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Abstract

In this study, simulated fault plane geodetic poiare analyzed by using spatial
statistics. The synthetic geodetic points are gateer to understand the basic spatial
structure of the fault plane because of the diff\cabout obtaining real data set. The
spatial statistics are applied to geodetic pointadavith three main items: (i) spatial
descriptive statistics, e.g. spatial mean (centeramCM), standard distance (SD),
standard deviational ellipse (SDE), (ii) spatial tign analyses, e.g. quadrat count
method, the nearest neighbor approach, (iii) sgafiatocorrelation, e.g. Moran’s |
index. It is seen from the application results thaatial autocorrelation should be taken
into consideration during the spatial analysis ebdetic point data to understand if the
surface displacements on the locations are cludterenot.

Keywords:Spatial point analysis, spatial descriptive sttitis, spatial pattern analysis,
fault plane, geodetic points.

Mekansal istatistiklerin bir uygulamasi: Simuleleds fay
dizlemine ilgkin jeodezik noktalarin mekansal analizi

Ozet

Bu calkmada, mekansal istatistikler kullanilarak simulalmds fay dizlemine gkin
jeodezik noktalar analiz edilgtir. Fay duzleminin temel mekansal yapisini anlamak
icin gercek verilerin elde edilmesinin zor olmasmdeniyle yapay jeodezik noktalar
uretilmistir. Mekansal istatistikler, jeodezik nokta verileg (¢ temel hdikta
uygulanmgtir. (i) mekansal betimsel istatistikler (mekanedalama, standart uzaklik,
standart sapmali elips), (i) mekansal 6rintl ama(kuadrat sayma yontemi, en yakin
konyuluk yaklaimi), (iii) mekansal otokorelasyon (Moran’ In Ideksi). Analiz
sonuclarindan, jeodezik nokta verilerine mekansahlia uygulanirken, ylzey yer
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desisimlerinin jeodezik noktalardaki konumunagbaolarak kiimelenip, kiimelenmgdi
anlamak icin mekansal otokorelasyonun dikkate adsingerekigi goruimdstir.

Anahtar kelimeler: Mekansal nokta analizi, mekansal betimsel ist&listj mekansal
oruntd analizi, fay duzlemi, jeodezik noktalar.

1. Introduction

The field of spatial statistics is a relatively nesea of development in statistical

researches and comprises a set of methods foriliegcand modeling spatial data. It is

very important to know about the structure of thatgl data related to phenomena that
occur in many areas, e.g. in health, in environmi@angeology, in astronomy, etc. The

data structures in spatial analysis can be catsgmiin three main items: (i) point data,

(i) line data, and (iii) area data. These are roftalled vector-based structures. The
point data structure is the most encountered orangrthe vector-based approaches.

The spatial point data is distinguished by obséwnmat that are obtained at spatial
locationsl,l,,....I, where thel, ,i =1,2,...n are coordinates in the plane or space. The

main idea is taking into account the spatial I@alon of the phenomena for
understanding the spatial distribution of the paillata. In order to obtain a useful
summary of spatial distribution, spatial descriptstatistics are used for point data. It is
well-known that the measures of center and disperare the most commonly used
descriptive measures. The spatial mean and stauliieshce with standard deviational
ellipse are used as spatial measures of the cetgralency and the dispersion,
respectively. Quadrat analysis and nearest neighieihod are the most used basic
approaches to analyze that if the spatial patgeotuistered, random, or uniform. Spatial
dependency is a key concept to understand theaspaiationship of the point data. The
spatial dependency is measured with the computaifospatial autocorrelation. The
spatial autocorrelation is a special case of aseproducts statistics and defines how
the spatial dependency varies by comparing theegabfi a sample and their neighbors.
Even there are several spatial autocorrelation, tmoé of the most popular metric is
Global Moran’sl which gives a single summary value that descrilbvesdegree of
spatial concentration or dispersion for the measweriable. The detailed information
about the spatial data structure and wide knowlealgeut spatial analysis can be
obtained from the books of [1-4].

