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Abstract
In this paper, we define the pullback crossed modules in the category of racks that are
mainly based on a pullback diagram of rack morphisms with extra crossed module data on
some of its arrows. Furthermore, we prove that the conjugation functor, which is defined
between the category of crossed modules of groups and of racks, preserves the pullback
crossed modules.
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1. Introduction
A rack R is a set equipped with a non-associative binary operation satisfying:

(x C y) C z = (x C z) C (y C z)
for all x, y, z ∈ R, and one additional property of this binary operation. Moreover, a
rack is called “quandle” if it further satisfies x C x = x, for all x ∈ R. These total
quandle axioms are related to the Reidemeister moves of knot diagrams, and this yields a
connection between knot theory and the theory of quandles (hence racks) [9]. Racks have
been variously studied under plenty of names and a variety of terminology in literature.
They are called automorphic sets [1], crystals [8], left distributive left quasigroups [10]
and racks (as a modification of wrack) [4]. The most important example of racks comes
from the conjugation in a group G where g C h = h−1gh, for all g, h ∈ G. This property
yields a functor Conj : Grp→ Rack from the category of groups to the category of racks.
Moreover, there exists an adjunction [7] between these two categories with:

HomGrp
(
As(X),G

) ∼= HomRack
(
X,Conj(G)

)
,

where the functor As: Rack→ Grp is left adjoint to the functor Conj.
A crossed module of groups [11] G = (∂ : E → G, ·) is defined by a group homomorphism

∂ : E → G, together with a (right) group action of G on E satisfying the Peiffer relations,
i.e. ∂(e · g) = g−1∂(e) g and f · ∂(e) = e−1f e, for all e, f ∈ E and g ∈ G. Crossed
modules of racks [5] generalize the notion of crossed modules of groups satisfying two
parallel Peiffer conditions. An interesting result of this notion is the functors As and Conj
preserving the crossed module structures, see [5]. Therefore, we can also consider them
as the (induced) functors between the category of crossed modules of groups XGrp and
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the category of crossed modules of racks XRack, denoted by As? and Conj? respectively.
Then, the previous adjunction leads to the following extended adjunction:

HomXGrp
(
As?(X),G

) ∼= HomXRack
(
X,Conj?(G)

)
.

Consequently, one can say that the functor Conj? preserves limits and As? preserves col-
imits.

Crossed modules of groups or racks, which have the same fixed codomain A will be
called crossedA modules, and lead to full subcategories of the corresponding categories.
We denote these categories by XGrpA and XRackA, respectively.

Pullback crossed modules in the category of groups are introduced in [3] which is derived
originally from [2]. Explicitly, let φ : S → R be a fixed group homomorphism and ∂ : P →
R be a crossed module. Let A be the pullback in the category of groups with the diagram:

A
β //

∂∗

��

P

∂

��
S

φ
// R

Then, S acts on A ⊂ P × S by the rule as =
(
(βa)φs , s−1 (∂a) s

)
for all s ∈ S and a ∈ A

that makes ∂∗ : A → S a crossed module and (β, φ) a crossed module morphism. This
morphism is universal for morphisms from crossedR modules to crossedS modules that
induce φ : S → R. Writing A = φ∗P we obtain a functor φ∗ : XGrpR → XGrpS which is
called restriction that is left adjoint to the induced functor introduced in [3].

In this paper, we construct the pullback crossed modules in the category of racks that
will generalize the pullback crossed modules of groups. Furthermore, we see that the
functor Conj? preserves the pullback crossed module structure in the sense of the following
commutative diagram:

XGrpR

φ∗

��

Conj? // XRackR

φ∗

��
XGrpS Conj?

// XRackS

for any arbitrary but fixed group homomorphism φ : S → R.

2. Preliminaries
We recall some notions from [5,7] that will be used in the sequel.

2.1. Category of racks
Definition 2.1. A (right) rack R is a set equipped with a (right) binary operation satis-
fying the following conditions:

• for each a, b ∈ R, there is a unique c ∈ R such that:

c C a = b,

• for all a, b, c ∈ R, we have:

(a C b) C c = (a C c) C (b C c) .
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A pointed rack is a rack R with an element 1 ∈ R such that (for all a ∈ R):

1 C a = 1 and a C 1 = a.

From now on, all racks will be pointed.

