+1)2( f1− f3)

2}{2n( f1− f3)g(Y,Z)−S(Y,Z)}= 0. (34)
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Now for k = 1, either f1 = f3 or S(Y,V ) = 2n( f1− f3)g(Y,V ).
On the other hand for k < 1, either S(Y,V ) = 2n( f1− f3)g(Y,V ) or

(2n+1)2( f1− f3)
2 = (1− k)( f4− f6)

2. (35)

Then from (35), we have f1 = f3 implies f4 = f6.
Thus we can state the following:

Theorem 2. If a (2n+ 1)-dimensional generalized (k,µ)-space form M( f1....., f6) with f1 6= f3 satisfying the condition
Q(S,R) = 0, then the space form is an Einstein manifold.

Suppose, we consider Ricci pseudo-symmetric generalized (k,µ)-space form M( f1....., f6), that is, the manifold satisfying
the curvature condition R ·S = f Q(g,S), then we have from (6)

(R(X ,Y ) ·S)(U,V ) = f Q(g,S)(X ,Y ;U,V ), (36)

which is equivalent to

(R(X ,Y ) ·S)(U,V ) = f ((X ∧g Y ·S)(U,V )). (37)

Using (6) in (37), we get

−S(R(X ,Y )U,V )−S(U,R(X ,Y )V )

= f{−g(Y,U)S(X ,V )+g(X ,U)S(Y,V )−g(Y,V )S(U,X)+g(X ,V )S(U,Y )}.
(38)

Replacing X =U = ξ in (38), we obtain

S(R(ξ ,Y )ξ ,V )+S(ξ ,R(ξ ,Y )V )

= f{g(Y,ξ )S(ξ ,V )−g(ξ ,ξ )S(Y,V )+g(Y,V )S(ξ ,ξ )−g(ξ ,V )S(ξ ,Y )}.
(39)

Using (9), (16) and (19) in (39), we get

( f1− f3− f ){2n( f1− f3)g(Y,V )−S(Y,V )}
+( f4− f6){2n( f1− f3)g(hY,V )−S(hY,V )}= 0.

(40)

Replacing Y by hY in (40) and using (13), we get

( f1− f3− f ){2n( f1− f3)g(hY,V )−S(hY,V )}
− (k−1)( f4− f6){2n( f1− f3)g(Y,V )−S(Y,V )}= 0.

(41)

Multiplying (40) by ( f1− f3− f ) and (41) by ( f4− f6) and subtracting from (40) to (41), we obtain

{(k−1)( f4− f6)
2 +( f1− f3− f )2}{2n( f1− f3)g(Y,V )−S(Y,V )}= 0. (42)

Now for k = 1, either f = f1− f3 or S(Y,V ) = 2n( f1− f3)g(Y,V ).
On the other hand for k < 1, either S(Y,V ) = 2n( f1− f3)g(Y,V ) or

( f1− f3− f )2 = (1− k)( f4− f6)
2. (43)

Then from (35), we have f = f1− f3 implies f4 = f6.
Thus we can state the following:

Theorem 3. A generalized (k,µ)-space form M( f1....., f6) with f1 6= f3 is Ricci pseudo-symmetric, then the space form is an
Einstein manifold.

Suppose the generalized (k,µ)-space form satisfying the curvature condition Q(g,S) = 0. Then we have

(X ∧g Y ·S)(U,V ) = 0. (44)

Using (3) and (6) in (44), we get

−g(Y,U)S(X ,V )+g(X ,U)S(Y,V )−g(Y,V )S(U,X)+g(X ,V )S(U,Y ) = 0. (45)

Taking X =U = ξ in (45) and using (19) and (9), we obtain

S(Y,V ) = 2n( f1− f3)g(Y,V ). (46)

Thus we can state the following:
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Theorem 4. If a (2n+1)-dimensional generalized (k,µ)-space form M( f1....., f6) satisfying the condition Q(g,S) = 0, then
the space form is either Ricci flat or an Einstein manifold.

Definition 5. A vector field V is said to be confirmal Killing vector field if it satisfies LVg = ρg, for some function ρ .