Zimeras (2007) analyzed the spatial point pattetim®ugh spatial statistics to
understand if there is any pattern that might helpmake predictions about future
earthquakes [5]. Sarp et al. (2007) defined thatigeiships between earthquake
epicenters and faults and also predicted probalik $egments in the Northwest of the
Ankara province by using spatial pattern analy$is Ahmadi et al. (2013) applied
spatial pattern analysis methods to a seismic dai@og of earthquakes beneath the
Red Sea and aimed to explore global-local spatatems in the occurrence of
earthquakes [7]. al and Alevkayali (2013) aimed to detect clustersl @xplore
spatial patterns in the occurrence of earthquakeéld Egean Region in Turkey using
Geographical Information System (GIS) for the 12002 seismicity catalog with
event magnitudes larger than four [8]. Affan et(2016) applied spatial pattern analysis
to detect and to cluster spatial patterns of eadkegs in the western part of Samatra
Island during the period 1921-2014 using GIS [9krdke and Tgil (2016) detected
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clusters of earthquakes in Turkey for the 2005-284%hquakes data with the event of
magnitude larger from four by using spatial statss10]. Al-Dogom et al. (2018)
applied spatial pattern analysis to examine théiaeanporal occurrence of earthquake
throughout the Arabian plate and their effect anlmited Arab Emirates [11].

In this study, it is aimed to analyze the geodptimts of an earthquake fault plane area
by using spatial statistics since the earthqualidiet have a crucial role in the real

world. However, obtaining real data is difficult smany earth science problems. In
this case, simulation studies are preferred. Syictlgeeodetic points of a simulated

earthquake fault plane area is analyzed by usiagia@statistics, which are titled spatial

descriptive statistics, spatial point pattern asiglyand spatial autocorrelation metric.
The calculation results emphasized that analyziregg data set with considering the

spatial information gives realistic results accogdio the phenomena. The rest of the
paper is organized as follows: Section 2 givesfbnirmation about spatial statistics

for point data analyses. Fault plane structureefndd in Section 3. Simulated study is
given in Section 4 as an application. Sectioncéimposed with conclusion.

2. Fault plane structure

Prediction of earthquake occurence time is oné@fctucial real world problem among
many earth science problems. Estimation of fawdhelparameters play an important
role for determination of an earthquake occureimoe since an earthquake occurence
time can be defined by using fault plane paramdtE2si4]. In earthquake studies,
modeling of the surface displacements on the ¢sustally hard work. In order to get
the point data for surface displacements, the geobieations should be well-defined
according to the fault plane geometry. The fautirgetry in three dimensions can be
seen in Figure 1.
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Figure 1. The fault plane geometry.

In Figure 1, a pair of coordinates, denotec{zeos yo), can be considered as a geodetic

point. Let’s consider there are many geodetic goambund the fault plane. The surface
displacements, which are considered as the resp@hses, are calculated by using the
coordinates of geodetic points. Therefore, it isgiole to say that the locations of
geodetic points have importance for fault planeapeater estimation to predict

earthquake occurence time. The spatial structugeofletic points helps to analyze the
fault plane area. However, sometimes, it is hardbtain the real data. In this case, it is
better to follow simulation studies as an altenetivay of getting real data. From this
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perspective, in this study, an earthquake faulbelarea is simulated and synthetic
geodetic points are generated on the simulatetl ftarie area.

3. Spatial statistics for geodetic point data

A number of spatial statistics have been develdpachderstand the spatial structure of
point data. Several earlier works are given inlibhek of [4]. It is well-known that the
spatial patterns of a phenomena present fundamehtas about the nature of the
spatial structure of geodetic points. The spatiatrithution of the geodetic points is
priorly quantified by incorporating- andy- coordinates of the data structure. Then, it is
better to apply spatial descriptive statistics hderstand the basic spatial characteristics
of simulated fault plane area. For this purposeasugng centrality and dispersions of
geodetic points over the fault plane area shoulthken into consideration. The spatial
point pattern analysis gives a visualization ofdgt@ points in fault plane if the points
have uniform or random distribution or clusterecsiles, spatial autocorrelation of
geodetic points should be defined. The spatialssiz#, used for geodetic points, are
summarized briefly in below.