Let R,S be two racks. A rack homomorphism is a map f : R→ S such that:

f (a C b) = f (a) C f (b) and f (1) = 1,

for all a, b ∈ R. Thus we have the category of racks denoted by Rack. Alternatively, for
a point of view on racks where the two right and left rack operations are treated on an
equal basis, see [6].

Examples:

1) Given a group G, there exists a rack structure on G where the binary operation is:

g C h = h−1gh,

for all g, h ∈ G. This rack is called the conjugation rack of G, from which we get the
functor:

Conj : Grp→ Rack.

2) The core rack on a group G is defined by:

g C h = hg−1h,

for all g, h ∈ G; however this construction is not functorial.

3) Let P,R be two racks, we have a rack structure on P ×R defined by:

(p, r) C
(
p′, r′

)
=

(
p C p′, r C r′

)
,

which is also the product object in the category of racks.

2.2. Rack action
Definition 2.2. Let R be a rack and X be a set. We say that X is an R-set when there
are bijections (·r) : X → X for all r ∈ R such that:

(x · r) · r′ =
(
x · r′

)
·
(
r C r′

)
, (2.1)

for all x ∈ X and r, r′ ∈ R.

Definition 2.3. Let R be a rack and X be an R-set. The hemi-semi-direct product
X oR ⊂ X ×R is the rack defined by:

(x, r) C
(
x′, r′

)
=

(
x · r′, r C r′

)
,

for all x, x′ ∈ X and r, r′ ∈ R.

Remark that x′ disappears in the hemi-semi direct operation which is the main technical
difference from the semi-direct product of groups and causes various problems when we
deal with it.

Definition 2.4. Let R,S be two racks. We say that S acts on R by automorphisms when
there is a (right) action of S on R and:

(r C r′) · s = (r · s) C (r′ · s) (2.2)

for all s ∈ S and r, r′ ∈ R.



Pullback crossed modules in the category of racks 143

2.3. Crossed modules of racks
Definition 2.5. A crossed module of racks (R,S, ∂) is a rack homomorphism ∂ : R → S
together with a (right) rack action of S on R such that following two Peiffer relations hold
(for all r, r′ ∈ R and s ∈ S):

X1) ∂ (r · s) = ∂ (r) C s,
X2) r · ∂ (r′) = r C r′.

If (R,S, ∂) and (R′, S′, ∂′) are two crossed module of racks, a crossed module morphism:

(f1, f0) : (R,S, ∂)→
(
R′, S′, ∂′

)
is a tuple which consists of rack homomorphisms f1 : R→ R′, f0 : S → S′ such that:

• ∂′f1 = f0 ∂,
• f1 (r · s) = f1 (r) · f0 (s),

for all r ∈ R, s ∈ S. Thus we get the category of crossed modules of racks, denoted by
XRack.

Examples:

1) Let N ⊂ R be a normal subrack of R (i.e. n C r ∈ N for all n ∈ N, r ∈ R). The
inclusion map N → R is a crossed module (inclusion crossed module) where the action is
defined by the main rack operation.

2) Let µ : M → N be a crossed module of groups. We obtain a crossed module of racks
by passing to the associated conjugation racks of M and N .

3. Fiber product of racks
Definition 3.1. Let α : P → R and β : S → R be two rack homomorphisms. The fiber
product P ×R S is the subrack of the rack P × S defined by:

P ×R S = {(p, s) | α (p) = β (s)} .

From the categorical point of view, the fiber product is the equalizer of the parallel rack
homomorphisms:

P × S
α◦π1 //
β◦π2

// R .