If the manifold admitting a Ricci solitons (g,V,λ ) is an Einstein manifold then the vector field V is confirmal Killing.
Now by substituting (46) in (8), we get

(LVg)(X ,Y ) = ρg(X ,Y ). (47)

Where ρ =−2{2n( f1− f3)+λ}. i.e. V is confirmal Killing.
This leads to the following:

Theorem 6. Let (g,V,λ ) be a Ricci soliton in generalized (k,µ)-space form M( f1....., f6). The potential vector field V is
confirmal Killing if and only if Q(g,S) = 0, holds in M.

Proposition 7. Let (g,V,λ ) be a Ricci soliton in generalized (k,µ)-space form M( f1....., f6) with f1 6= f3 and f4 6= f6. The
potential vector field V is confirmal Killing if and only if the space form is Ricci-semisymmetric.

Proposition 8. Let (g,V,λ ) be a Ricci soliton in generalized (k,µ)-space form M( f1....., f6) with f 6= f1− f3 and f4 6= f6.
The potential vector field V is confirmal Killing if and only if the space form is Ricci pseudo-semisymmetric.

Proposition 9. Let (g,V,λ ) be a Ricci soliton in generalized (k,µ)-space form M( f1....., f6) with f1 6= f3 and f4 6= f6. The
potential vector field V is confirmal Killing if and only if Q(S,R) = 0, holds in M.

Suppose that a generalized (k,µ)-space form M( f1....., f6), admits a Ricci soliton (g,V,λ ), then from (8), we have

g(∇XV,Y )+g(X ,∇YV )+2S(X ,Y )+2λg(X ,Y ) = 0. (48)

Replacing X = Y = ξ in (48), we get

2g(∇ξV,ξ )+2S(ξ ,ξ )+2λ = 0. (49)

If V ⊥ ξ , it provides η(∇XV ) = g(φX +φhX ,V ). Hence η(∇ξV ) = 0. Therefore on using (19) in (49), we obtain

λ =−2n( f1− f3). (50)

Hence we can state the following:

Theorem 10. A generalized (k,µ)-space form M( f1....., f6) admitting a Ricci soliton (g,V,λ ), where the potential vector field
V is orthogonal to ξ is shrinking if f1 > f3, expanding if f1 < f3 or steady if f1 = f3.

Definition 11. A vector field V is called torse forming vector field if it satisfies ∇XV = f X + γ(X)V , where f is a smooth
function and γ is a 1−form.

From (48) and using (18), we can write

∇XV =−{2n f1 +3 f2− f3 +λ}X−{(2n−1) f4− f6}hX +{3 f2 +(2n−1) f3}η(X)ξ . (51)

If (2n−1) f4 = f6, then the vector field V (= bξ ) is torse forming, where f =−{2n f1+3 f2− f3+λ},γ(X) is 1−form and b=
3 f2 +(2n−1) f3.
Thus we state the following:

Theorem 12. A generalized (k,µ)-space form M( f1....., f6) admitting a Ricci soliton (g,V,λ ), where the vector field V is
collinear with ξ . Then the the vector field V is torse forming.

If the vector field V is torse forming vector field, then equation (48) becomes

2 f g(X ,Y )+ γ(X)g(V,Y )+ γ(Y )g(V,X)+2S(X ,Y )+2λg(X ,Y ) = 0. (52)

Taking Y = ξ in (52), we get

{2 f +4n( f1− f3)+2λ}η(X)+ γ(ξ )g(V,X)+ γ(X)η(V ) = 0. (53)
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Replacing X by ξ in (53), we obtain

λ =−{η(V )γ(ξ )+ f +2n( f1− f3)}. (54)

If f =−η(V )γ(ξ ), then from (54), we get

λ = 2n( f3− f1). (55)

Thus we can state the following:

Theorem 13. If (g,V,λ ) is a Ricci soliton in a generalized (k,µ)-space form M( f1....., f6) and V is torse forming with
f =−η(V )γ(ξ ), then the Ricci soliton is shrinking if f1 > f3, expanding if f1 < f3 or steady if f1 = f3.

4. Conclusions
Generalized (k,µ)-Space forms generalize the notion of (k,µ)-Space forms and generalized Sasakian space forms. Some
semi-symmetry, Ricci pseudo symmetry on generalized (k,µ)-Space form leads to the Einstein condition. Further the potential
vector field of a Ricci soliton in a generalized (k,µ)-Space form reduces to torse forming or conformal Killing under certain
conditions.
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