3.1. Spatial descriptive statistics

3.1.1. Spatial mean (Mean center)

The spatial mean (mean cend€) shows the central point of spatial distributiais
events. It provides the average value of geodetiotp for each of thex- andy-
coordinates [4]. It is obtained by separately sungmip the allX- and Y-values and
dividing by the total number of geodetic pointd@ows:

X v ): Zin=1xi ZiilYi

(XMC’YMC n n

(1)

where X; andY, , i=1,2,..n are the coordinates for geodetic poinand n is the
total number of geodetic points.

3.1.2. Standard distance

Standard distanceSP) measures the spatial spread or variations of gj@ngoints. It
also measures the extent to which geodetic porgsdespersed around thdC. The
mathematical formulation can be given as

n

Z(Xi—)_(MC)Zf (Yi__ﬁc)z
SD={[= . =1 : 2)

3.1.3. Standard deviational ellipse

Standard deviational ellips&DE) is used to identify distributional trends of getd
points. It is able to account for both distance andntation. In order to obtaiS8DE
spatial mean, angle of rotation from the poinMsZ, and standard deviations along the
x- andy- coordinates must be calculated [4]. The angleotdtion, ¢, is obtained as
follows:

84



BAUN Fen Bil. Enst. Dergisi, 21(1), 81-93, (2019)

(S S el o]
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where X/ andY, i=1,2,...n, are the deviations of andy- coordinates from th®IC,

calculated asX/= X — X, and Y'=Y- Y., respectively. The standard deviation
along thex-axis is given by

\/Zinl(xi' cost - Y' sin9)2

= 4
S, - (4)
and the standard deviation along ykaxis is given by
n - ’ 2
Zizl(xi'smﬁ—\(i 0039)
S = - - (5)

3.2. Spatial point pattern analysis

3.2.1. Quadrat count method

The quadrat count method determines the geodeiitt gistribution by examining its
density over the fault plane area. Analysis is Basesubquadrats (or grid cells) that are
constructed over a given fault plane area, denatsdl After defining the fault plane
area, the number of geodetic points per cell shbaldefined. Recall that count data is
often modeled by a Poisson distribution where #te parameterX() is also the mean
and variance of the distribution. The ratio of meannt and the sample variance of the
guadrat counts should be close to 1 in value if chents are Poisson distributed.
Deviations from 1 indicate deviations from spat@hdomness [4]. The main steps for
quadrat count method can be given below:

Step 1 Calculate the simulated fault plane aréa &dnd subquadrat area Y of A. The
formula for x is given as

2A
K=—om
n

(6)

wheren is the number of geodetic points.
Step 2By usingk, define the total number of quadrats, denoted mith

Step 3 Determine the variance of geodetic points datasiyg the following formula

2% (Xi-2)°
3 _izzll m-1 (7)
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where 4 is equal toﬂ and X;, i=1,2,...n, is the number of points in tlih quadrat.
m

Step 4 Compute the variance-mean ratiR,(, ) as follows:

Rm =—- ®)

Step 5 Interpret R,,, statistics. IfR,, is too small (less than 1), the geodetic points
appear more uniform than expected from a striclydom process. IR,, is too big

(greater than 1), the geodetic points are accuedil@agether which indicates the
clustering.

Step 6 Statistical hypothesis test is applied to see ithahe obtained result is
R —1

J2/(n-1)°

statistically meaningful or not through usititest, the test statistics ig =

with & nominal significance level.

3.2.2. The nearest neighbor approach

The nearest neighbor approach compares the distéet@een nearest geodetic points
and distances that would be expected on the bé&sikamce or simply measures the
distance between an individual geodetic point dachearest neighbor. The approach
computes the average distance between nearestboesglin a point distribution
(observed distance) and compares it to that okardtical pattern (expected distance)

[4].

Step 1 Calculate the simulated fault plane ardg &nd expected distance with the
formula

oo = )

exp 2\/ﬁ
A

wheren is the number of geodetic points.