Proposition 3.2. Let (P,R, α) and (S,R, β) be two crossed modules of racks. The map
∂ : P ×R S → R given by:

∂(p, s) = α(p) = β(s)
yields a crossed module (P ×R S,R, ∂) with the (right) rack action:

(P ×R S)×R → P ×R S
((p, s) , r) 7→ (p, s) · r = (p · r, s · r)

Proof. The action of R is well-defined, i.e. it preserves P ×R S. This follows directly
from α(p) C r = β(s) C r. Moreover, it satisfies the conditions (2.1) and (2.2) since:

((p, s) · r) · r′ = (p · r, s · r) · r′

=
(
(p · r) · r′, (s · r) · r′

)
=

((
p · r′

)
·
(
r C r′

)
,
(
s · r′

)
·
(
r C r′

))
=

((
p · r′

)
,
(
s · r′

))
·
(
r C r′

)
=

(
(p, s) · r′

)
·
(
r C r′

)
,
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and (
(p, s) C

(
p′, s′

))
· r =

(
p C p′, s C s′

)
· r

=
((
p C p′

)
· r,

(
s C s′

)
· r

)
=

(
(p · r) C

(
p′ · r

)
, (s · r) C

(
s′ · r

))
= ((p · r) , (s · r)) C

((
p′ · r

)
,
(
s′ · r

))
= ((p, s) · r) C

((
p′, s′

)
· r

)
,

for all (p, s) , (p′, s′) ∈ P ×R S and r, r′ ∈ R.

Also the map ∂ : P ×R S → R is a rack homomorphism since:

∂
(
(p, s) C

(
p′, s′

))
= ∂

(
p C p′, s C s′

)
= α

(
p C p′

)
= α (p) C α

(
p′

)
= ∂ (p, s) C ∂

(
p′, s′

)
.

Finally (P ×R S,R, ∂) is a crossed module of racks since:
X1)

∂ ((p, s) · r) = ∂ (p · r, s · r)
= α (p · r)
= α (p) C r (∵ X1 condition of α)
= ∂ (p, s) C r,

X2)

(p, s) · ∂
(
p′, s′

)
= (p, s) · α

(
p′

)
=

(
p · α

(
p′

)
, s · α

(
p′

))
=

(
p · α

(
p′

)
, s · β

(
s′

))
(∵ α(p′) = β(s′))

=
(
p C p′, s C s′

)
(∵ X2 condition of α, β)

= (p, s) C
(
p′, s′

)
,

for all (p, s) , (p′, s′) ∈ P ×R S and r ∈ R. �

4. Pullback crossed modules in the category of racks
4.1. Idea

Suppose that we have a crossed module of racks (P,R, ∂) and a rack homomorphism
φ : S → R. The pullback crossed module of racks:

φ∗(P,R, ∂) = (φ∗(P ), S, ∂∗)

is a crossed module of racks satisfying the following universal property:

For a given crossed module morphism of racks:

(f, φ) : (X,S, µ)→ (P,R, ∂)

there exists a unique crossed module morphism:

(f∗, idS) : (X,S, µ)→ (φ∗(P ), S, ∂∗)
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which makes the following diagram commutative:

(X,S, µ)

(f,φ)

��

(f∗,idS)

tth h h h h h h h h h h h h h h

(φ∗(P ), S, ∂∗)
(φ′,φ)

// (P,R, ∂)

Remark 4.1. In other words, the previous definition can be seen as a pullback of rack
homomorphisms:

X

µ

��

f //

f∗

""

P

∂

��

φ∗(P )
φ′

<<xxxxxxx

∂∗||xx
xx
xx
x

S
φ

// R

(4.1)

where the arrows φ, φ′ have crossed module structures. It is clear that pullback crossed
modules are not the pullback objects in the category XRack.

4.2. Construction
Let (P,R, ∂) be a crossed module and let φ : S → R be a rack homomorphism. Define

φ∗(P ) = P ×RS and ∂∗ : φ∗(P )→ S by ∂∗ (p, s) = s. Then ∂∗ turns into a crossed module
where the action of S on φ∗(P ) is defined by:

φ∗(P )× S → φ∗(P )
((p, s) , s′) 7→ (p, s) · s′ = (p · φ (s′) , s C s′)

First of all, the action given above is well-defined, i.e. it preserves the set φ∗(P ), which
follows directly from ∂(p) C φ(s′) = φ(s) C φ(s′). Moreover, ∂∗ is a rack homomorphism
since:

∂∗
(
(p, s) C

(
p′, s′

))
= ∂∗

(
p C p′, s C s′

)
= s C s′

= ∂∗ (p, s) C ∂∗
(
p′, s′

)
,

for all (p, s) , (p′, s′) ∈ φ∗(P ). Furthermore the action conditions are satisfied since:(
(p, s) · s′

)
· s′′ =

(
p · φ

(
s′

)
, s C s′

)
· s′′

=
((
p · φ

(
s′

))
· φ

(
s′′

)
,
(
s C s′

)
C s′′

)
=

((
p · φ

(
s′′

))
·
(
φ

(
s′

)
C φ

(
s′′

))
,
(
s C s′′

)
C

(
s′ C s′′

))
=

((
p · φ

(
s′′

))
· φ

(
s′ C s′′

)
,
(
s C s′′

)
C

(
s′ C s′′

))
=

(
p · φ

(
s′′

)
, s C s′′

)
·
(
s′ C s′′

)
=

(
(p, s) · s′′

)
·
(
s′ C s′′

)
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and (
(p, s) C

(
p′, s′

))
· s′′ =

(
p C p′, s C s′

)
· s′′

=
((
p C p′

)
· φ

(
s′′

)
,
(
s C s′

)
C s′′

)
=

((
p · φ

(
s′′

)
C p′ · φ

(
s′′

))
,
(
s C s′′

)
C

(
s′ C s′′

))
=

(
p · φ

(
s′′

)
,
(
s C s′′

))
C

(
p′ · φ

(
s′′

)
,
(
s′ C s′′

))
=

(
(p, s) · s′′

)
C

((
p′, s′

)
· s′′

)
for all (p, s) , (p′, s′) ∈ φ∗(P ) and s′′ ∈ S.

Finally ∂∗ is a crossed module:
X1)

∂∗
(
(p, s) · s′

)
= ∂∗

(
p · φ

(
s′

)
, s C s′

)
= s C s′

= ∂∗ (p, s) C s′

X2)

(p, s) · ∂∗
(
p′, s′

)
= (p, s) · s′

=
(
p · φ

(
s′

)
, s C s′

)
=

(
p · ∂

(
p′

)
, s C s′

)
(∵ ∂

(
p′

)
= φ

(
s′

)
)

=
(
p C p′, s C s′

)
(∵ X2 condition of ∂)

= (p, s) C
(
p′, s′

)
for all (p, s) , (p′, s′) ∈ φ∗(P ).

Furthermore, this construction satisfies the universal property. To state it, we need the
crossed module morphism: (

φ′, φ
)

: (φ∗(P ), S, ∂∗)→ (P,R, ∂)

where φ′ : φ∗(P )→ P is given by φ′ (p, s) = p.

Suppose that (X,S, µ) is an arbitrary crossed module with a crossed module morphism:

(f, φ) : (X,S, µ)→ (P,R, ∂)

We need to prove that there exists a unique crossed module morphism:

(f∗, idS) : (X,S, µ)→ (φ∗(P ), S, ∂∗)

such that: (
φ′, φ

)
(f∗, idS) = (f, φ) .

Define f∗ : X → φ∗(P ) by f∗(x) = (f (x) , µ (x)), for all x ∈ X. Then the tuple (f∗, idS)
becomes a crossed module morphism, since (for all s ∈ S and x ∈ X):

f∗ (x · s) = (f (x · s) , µ (x · s))
= (f (x) · φ (s) , µ (x · s)) (∵ (f, φ) crossed module morphism)
= (f (x) · φ (s) , µ (x) C s) (∵ X1 condition of µ)
= (f (x) , µ (x)) · s
= f∗(x) · idS (s)
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and
∂∗f∗(x) = ∂∗ (f (x) , µ (x))

= µ (x)
= idS µ (x) .

Finally the diagram (4.1) commutes, since (for all x ∈ X):
∂∗f∗(x) = ∂∗ (f (x) , µ (x))

= µ (x)
φ′f∗(x) = φ′ (f (x) , µ (x))

= f (x)
and also φ∂∗ = ∂ φ′ by the definition of φ∗(P ).