Step 2 Derive the distance between each geodetic paidt its closest neighbor,
denoted asl, , i =1,2,...n.

Step 3 Determine the observed distance by using forrgidan below:

RIELY (10)
n

rob

Step 4 Compute the nearest neighbor ratio, denoted Rjfn, as follows:
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Ryy = 2. (11)

Step 5 Interpret R, statistics. IfRy, is equal to 1, the distribution of geodetic points
is perfectly random. IfR,, is equal to O, the distribution of geodetic poirgs
completely clustered, and R, is greater than 1, the distribution of geodetint®
tends toward uniformity. It should be noted hew the R, statistics has range from O
to 2.149.

Step 6 Statistical hypothesis test is applied to see ihahe obtained result is
statistically meaningful or not through using-test, the test statistics is

7 - robs_rexp
° 0.26136,n%/A

3.3. Spatial autocorrelation

Spatial autocorrelation has crucial role for the o$ statistical methods to analyze the
spatial data. Strong spatial autocorrelation mehatsthe surface displacements of the
geodetic points are strongly related (whether padit or negatively). Therefore, it
becomes possible to understand that how the spgmttedrns change from the past to
present or how the spatial patterns will changenfpsesent to the future [4]. The spatial
autocorrelation can also be analyzed from eithebajl or local perspective. The global
autocorrelation is a whole-map property to undextd the spatial distribution of
surface displacements presents clustering or rigtThe most widely used measure of
global spatial autocorrelation in spatial statstontext is Moran’s index [16, 17]. For

a set oin geodetic points for surface displacemehts,given as

LZin:lz;]:lvvij (U -0)(y; -0)
> Zill(ui _U)Z

i,j=12,...n defines a priori which pairs of two locatiomsand j are

with e nominal significance level.

(12)

where w ,
likely to interact and called spatial weights, add, U, i,j=1,2,..n, are surface

displacements of the geodetic points. The colleateights are typically referred to as a
spatial weights “matrix” W, of the same dimensian the number of observations

(nx n) and with zero on the diagonal by convention. Thet§, is then the sum of all

the elements in the weights matrix, 8= ZLZLM [15].

The computed Moran’sindex value is compared with the expected valuke dénoted
asE(l), given as

E(1)=—-. (13)

87



TURKSEN O.

Note that, in large samples, tlﬁz(l) will approach zero since the—1 becomes larger

with n. According to the obtained results, three basimmarisons are possible as
follows:
i. If 1>E(l), the geodetic data points are clustered in faldhe area with

respect to their surface displacement values.
i If 1 <E(I), the geodetic data points are dispersed in falalhep area with

respect to their surface displacement values.
ii. If 1=E(1), the geodetic data points have random patterrauit plane area

with respect to their surface displacement values.

In order to understand that if the obtained reshdtge statistically significancé&;test is
applied. Here, thé&-test for Moran’d index can be given as

ZI :i(l) (14)

ar(1)

whereVar(1) = E(Iz)—(E(I))2 and

n((r*-3n+3) §- n$+3 §)-

Z::l(Ui _L_J_)z zx((nz—n)ﬁ— n$+3 $)
(Zi:l(ui _U) )
=)= (D(n-2(n- 3§

(15)

In Equation (15), theS and S, are computed aﬁz(zrﬂz?ﬂ(w} + W )2)/2 and

S =Zin:1(z:=1"\f +zjn=1vY' )2'

4. Application

In this section, a numerical example is given tespnt the application of spatial
statistics for geodetic point data. For this pugan operation region is simulated to
present an earthquake fault plane area. The sietul@arthquake fault plane area is

formed in a study area, sizdd30,20x(— 50,20, with 50 geodetic points [13]. The

simulated earthquake area and 50 locations of ptata are signed on the graph in
Figure 2.
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Figure 2. The locations of geodetic points of awdated earthquake fault plane area
with fault direction.

It can be easily seen in Figure 2 that the geodwmiiats are formed around the fault
direction which is passed along the origin with taight line. The surface
displacements, calculated for each coordinateganerated by using Matlab code taken
from the geodynamics laboratory page of the Masssetts Technology Institute for
each coordinate [13]. The coordinates of geodetimtp and surface displacement,
denoted asU can be seen in Table 1. The detailed informatiboua generating

synthetic data set can be seen in the studie2ei4].

Table 1. Coordinates and surface displacement salisimulated geodetic
points [12-13].

Location Coordinates Surface displacements Location  Coordinates Surface displacements
number (V) number ((®))
1 (2, -34) (-0.1275, 0.2515, -0.1019) 26 (-20, -15) (0.0098, 0.1118, -0.0765)
2 (-3,9) (-0.0014, 0.0541, -0.0307) 27 (-17, -20) (0.0128, 0.1496, -0.1237)
3 (-20, 1) (0.0009, 0.0625, -0.0362) 28 (-15, -26) (0.0101, 0.1950, -0.2330)
4 (4, -1) (-0.0044, 0.0680, -0.0393) 29 (11,14) 0.0020, 0.0417, -0.0222)
5 (-18, -23) (0.0270, 0.1681, -0.1532) 30 (-9, -39) (-0.3500, 0.7122, -0.2765)
6 (6, -16) (-0.0197, 0.1046, -0.0600) 31 (-4, -23) (-0.0339, 0.1756, -0.1282)
7 (-10,18)  (-0.0008, 0.0432, -0.0231) 32 (16, 18) (-0.0020, 0.0355, -0.0183)
8 (-10, 5) (-0.0010, 0.0611, -0.0357) 33 (-11, -45) (-0.6662, 1.0287, -0.1170)
9 (-9, -21) (-0.0153, 0.1673, -0.1380) 34 (2,-28) (-0.0680, 0.1887, -0.1022)
10 (-23,17) (-0.0001, 0.0385, -0.0204) 35 (-21)-4  (0.0294, -0.7021, 1.0330)
11 (14,-36)  (-0.1098, 0.1485, -0.0293) 36 (9, -42) (-0.1974, 0.2469, -0.0338)
12 (-29,-13)  (0.0144, 0.0736, -0.0367) 37 (-18)-3  (-0.4933, 0.9630, -0.4768)
13 (16, -15) (-0.0218, 0.0749, -0.0350) 38 (9, -43) (-0.2121, 0.2581, -0.0308)
14 (2,-16) (-0.0173, 0.1154, -0.0716) 39 (-13)-13 (0.0001, 0.1155, -0.0820)
15 (-27, -24) (0.0491, 0.1241, -0.0519) 40 (9,3) -0.0041, 0.0562, -0.0309)
16 (2,-14) (-0.0139, 0.1073, -0.0664) 41 (-23)-21 (0.0309, 0.1325, -0.0877)
17 8,7) (-0.0029, 0.0515, -0.0283) 42 (-23,8)  .0005, 0.0484, -0.0264)
18 (8, -35) (-0.1184, 0.1944, -0.0574) 43 (2,6) 0.d@923, 0.0569, -0.0323)
19 (10, -23) (-0.0405, 0.1158, -0.0549) 44 (-29)-4  (0.3093, -0.1076, 0.2482)
20 (-3, -47) (-0.5171, 0.6714, -0.0800) 45 (16, -5) (-0.0100, 0.0589, -0.0300)
21 (-6, -29) (-0.0870, 0.2555, -0.1988) 46 (-6)-42 (-0.3824, 0.6424, -0.1471)
22 (-8,7) (-0.0011, 0.0577, -0.0333) 47 (-22, -35) (0.3027, 0.7685, -0.0648)
23 1,-2) (-0.0040, 0.0729, -0.0432) 48 (-16, 14) (-0.0005, 0.0453, -0.0249)
24 (-26, 12) (0.0005, 0.0412, -0.0217) 49 (-23)-40 (-0.1164, 0.0907, 0.6267)
25 (-3, -44) (-0.3982, 0.5752, -0.0957) 50 (-2%)-3  (0.1065, 0.1422, 0.1135)
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The main aim of the study is to realize the strieetnf synthetic geodetic point data on
the simulated fault plane area. The spatial meatecand the spatial standard distance

are calculated a$Xyc,Yyc)=(~6.74~ 17.08 and SD=24.402z, respectively. The

angle of rotation from the point d¥IC is calculated as 5.4899. The pair of standard
deviations along thex- and y-coordinates are computed aS, =17.95¢ and

S, =17.854;, respectively. The obtained values of spatial dpsee statistics are

presented in Figure 3. It can be seen from therBi@uthat the standard deviational
ellipse is similar a circle which means that th&mbution of geodetic points is uniform.