Let (f ′, idS) : (X,S, µ) → (φ∗(P ), S, ∂∗) be a crossed module morphism of racks with
the same property as (f∗, idS). Define p and s by f ′ (x) = (p, s). Then we get:

φ′f ′ (x) = f (x)⇔ φ′ (p, s) = f (x)⇔ p = f (x)
∂∗f ′ (x) = µ (x)⇔ ∂∗ (p, s) = µ (x)⇔ s = µ (x)

leading to:
f ′ (x) = (p, s) = (f (x) , µ (x)) = f∗(x)

which implies that (f∗, idS) is unique and completes the construction.

Definition 4.2. Let us fix a rack R as a codomain for all crossed modules and construct
the related category which is the full subcategory of XRack. These kinds of crossed
modules will be called as crossedR modules and denote the corresponding category by
XRackR.

Corollary 4.3. As a consequence of the pullback crossed module structure in the category
of racks, we have the functor:

φ∗ : XRackR → XRackS.

Example 4.4. Let ∂ : N → R be an inclusion crossed module and φ : S → R be a rack
homomorphism. Then the pullback crossed module is defined by:

φ∗ (N) = {(n, s) | ∂ (n) = φ (s) , n ∈ N , s ∈ S}
∼= {s ∈ S | φ (s) = n, n ∈ N}
= φ−1 (N)

with the following commutative diagram:

φ−1 (N) φ′ //

∂∗

��

N

∂

��
S

φ
// R

where the preimage φ−1 (N) is a normal subrack of S.

It follows that:

Example 4.5. If N = {1} and R is a rack, then:
φ∗ ({1}) ∼= {s ∈ S | φ (s) = 1} = kerφ.

Thus (kerφ, S, ∂∗) is a pullback crossed module which implies kerφ is a normal subrack.
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Corollary 4.6. The kernel of a rack homomorphism is a particular case of a pullback
crossed module.

Example 4.7. If N = R and φ is surjective, then:
φ∗ (R) = R× S.

5. Functorial approach
Let R be a rack. The associated group As(R) is the quotient of the free group F (R) by

the normal subgroup generated by the elements y−1x−1y(x C y) for all x, y ∈ R, see [7].
This property leads to the functor:

As: Rack→ Grp,
which is left adjoint to the functor Conj.

The major property of these functors is; they both preserve the crossed module structure
that is proven in [5]. Consequently:

Corollary 5.1. We have the functors:
As? : XRack→ XGrp Conj? : XGrp→ XRack,

which are induced by As and Conj, respectively.

Theorem 5.2. There exists an adjunction between the categories of crossed modules of
racks and of crossed modules of groups:

HomXGrp
(
As?(X),G

) ∼= HomXRack
(
X,Conj?(G)

)
, (5.1)

which is induced by
HomGrp

(
As(X),G

) ∼= HomRack
(
X,Conj(G)

)
. (5.2)

Proof. Let X be a rack and G be a group. We know from [7] that; for a given rack homo-
morphism f : X → Conj(G), there exists a unique group homomorphism f] : As(X) → G
such that the following diagram commutes:

X

f

��

µ // As(X)

f]

��
Conj(G) id // G

where µ is the natural map. This diagram leads to (5.1).
One level further, let X be a crossed module of racks and G be a crossed module of

groups. Given a crossed module morphism of racks (f, g) : X → Conj?(G), there exists a
unique crossed module morphism of groups (f], g]) : As?(X) → G such that the following
diagram commutes:

X

(f,g)

��

(µ,µ) // As?(X)

(f],g])

��
Conj?(G)

(id,id)
// G

which induces two forms of (4.1) based on rack homomorphisms f, g and proves the ad-
junction (5.2). �

As another main outcome of the paper, we have the following:
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Theorem 5.3. We have the following commutative diagram:

XGrpR

φ∗

��

Conj? // XRackR

φ∗

��
XGrpS Conj?

// XRackS

Proof. It follows at once from the known fact that, Conj preserves limits and As preserves
colimits since the adjunction (5.2), see also Remark 4.1. �
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