The quadrat count method is applied on simulated & understand that if the geodetic
points appear uniform, random or clustered. Thal taamber of quadrats is calculated
as 24 by following the algorithmic steps of quadm@int method given in Section 3.2.1.
The fault plane area is divided the quadrats wittoBs and 4 columns. It should be
noted here that the number of rows and columnslefieed by using area calculation
given in the study of [4]. The quadrats with pguatitern can be seen in Figure 4. The

2
variance-mean ratio is computed B3, _S’ _0.6014

4 2.0833
R, statistics value that the mean is bigger than waga So, the geodetic points

appear more uniform than expected from a strictydom process. In order to check
that the obtained results is statistically meanihgf not, the calculatettest value ()

IS obtained a3, =-3.520¢. If it is compared with thétable value at 0.05 significance
level, the null hypothesis, which is defined asdistribution of point pattern is random,
is rejected with 95% confidence level sirjgg > t, gp5. 49= 2.01C.

=0.2887. It is clear from the
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Figure 3. Spatial distribution of geodetic points simulated earthquake area —
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Figure 4. Quadrats with geodetic points on the &ted fault plane area.

If the nearest neighbor approach is applied to tstded the spatial point pattern
structure, the distance between each geodetic pathits closest neighbor are derived.

The observed distance valug,, and the expected distance valgg,, are calculated

as 5.032% and 3.8827, respectively. Thus, th&, statistics is obtained &s2961. It

can be said that the distribution of geodetic mileinds toward uniformity since the
Ry Statistics is greater than 1. For statistical lilgpsis test, the calculat&etest value

(Z.) is approximately obtained as equal to 4. The hypothesis is rejected since
Zc > Z,0,5=1.96 at 0.05 nominal significance level. It should been here that the

null hypothesis is defined as the distribution oinp pattern is random. The spatial
descriptive statistics and spatial point patteralysis present that the synthetic geodetic
points have uniform distribution according to tleedtions of point data. However, it
should be checked that if there is spatial autetation between locations of geodetic
points and the surface displacement values of toes¢ions.

In order to compute the spatial autocorrelationy@iés| index is preferred to use. The

geodetic points which have similar features abadase displacements, along with the
fault plane and dip angle with vertical directiare chosen among the 50 geodetic
points. These data points are numbered as 3, 3512, 26, 27, 28, 39, 41, 42 and 47
in Table 1. The locations of the grouped data goane also presented with red dots in
Figure 5.
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Figure 5. The geodetic data points with groupeddggo points which are presented
with red dots.

The spatial weight matriXyV, is calculated to obtairg, in Moran’s| index formula
given in Equation (12). By following this formulghe | index is obtained as

7.06x 10", The expected value dfis computed as -0.02 by using Equation (13). It is
clear that the index value and the expected in@éxevare approximately equal. So, it is
possible to say that the geodetic data points heavdom pattern in fault plane area with
respect to their surface displacement values. tteroto understand if the obtained
results have statistically significance, th¢est value is calculated as 0.2938. It is clear
from comparison withZ, ,;=1.96 value that the distribution of synthetic geodetic

points is random in fault plane area with 0.05 nmahsignificance level. Here, the null
hypothesis is also related to randomness.

5. Conclusion

This study presents the importance of spatial autetation for spatial statistical
analysis of geodetic points on fault plane area Simulated study is applied since the
difficulty of obtaining real earthquake data. Tipatsal descriptive statistics present that
the distribution of geodetic points is uniform. Tlpatial pattern analysis results,
quadrat count method and the nearest neighbor agprondicate that the synthetic
geodetic points have also uniform distributionisitseen from the spatial statistical
analysis results that the spatial descriptive &iai and spatial pattern analysis consider
only location information of geodetic points. Howeey it is possible to obtain more
realistic results with considering the spatial aotoelation between geodetic points and
the surface displacements. The global spatial auwtelation index, Moran’sl,
considers the surface displacement values of tbatitms. It is understood from the
calculations that the geodetic data points havedaan pattern in the fault plane
according to the Moran’sindex. This can be considered as an important trésuthe
geodetic data set since the surface displacemdues/are analyzed related to the
locations of geodetic points.

92



BAUN Fen Bil. Enst. Dergisi, 21(1), 81-93, (2019)

References

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Cressie, N.A.C.Statistics for Spatial Data John Wiley and Sons, (1990).
Moller, J., Spatial Statistics and Computational Methods SpringerVerlag,
NewYork, LectureNotes in Statistics, (2003).

Fischer, M.M. and Wang, JSpatial Data Analysis, Models, Methods and
Techniques Springer, (2011).

Oyana, T.J. and Margai, F.MSpatial Analysis, Statistics, Visualization, and
Computational Methods, CRC Press, (2016).

Zimeras, S., Modeling earthquake data using spaitatistics techniques,
Proceedings of the 1st IASME / WSEAS International Conference on
Geology and Seismology (GES'07), Portoroz, Slovenia3-36, (2007).

Sarp, G., Duzgln, S. and Toprak, V., Spatial Analgs Earthquake Epicenters
in; North-West of Ankaralnternational Conference on Environment: Survival
and Sustainability, Near East University, Nicosia-Mrthern Cyprus, 4619-
4633, (2007).

Al-Ahmadi, K., Al-Amri, A. and See, L., A spatialtagistical analysis of the
occurrence of earthquakes along the Red Sea flpoeading: clusters of
seismicity,Arabian Journal of Geosciences7(7), 2893-2904, (2013).

Tagll, S. and Alevkayall, C., Earthquake Spatial Distribatin the Egean Region,
Turkey: The Geostatistical Approacfihe Journal of International Social
Research 6(28), 369-379, (2013).

Affan, M., Syukri, M., Wahyuna, L. and Sofyan, Kpatial Statistic Analysis of
Earthquakes in Aceh Province Year 1921-2014: CtusSeismicity, Aceh
International Journal of Science and Technology5(2), 54-62, (2016).

Mentese, S. and Tal, S., The Spatial Distribution of Earthquakes in Tyrk&
Geostatistical and Spatial Statistical Approathe Journal of International
Social Research9(45), 408-414, (2016).

Al-Dogom, D., Schuckma, K. and Al-Ruzouq, R., Gatistical Seismic Analysis
and Hazard Assessment; United Arab Emiraldé® International Archives of
the Photogrammetry, Remote Sensing and Spatial Infmation Sciences29-
36, (2018).

Turksen, O.,The Adaptive Simulated Annealing Method in Estimaton of
Earthquake Source Parameters Through Surface Meas@ments Ms.Thesis,
Ankara, (2005).

Turksen, O. and Apaydin, A., Estimating The Earthquakerr€&e Parameters:
Simulated Annealing Versus Nelder-Mead Simplex Ailipon, Communications
Faculty of Sciences University of AnkaraSeries Al, 62(2), 53-66, (2013).
Turksen, O. Estimation of Fault Plane Parameters by dJsBtochastic
Optimization Methodslnternational Journal of Earthquake Engineering and
Hazard Mitigation, 2(2), 61-66, (2014).

Anselin, L., Murray, A.T. and Rey, S.JSpatial Analysis, The Oxford
Handbook of Quantitative Methods (Edited by T.D. Little), Oxford University
Press, (2013).

Moran, P.A.P., The interpretation of statisticalpnaBiometrika, 35, 255-260
(1948).

Moran, P.A.P., Notes on continuous stochastic pimama,Biometrika, 37, 17-
23 (1950).

93



